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Abstract

The non-linear dynamic behaviour of a damped rod oscillator with elastic two-sided amplitude
constraints is analyzed using finite element method. Symmetric and asymmetric elastic double-impact
motions, both harmonic and sub-harmonic, are studied by way of a Poincar!e mapping that relates the
states at subsequent impacts. It is found that by increasing the forcing frequency ðoÞ for the beam at a
certain frequency a stable period one motion turns into a stable period two motion without bifurcation and
subsequently moves to an infinite number of solutions characteristic of chaotic behaviour through a cyclic
fold bifurcation. By further increasing o a series of windows in the bifurcation diagram (impact velocity vs.
o) comprising periodic solutions within the chaotic domain appear. The kinds of bifurcations involved are
discussed. Furthermore, impact work-rate of the beam, i.e., the rate of energy dissipation to the impacting
surfaces, is calculated. Computations show that the work-rate for asymmetric orbits is substantially higher
than for symmetric orbits at or near the same frequency. For the vibro-impacting beam, under conditions
that exhibit a stable attractor, calculation of work-rate allows prediction of the ‘‘lifetime’’ of the contacting
beam due to fretting-wear damage by extending the stable branch and using the local gap between
contacting surfaces as a control parameter.
r 2003 Elsevier Ltd. All rights reserved.

ARTICLE IN PRESS

$Part of this paper was presented at the ASME International Mechanical Engineering Congress & Exposition,

November 17–22, 2002, New Orleans, LA, USA.

*Corresponding author. Fax: +46-40-665-71-35.

E-mail address: tsjakn@ts.mah.se (J. Knudsen).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.10.060



1. Introduction

Oscillating mechanical systems confined within barriers exhibit highly non-linear behaviour due
to impacting. These systems are prevalent in many industrial equipment such as rattling gears [1],
steam generator tubes and fuel rods in nuclear power plants [2], to name just a few. The simplest
model for vibro-impacting system is a spring–mass system with amplitude constraint. A single
degree-of-freedom (s.d.o.f.) oscillator with one-sided elastic constraint has been studied by Shaw
and Holmes [3]. They found harmonic, sub-harmonic and chaotic motions and analyzed the
bifurcations leading to them. Furthermore, they concluded that zero velocity impacts (grazing) in
such a system cause discontinuities in the gradient of the impact map which give rise to
discontinuous bifurcation, called grazing bifurcation. Shaw [4] considered the dynamics of s.d.o.f.
oscillator with two-sided rigid constraints and used a simple impact rule via a coefficient of
restitution for the encounters with the constraints. He assumed that the excursions between the
constraints are governed by a linear equation of motion. He analyzed the motions and their
stability. By calculating frequency response curves (impact velocity vs. forcing frequency) Shaw
found regions in parameter space for which there were no stable symmetric orbits having two
impacts. In such regions a series of bifurcations, which resulted in long period, stable periodic and
chaotic motions was found [5].
Following the findings of Shaw and Holmes [3] the details of grazing bifurcations in s.d.o.f.

one-sided impact oscillators have been further explored [6–9]. It is found that a grazing
bifurcation occurs when a point on the orbit of the Poincar!e map intersects the line of zero impact
velocity. Additional complex vibro-impact effects have been noted by Budd and Dux [10] using
mathematical analysis. These comprise the phenomena of chattering and trapping (sticking).
Chattering comes about when infinitely many impacts occur in a finite time and trapping when the
impacting mass gets stuck to the constraint wall. These complex phenomena, grazing bifurcation,
chattering and trapping, analyzed for s.d.o.f. impact oscillator, have also been evaluated for
multi-d.o.f. impact oscillators, see e.g. Refs. [11–13]. In this regard, finally Qiu and Feng [14]
studied the impact dynamics of thin plates by considering a single-mode impact model of a plate
and then employed an equivalent s.d.o.f. impact oscillator to delineate the details of dynamic
behaviour. They found periodic solutions bifurcate from the grazing bifurcation point and that
most of these periodic orbits terminate at secondary grazing bifurcations.
In earlier studies the vibro-impact dynamics of beams subject to harmonic loads [15] and

random loads [16] were analyzed. The results of those analyses were compared with measurements
of contact forces and displacements made on a loosely supported rod in experiments. To
characterize the system dynamics, a s.d.o.f. system with two-sided elastic constraints subject to
both harmonic and random loads [15,16] was evaluated. A two-dimensional beam with two-
diametrically opposed identical supports was modelled by finite element method. Both systems
exhibited aperiodic as-well-as periodic solutions when subjected to harmonic forces. But when the
systems were subjected to random forces no periodic solutions were found.
Furthermore, in a more recent study, [17,18], the details of dynamic stability of weakly damped

impact oscillators with elastic constraints subject to harmonic loads were evaluated. A beam
oscillator and its equivalent s.d.o.f. system was considered and stability and bifurcation analyses
for the motion using the Poincar!e map method to directly determine the stable periodic solution
were carried out. The domains of instability of the motion were delineated and compared with
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those of an equivalent s.d.o.f. oscillator system for which exact analytical solutions are available.
The computations showed that the route to chaos in the s.d.o.f. harmonic system is initiated with
a supercritical symmetry breaking bifurcation followed by a sequence of flip bifurcations, whereas
for the beam oscillator a perturbed supercritical symmetry breaking bifurcation is followed by the
Neimark bifurcations [19]. As in the present analysis, the input forcing frequency o; in
dimensionless form, was selected as control parameter to study the transitions between the
different dynamic regimes.
Commonly, impacting is associated with increased wear of the components of the oscillator

[20], which is related to the dynamical behaviour of the system. Hence, study of the vibro-impact
dynamics is important for understanding and analyzing wear of components that are under such
motions.
On a macroscopic scale removal of material from the surface due to impacts may be modelled

by Archard’s wear relation [21]. To relate wear volume to non-linear quantities, such as the
contact forces and relative sliding motion, Frick et al. [20] introduced the concept of work-rate.
Recently, the notion of the shear work-rate was proposed by Pettigrew et al. [22]. It is defined as
the integral of the shear or sliding force times the sliding distance per unit time. Hence, the shear
work-rate is identical to the mechanical energy dissipated at contact points. Monte Carlo
simulations have been adopted to cope with the complex dynamic response as well as uncertainties
in material parameters involved in vibro-impacting systems with wear. Delaune et al. [23] studied
how uncertainties of parameters in wear tests influenced work-rate calculations and Charpentier
and Payen [24] applied a probabilistic method to compute wear work-rate and lifetime of steam
generator tubes.
In the present paper the work-rate for stable periodic solutions is evaluated. These solutions

exhibit asymmetric wear of the contact sites, as the gap increases through wear. This allows the
prediction of the lifetime of the studied system, i.e., the time to reach a specific wear depth at the
contact sites. In earlier studies, vibro-impact dynamics were analyzed in connection with an
experiment concerning wear work-rate of a beam oscillator confined within elastic barriers subject
to harmonic loads [15] and stochastic loads [16]. Recently, details of dynamic stability of weakly
damped beam oscillators with elastic supports have been evaluated using the Poincar!e map
method to determine stable periodic solutions and the work-rate associated to these solutions [17].
Here an attempt has been made to analyze the dynamic behaviour of the beam oscillator in the
frequency interval oA½6; 8� by evaluating all the stable solutions of the Poincar!e mapping. More
specifically, the transition to chaotic motion for the system is evaluated.
The structure of this paper is as follows. The beam oscillator with two-sided elastic constraints

is considered in Section 2. The dynamics of the system and the governing equations are presented
in Section 3. Section 4 outlines the method of analysis. The wear model is described in Section 5.
The results of computations are presented and discussed in Sections 6 and 7. The last section is a
conclusion.

2. Oscillating beam

Consider a long slender beam supported at one end by a pair of stiff springs, namely a torsion
spring suppressing rotation and a lateral (deflection) spring suppressing translation. The beam is
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constrained by symmetric contact sites situated near the other end with a gap size X0; see Fig. 1.
The beam is excited with a harmonic force of frequency O applied in the same plane as the contact
sites. The case considered was an object of an experiment, performed on a portion of nuclear fuel
rod, which was analyzed in earlier papers [15,16].
For the considered beam the Bernoulli–Euler approximation that the local curvature of the

beam axis is proportional to the local moment of the beam is assumed. In addition, the Rayleigh-
type damping is assumed [25]. The beam is discretized in space with finite elements using cubic
interpolation functions. The chosen finite element mesh consists of four elements with two degree-
of-freedom at each node. Newmark’s time integration method is utilized [26]. The contact sites are
modelled with linear elastic springs. The developed computational program uses a node-to-node
contact algorithm, hence each contact site is connected to a specific node. Each contact site can be
given individual force–displacement relationship in normal, tangential, and axial directions. Stick-
slip motion along the curved surface of the beam is allowed. The contact force vector p is resolved
into p ¼ ðpn; pc; paÞ; where indices n; c and a denote normal, circumferential and axial directions,
respectively. Correspondingly the gap vector is decomposed as g ¼ ðgn; gc; 0Þ: Classical contact
laws (Signorini plus Coulomb) are assumed, see e.g. Refs. [15,27]. Since the present work deals
with planar beams only, the circumferential components are set equal to zero. Furthermore,
because the deflections are small, pa ¼ 0: Hence, friction force does not enter these calculations.
The details of the governing equation for the beam, the finite element discretization procedure

and the specific conditions before and after the impact with the springs are described in Refs.
[15,28]. The model has been used to analyze beam vibrations and wear work-rate in earlier papers
[15,16,26,28,29] with and without friction.
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Fig. 1. The basic geometry of the cantilever impact beam oscillator with elastic supports and gap size X0:
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3. Dynamics

3.1. Equations of motion

The dynamics of the structure, described in the foregoing section, can be written in a finite
element framework as a system of first order differential equations

’x ¼ v;

’v ¼M�1½fa þ fc � Cv� Kx�;

’t ¼ 1; ð1Þ

whereM; C and K are the consistent mass, damping and stiffness matrices, respectively; x ¼ X=X0

and v are the dimensionless displacement and velocity vectors, respectively; and t ¼ o0t; where o0

is the fundamental eigenfrequency of the beam and t is the actual time. Also, fa is the applied
force, fc is the contact force and a dot over a symbol indicates the time derivative with respect to t:
Consequently, the state vector for the system by ðx; v; tÞ is defined. The vector field defined in
Eq. (1) has dimension 2nd :o:f : þ 1; where nd :o:f : is the degrees of freedom (d.o.f.) of the system. For
a harmonic load with forcing frequency O; the field is periodic in t with period 2p=o; where
o ¼ O=o0:
Since a node-to-node contact algorithm is used, the node xc where structural contact will occur

can be identified. Define a one-sided Poincar!e section by

S ¼ fðx; v; tÞjxc ¼ þ1; vc > 0g ð2Þ

and the corresponding return map P by

P ¼ S-S or ð#t; #xr; #vÞ ¼ Pðt; xr; vÞ; ð3Þ

where xr is the reduced displacement vector, meaning that the contact node xc ¼ þ1 is excluded,
and a caret 4 over the state variables is used to denote the quantities at the subsequent structural
contact. The algorithm for the computation of the Poincar!e map P has been detailed in Ref. [17].

3.2. Periodic orbits

The stability of periodic orbits is analyzed by means of the Poincar!e return map. For a beam
oscillator a fixed point of the return map P in Eq. (3), i.e., harmonic motion of the equation
system (1), satisfies the following condition

%tþ
2pn

o
; %u

� �
¼ Pkð%t; %uÞ; ð4Þ

where Pk indicates that P has been applied k times, n denotes the sub-harmonic of the k iterated
map and the point ð%t; %uÞ is referred to as periodic point of P; with u ¼ ðx; vÞ denoting a vector
comprising displacements and velocities and the bar over a variable indicates the periodic
point. The local stability of the periodic point is analyzed by the eigenvalues of the Jacobian
matrix Pk evaluated at the periodic point. More details on the computational method can be
found in Ref. [17].
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4. Analysis method

The procedure of computing one or more iterates of the Poincar!e return map, given by Eq. (3),
is to start from the initial state ðt; uÞ with xc ¼ þ1; then step forward in time until #xcð#tÞ ¼ þ1 for
#t > %t; where #t denotes the time at the subsequent impact at the same contact site. An effective
time-stepping algorithm has been employed to accurately determine the time between impacts
[17].

4.1. Fixed points

Fixed points (periodic orbits) of the Poincar!e map defined by Eq. (3) are sought using a globally
convergent Newton iteration method for finding the roots of the system of equations

Pkð%t; %uÞ � %tþ
2pn

o
; %u

� �
¼ 0: ð5Þ

Here the term global refers to a method which converges to a solution for almost any starting
point. The particular algorithm used here has been adapted from [30].

4.2. Branches and manifolds

Sequential continuation is used to map out branches of fixed point solutions, e.g. Ref. [31]. Let
a denote the control parameter for the problem. The interval of interest is divided into closely
spaced grid points a0; a1;y; aN : The solution ð%tj; %ujÞ at aj is used as a prediction for the next
solution ð%tjþ1; %ujþ1Þ at ajþ1: The predicted value is then corrected with the Newton iteration
scheme presented in the preceding section.
The sequential continuation scheme will obviously fail at bifurcation points where two or more

branches meet, e.g., symmetry breaking bifurcations. In practice, however, sufficiently small
increments in the control parameter can be chosen to prevent the fixed point from jumping from
one branch to another [32].
Another key issue in non-linear dynamics is the existence of stable and unstable manifolds of

fixed points, denoted by Ws and Wu; respectively. These manifolds are split into two half-
manifolds by excluding the fixed point. These are denoted by Ws

1=2 and Wu
1=2 for stable and

unstable half-manifolds, respectively. Stable and unstable half-manifolds of a fixed point are
found using the well established algorithm proposed by Parker and Chua [33].

5. Wear model

5.1. The model

Fretting wear of impacting structures can be modelled by using Archard’s wear law [21], which
states that loss of material is related to contact force times the sliding distance through some
material parameters. In a one-dimensional system this makes no sense, since no sliding can take
place. In this paper it is assumed that the material loss or damage can be related to the impact

ARTICLE IN PRESS

J. Knudsen, A.R. Massih / Journal of Sound and Vibration 278 (2004) 1025–10501030



energy and that all damage occurs at the contact sites, according to

DV ¼ k/WSDT ; ð6Þ

where DV is the volume loss due to wear, k is a material-dependent parameter, /WS is the time
averaged impact work-rate and DT is the wear process time.
The impact work-rate parameter, is thus essentially a measure of available power to produce

damage at the supports. Following Ref. [15] the incremental impact work-rate is defined as
dU ¼ p ds; where p and s denote contact force acting on the support and its displacement,
respectively. Returning to the global variables, defined in the foregoing section, the work-rate
increment connected to contact site i is written as

dWi ¼ kcðjX � XijÞ dðjX � XijÞ

¼ kcðjX � XijÞ j ’Xj dt; ð7Þ

where ’X ¼ dX=dt:
Work-rate at individual contact sites is written as

dwi ¼ ½jx � xij� jvj dt; ð8Þ

where dw ¼ dW=ðkcX
2
0 Þ and v ¼ @x=@t: Note that, impacts occurring at x ¼ þx1 and �x2

are accounted for by taking the absolute value of x: The time averaged work-rate is
consequently

/wSi ¼
1

tm � t0

Z tm

t0
½jxj � xi� jvj dt; ð9Þ

where t0 is the time from which the iteration is initiated and tm is the time after m iterations of the
map P: The change of sign in v is accounted for in the integrand.

5.2. Evaluation of gap

In an earlier work it was found that the impacting beam oscillator, presented in Section 2, has
stable periodic solutions, for which the symmetrically placed contact sites experience asymmetric
work-rate [17].
The contact sites are regarded as one-dimensional and it is assumed that damage only occurs at

contact sites, hence the volume loss is proportional to the gap increment. Using Eq. (6), the gap
increment for the individual contact sites is written as

DXiB/WSiDT for i ¼ 1; 2;y;N; ð10Þ

where DXi denotes the gap increment at contact site i and N is the number of contact sites.
Using the gap connected to contact site 1 as a control parameter in the computations, the gap

evolution at all other contact sites is found through

DXi ¼
/WSi

/WS1

DX1: ð11Þ
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The time to reach this wear depth (gap) is found from Eq. (10) in the form, viz.

DT ¼
DXi

k0/WSi

; ð12Þ

where k0 ¼ k=S and S is the cross sectional area of the contact site.
Eqs. (11) and (12) expressed in non-dimensional form become

Dxi ¼
/wSi

/wS1

Dx1 and DT ¼
Dxi

/wSi

: ð13Þ

Note that the non-dimensional wear process time DT comprises the material parameter k0:

6. Results of computations

6.1. Routes to chaos

The Poincar!e map method, described in Section 3, has been employed to directly determine the
stable periodic solutions. From these solutions the solution branches can then be followed by
sequential continuation, according to the methods described in the foregoing sections. The
response of the system to the input frequency is evaluated, i.e., the impact velocity v vs. forcing
frequency o; where o is taken as the control parameter for the system.
In an earlier analysis a bifurcation diagram was presented, %v vs. o; for stable and unstable

period-one solutions in the first sub-harmonic of the system for oA½3; 11� by using relation (4)
[17]. In that analysis, no stable or unstable branches of period-one solutions were found in the
interval oA½6:508; 7:343�; see Ref. [17, Fig. 13].
In the present work an attempt has been made to analyze the dynamics of the system in the

frequency interval oA½6; 8� by evaluating all the stable solutions of relation (3). The results of the
computations are presented in form of bifurcation diagrams, where the response of system
(impact velocity) to the input frequency is evaluated. In addition, phase portraits and time
histories at certain frequencies are displayed to illustrate the dynamic behaviour of the system.
The dynamics of the beam oscillator have been explored by studying its motion at the contact
node. The structural properties of the beam oscillator, Fig. 1, are listed in Table 1 [15].
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Table 1

Properties of impact beam oscillator

Beam density r kg=m3 9347.51

Cross section area A m2 7:088� 10�5

Beam length L m 0.64

Mass proportional damping cm s�1 0.3984

Stiffness proportional damping ck s 2:975� 10�5

Flexural rigidity D N m2 24.90

Support lateral spring stiffness ktra N/m 1:48� 105

Support torsion spring stiffness krot N m=rad 5:35� 102

Contact spring stiffness kc N/m 123,750

Force amplitude A N 6

Gap X0 m 1:25� 10�4
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Figs. 2a and b show the impact velocity v vs. the forcing frequency o in the intervals
½6:504; 6:516� and ½5:75; 8:25�; respectively. The data are taken from the Poincar!e section at the
position of the structural contact. Two hundred consecutive impact velocities are recorded and
plotted in the figures for each forcing frequency. These 200 impact velocities are the last of 1000
iterates of the return map, Eq. (3). These results indicate that at o ¼ 6:505 there is a stable period-
one motion (solution), which turns into a period-two motion at oE6:508 without bifurcation.
The motion then becomes chaotic at oE6:514; i.e., as o increases the periodic solutions explode
to a plethora of solutions.
The diagrams in Figs. 3 and 4 show the phase portraits at the contact node for o ¼

ð6:505; 6:510; 6:51305Þ: The associating time histories, displacement vs. time, for o ¼ ð6:505; 6:515Þ
are shown in Fig. 5. The corresponding power spectral density (PSD), i.e., the displacement PSD
vs. the response frequency of the structure (Fourier transform of the time history) is presented in
Fig. 6.

6.1.1. Remarks on dynamics

As mentioned in the foregoing section when o is raised from oE6:505 to 6.510, the stable
period-one motion passes into a stable period-two motion without bifurcation, i.e., the Floquet
multipliers li (of the Poincar!e map) remain within the unit circle [19]. From Fig. 2a it can be see
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Fig. 2. Impact velocity v vs. forcing frequency o for the beam oscillator, (a) oA½6:504; 6:516�; (b) oA½5:75; 8:25�: Note

that for each o; 200 consecutive impact velocities are plotted and that each impact velocity is marked with a ‘‘-’’ symbol.
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that at o ¼ 6:505 the orbit intersects the Poincar!e section at one point, vE42; whereas at o ¼
6:510 the orbit intersects the Poincar!e section two times at vE2 and 42. The phase portraits for the
two motions are very close (Fig. 3). However, a closer look at a portion of the phase portrait in
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Fig. 3. Phase portraits, velocity v vs. displacement x; of the first sub-harmonic of the beam oscillator at the point where

impact can occur at the stable period-one solutions, o ¼ 6:505 (solid line), stable period-two solutions o ¼ 6:510
(dotted line) and at o ¼ 6:51305 (broken line).
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Fig. 4. Zoomed sections of the phase portraits displayed in Fig. 3: (a) at the impact region, (b) in the ‘‘loop’’ region.

o ¼ 6:505 (solid line), o ¼ 6:510 (dotted line), o ¼ 6:51305 (broken line).
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the proximity of xE1 (Fig. 4) reveals the difference between the orbits. Fig. 7a displays the
response of the system, contact velocity, for o varying in the range ½6:500; 6:5131�: It shows the
transition from the stable period-one motion to a stable period-two motion at o ¼ 6:508 and
finally at o ¼ 6:5131 to an unstable state. This latter kind of behaviour, where a branch of stable
periodic solutions and a branch of unstable solutions, which exist for lplc; collide and annihilate
each other at the bifurcation point lc ¼ 1 is a characteristic of cyclic-fold bifurcation point [19].

ARTICLE IN PRESS

0 5 10 15 20
τ [−]

-3

-2

-1

0

1

2

3

x 
[-

]

(a)

0 5 10 15 20
τ [−]

-3

-2

-1

0

1

2

3

x 
[-

]

(b)

Fig. 5. Displacement x vs. time t for the beam oscillator: (a) at o ¼ 6:505; (b) at o ¼ 6:515:
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Fig. 6. The displacement power spectral density vs. frequency response at o ¼ 6:515:
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This is illustrated in Fig. 8, showing the eigenvalues of the Jacobian matrix of Pk to the return
map (4). It shows one eigenvalue escaping the unit circle through þ1; while the rest remain
confined within the circle, as the system passes through the bifurcation point. It should be noted
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Fig. 7. Bifurcation diagrams, (a) Impact velocity v vs. forcing frequency o in a spatial Poincar!e plane: One-period

(solid line) - two-period (dotted line) - cyclic fold - unstable (broken line). (b) Velocity vs. forcing frequency in a

time domain Poincar!e plane: One-period stable (solid line) - cyclic fold - unstable one-period (broken line).
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light grey circles, mark eigenvalues connected to stable period-one, stable period-two and unstable solutions,

respectively.
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that this transition occurs without period-doubling bifurcations as the excitation frequency is
increased.
The transition from a period-one orbit of the first iterated map to a period-one orbit of the

second iterated map occurs without bifurcation, for which the index k in Eq. (4) switches from 1
to 2. This can be illustrated by studying the details of the dynamics using a Poincar!e section in the
time domain

St ¼ ðx; v; tÞ t ¼ 0;mod
2p
o

����
� �

: ð14Þ

Fig. 7b shows the stable and unstable branches of period-one orbits leading to the cyclic fold
bifurcation using the time domain Poincar!e section. As can be seen the discontinuity at oE6:508
is no longer visible. The discontinuity arises as the impact velocity passes through zero, see Fig. 4.
This in turn causes the eigenvalues of the Jacobian matrix of the return map (4), to tend to
infinity, which is a characteristic of a grazing bifurcation, causing the numerical method to fail.
However, using the time domain Poincar!e section the eigenvalues remain within the unit circle.
Hence, the transition from a one- to a two-impact one-period orbit, is not a grazing bifurcation,
since a grazing bifurcation generates discontinuities in gradient of any Poincar!e map [9].
It can be seen from Fig. 5b that the time history of the motion is non-periodic at the frequency

o ¼ 6:515: In Fig. 6b the power spectrum density for the motion at o ¼ 6:515 is shown. The
diagram displays the frequency content of the Fourier transform of the displacement. As can be
noted no distinct spikes are observed from this plot, hence implying that chaotic motion is
prevalent at o ¼ 6:515: Moreover, from Fig. 2b four vertical windows in oA½6:5; 8� in which
multiple periodic solutions emerge can be seen. In the fourth window, oA½7:65; 7:95�; the orbit
intersects the chosen Poincar!e section eight times for a period 7� 2p=o motion. Hence, the
branches can be seen as fixed points to the eighth iterated map. To study the transition to
aperiodic motion, as o decreases, it is advantageous to switch to a time domain Poincar!e section
defined by Eq. (14). The route is initiated with a Neimark bifurcation at oE7:72125; i.e., two
complex conjugate eigenvalues leave the unit circle simultaneously, away from the real axis, see
Fig. 9. The resulting dynamics, in the fourth window, is exemplified in forms of phase portraits in
Fig. 10.
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Fig. 9. Eigenvalues of the Jacobian matrix Pk close to a Neimark bifurcation at oE7:7213: Black and light grey circles

mark eigenvalues connected to stable and unstable period-seven solutions, respectively.
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In the first window in Fig. 2b, oA½6:68; 6:84�; the transition to aperiodic motion coincides with
a Neimark bifurcation, as the forcing frequency is decreased through o ¼ 6:68: Note also that in
the third window in Fig. 2b, oA½7:258; 7:342�; there is an asymmetric period-three orbit,
see Fig. 11a. Hence, there exists a stable four-impact period-three mirror orbit in the same region.
This is shown in Fig. 11b.

6.2. Wear analysis

In this section the results of impact wear computations, for the considered impact beam oscillator
(Fig. 1), are presented. The Poincar!e map method described earlier, is utilized to find fixed periodic
points of the system. The gap x1; at the right hand contact site in Fig. 1 (initially at x ¼ þ1), is used as
a control parameter. The sequential continuation method [17] is employed to compute the evolution
of the wear depth. All computations have been made with the structural properties and conditions
listed in Table 1. These properties concern a portion of a nuclear fuel rod vibrating in air [15].

6.2.1. Impact work rate
In an earlier analysis [17] the dynamic response of the considered impact beam oscillator, in the

frequency interval oA½3; 11�; was studied and branches of stable period-one solutions were
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identified. Furthermore, the impact work-rate was evaluated along these branches. It was found
that a stable periodic solution could lead to asymmetric wear of the symmetrically placed contact
sites. In the present work an attempt has been made to analyze the time evolution of such points
through wear of the contact sites.
Figs. 12a and b show the impact work-rate along two different branches of stable period-one

solutions, exhibiting different work-rates at the initially symmetrically placed contact sites. These
figures show the work-rate evaluated at right hand contact site 1 (at x ¼ þx1) and at the left hand
contact site 2 (at x ¼ �x2).
From the stable branches shown in Fig. 12 two frequencies were selected for further evaluation,

namely o ¼ 5:610 and 9.900. At these frequencies the evolution of gap and work-rate are
computed as the gap increase due to wear, according to the wear law given in Section 5. Figs. 13a
and b show the gap ratio, i.e., gap at site 2 ðx2Þ normalised with the gap at site 1 ðx1Þ plotted
against the gap at site 1; whereas Figs. 14a and b show the work-rate for each contact vs. the gap
at site 1.
In Fig. 13a it can be seen that initially x1 increases faster than x2 due to the difference in work-

rates (Fig. 14a). However, this difference quickly diminishes as x1 increases, then at x1E1:2 the
trend suddenly reverses. This is visible in Fig. 13a as the gap ratio starts to increase. At x1E1:34
an abrupt change in the work-rate is visible (Fig. 14a) and the gap ratio increases at a slower rate,
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see Fig. 13a. Note that, as the wear process continues the system tends towards a symmetric gap.
At the higher frequency the situation is different. The initially symmetric gap becomes gradually
more asymmetric (Fig. 13b), which is connected to an increasing difference in work-rate between
the two contact sites (Fig. 14b).

6.2.2. Wear lifetime

The lifetime or the time to reach a certain wear depth at the contact sites is estimated by
utilizing Eq. (13). Figs. 15a and b show the gap size connected to the contact sites for o ¼ 5:610
and 9.900, respectively.
For o ¼ 5:610; the growth of the two gaps (x1 and x2) are virtually identical (cf. Fig. 15a). The

evolution of the gap follows the evolution of the work-rate (Fig. 14a). For 1pxip1:34; i ¼ 1; 2 the
work-rate decreases as the gap increases, see Fig. 14a. This behaviour is also reflected in Fig. 15a,
where the gap growth rate (slope of curves) decreases in this interval. For gaps xi > 1:34; i ¼ 1; 2;
the work-rate increases with gap size, which in turn leads to a gradual increase of gap growth rate,
see Fig. 15a.
For o ¼ 9:900 the gap growth rate increases as the wear process continues, see Fig. 15b. It can

also be seen that the system becomes increasingly asymmetric with time, since the gap at contact
site 1 grows faster than at site 2, i.e., /wS1 > /wS2:
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6.2.3. Remarks on wear

In the foregoing section a sharp change in work-rate, as the gap increases through x1 ¼ 1:34 for
the case o ¼ 5:610 (Fig. 14a), was calculated. This change is connected to a qualitative change in
the dynamics of the system. In Ref. [17] it was noted that a more ‘‘wrinkled’’ phase orbit displayed
higher work-rate compared to a smooth orbit. The shape of the phase orbits for different gap
sizes, x1 ¼ 1:28 (solid line) and x1 ¼ 1:40 (broken line) for o ¼ 5:610 are shown in Fig. 16. As the
gap increases there are two competing effects, (i) the work-rate decreases where the phase orbit
becomes smoother and (ii) the work-rate increases as the velocity of the impacting body increases
with the growing gap.
For o ¼ 9:900 the gap evolution through wear could be followed up to a gap size of x1p4:20;

cf. Figs. 12b, 13b and 14b. For x > 4:20; impacts no longer occur at the contact sites for the steady
state motion of the oscillator. Hence, no further wear of the contact sites can take place.
Lifetime predictions are usually made with the work-rate computed for the initial gap, /wS0

i ;
through Dt ¼ Dxi=/wS0

i [24], i.e., a linear relationship between wear depth and wear process time
is assumed. This linear approach can lead to either an over- or an under-estimation of the lifetime
by a factor of more than two, depending on the forcing frequency, compared to the incremental
approach used to generate the curves presented in Figs. 15a and b. Note that the work-rate
computed for the initial gap can be read from Figs. 14a and b. For example, for the two cases
studied here, to reach a wear depth twice the size of the initial gap, the linear approach leads to
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lifetime under-estimation by a factor 1.48 for o ¼ 5:610 and an over-estimation by a factor of 2.2
for the case with o ¼ 9:900; see Figs. 15a and b.
The difference in estimated lifetime between o ¼ 5:610 and 9.900 is also noteworthy

(cf. Figs. 15a and b). This difference is connected to the calculated differences in work-rate, see
Figs. 14a and b.
Global stability is an important topic concerning the validity of predicting wear lifetime by

following stable branches. Global stability here means that the system is attracted to a certain
fixed point for almost any given initial condition or at least for a controlled sub-set of initial
conditions, i.e., a basin of attraction can be determined for the fixed point. Hence, if the
disturbances are small enough for the system to remain within the basin of attraction, the system
will return to the known fixed point after a finite time and work-rate evaluated at this point can be
used to follow the evolution of the wear for the system.
If the system exhibits both saddle nodes and stable foci, knowledge can be acquired about the

basin boundary by studying the stable and unstable manifolds of the saddle nodes using the
algorithm proposed by Parker and Chua [33]. Note that the algorithm is only applicable to one-
dimensional manifolds. Hence, the Jacobian matrix evaluated at the saddle node can only have
one eigenvalue with magnitude greater than one. For other situations it is necessary to revert to
brute force number crunching techniques.
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At o ¼ 5:610 there are two branches of stable asymmetric orbits. One stable branch is
destroyed in a cyclic fold bifurcation, as it collides with a branch of unstable symmetric solutions,
the other branch switches to a stable symmetric solution as o is increased beyond the cyclic fold
bifurcation point, see Fig. 17. In Ref. [17] this bifurcation was erroneously branded as a
supercritical symmetry breaking bifurcation. The added numerical resolution close to the
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bifurcation point was achieved here by studying the dynamics using a time domain Poincar!e
section as defined in Eq. (14). This behaviour is indicative of a perturbed symmetry breaking
bifurcation. Similar behaviour can also be found in an one-dimensional representation of the
oscillating beam, i.e., a single degree-of-freedom oscillator with equivalent structural properties.
However, in the s.d.o.f. system the symmetry bifurcation is intact. The intention is to use the
s.d.o.f. system to gain insight for the complex beam system.
For the s.d.o.f. oscillator considered in Ref. [17], see the appendix and Fig. 18, the symmetry

breaking bifurcation occurs at oE4:6215: At o ¼ 4:4; prior to the symmetry breaking
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bifurcation, there exist two stable points and one unstable point. By mapping the stable and
unstable half-manifolds, Ws

1=2 and Wu
1=2; to the unstable node, insight can be gained on how the

basins of attraction for the stable points evolve as gap increases. Due to the scaling of variables,
increasing the gap through wear is equivalent to decreasing the amplitude of the excitation force.
Plots in Fig. 19 show computed half-manifolds for the s.d.o.f. oscillator for three different
excitation amplitudes, b ¼ 51:0997 in Fig. 19a, b ¼ 45:0 in Fig. 19b and b ¼ 41:1 in Fig. 19c.
From Fig. 19a it is seen that the Ws

1=2 and Wu
1=2 intersect. Once they intersect they must intersect

infinitely many times, since the manifolds are invariant sets to the saddle point [34]. Moreover,
Ws

1=2 and Wu
1=2 here are for the same fixed point, hence they are homoclinic intersections. This

also occurs at b ¼ 45:0; Fig. 19b, however, at this wear depth (excitation amplitude) the strong
stretching and folding action which occurs close to the saddle point is more visible. This stretching
and folding is a feature of the Smale horseshoe map, which in turn implies sensitivity to initial
conditions, a hallmark of chaos [35]. In Fig. 19c, it can be seen howWu

1=2 spiral towards the stable
foci. The stable manifolds, Ws

1=2; divide the studied phase space into two regions. In one region
the motion is attracted to the left-hand stable focus and vice versa. Hence, the case of b ¼ 41:1 can
be considered as globally stable, since either of the stable foci will attract the motion. The
equations used to generate Fig. 19 are provided in the appendix.
Returning now to the beam oscillator, Fig. 20 displays Wu

1=2 extending from the saddle point.
From this figure it is seen that Wu

1=2 spiral towards the left-hand and right-hand stable foci as in
the case of b ¼ 41:1 in the s.d.o.f. system, Fig. 19c. This suggests that the system is globally stable
for o ¼ 5:61 and that it is possible to predict the wear lifetime as described in Section 6.2.2.
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7. Discussion

The route to chaotic motion can be via period-doubling bifurcations, quasi-periodic motion
and intermittency, e.g. Ref. [19]. Another road to chaos involves sudden changes in the behaviour
of strange attractors with variation of a control parameter. Such changes are caused by the
collision of the strange attractor with an unstable periodic orbit or, equivalently, with its stable
manifold. The phenomena have been called crises [36].
Detailed evaluations of the attractors in the o region of interest are required to study the route

to chaos for the beam oscillator considered here. Likewise, as mentioned in Section 1,
mathematical and numerical analyses made on s.d.o.f. and multi-d.o.f. impacting harmonic
oscillators have revealed a variety of complex behaviour, such as grazing bifurcations, chattering
and trapping. The method outlined in this note can be extended and used to study some of these
details for continuous vibrating systems, having infinite degree-of-freedom, such as beams, tubes,
etc.
To correctly identify bifurcations it is necessary to study the dynamics using more than one

Poincar!e section. In this analysis, two different sections were used, one was placed at the point of
structural contact and another was put in the time domain. The spatial Poincar!e section enables
comparison with an equivalent s.d.o.f. system for which the analytical solution is known (see the
appendix). Furthermore, if a fixed point solution, corresponding to an asymmetric phase orbit, is
found, the mirror solution is immediately identifiable, cf. Fig. 11. However, the spatial Poincar!e
section leads to numerical difficulties when the system changes the number of impacts per period
without bifurcating (Section 6.1.1). This problem is circumvented by using the temporal Poincar!e
section.
The evolution of wear for the initially symmetric system is analyzed by following the branches

of stable solutions, using an Archard’s type wear law to predict wear damage. Starting from an
asymmetric stable orbit, it is shown that the differences in work-rate lead to a system which
initially becomes more asymmetric as material is worn off at the contact sites. This behaviour can
reverse, due to changes in the dynamic response. Hence, the system tends toward geometric
symmetry again, see Fig. 13a. Note that the opposite also occurs, i.e., the system becomes
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gradually more asymmetric, cf. Fig. 13b. Once the evolution of gap at contact sites (wear depths)
and corresponding work-rates are known the lifetime of system can be computed. Here lifetime is
defined as the time to reach a specified wear depth or gap size. For the cases studied here, the
relationship between work-rate and gap-size is non-linear (Fig. 14). This leads to a non-linear
relationship between gap-size and lifetime (Fig. 15). Hence, it is not feasible to predict lifetime or
to compute the wear coefficient in Eq. (6) using a single work-rate value.

8. Conclusion

The asymmetric elastic double-impact motions of a harmonically excited cantilever type beam
with two-sided elastic amplitude constraints are discussed. It is shown that the considered beam
oscillator undergoes a cyclic fold bifurcation at oE6:5135 leading to chaotic motion as o is
increased beyond the bifurcation point. The chaotic regime persists until o > 8:Windows of stable
multi-periodic solutions are found within the chaotic regime. In the interval oA½7:65; 7:95�; the
route to chaos is initiated with a Neimark bifurcation as o is decreased. The complete route is
visualized by plotting the steady state response in the phase plane. To analyze this route more
accurately, a second order Poincar!e map method [37] may be used to evaluate the dynamics of the
system.
The evolution of wear for the system is analyzed by following the branches of stable solutions,

using an Archard’s type wear law to predict wear damage. It has been shown that the beam
oscillator can exhibit different work-rates at symmetrically placed contact sites, due to the
existence of stable asymmetric orbits [17]. Here it is shown that the differences in work-rate lead to
a system which, at least initially, becomes more asymmetric as material is worn off at the contact
sites. Two specific cases are analyzed. In the first case, the dynamic response changes and the
system becomes more symmetric geometrically as the wear process continues. While, in the second
case, the system becomes gradually more asymmetric.
The work-rate, evaluated for stable orbits, is used to predict lifetime of the impacting beam due

to fretting wear damage, by extending the branch of stable orbits using the local gap between
beam and amplitude constraints as the control parameter. Here lifetime is defined as the time to
reach a specified wear depth. The validity of using the work-rate at stable solutions to predict
lifetime has been discussed in this paper (Section 6.2.3).
The wear method described here can readily be extended to cover aperiodic response resulting

from harmonic as well as stochastic loads, i.e., replacing the fixed point iteration with an
averaging method. Furthermore, for industrial applications it will be necessary to consider other
processes affecting the gap size, e.g., wear and deformation of the impacting body, wear scar
geometry, thermal expansion, friction and environmental effects.
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Appendix A. Single degree-of-freedom damped harmonic oscillator with elastic constraints

The considered s.d.o.f. oscillator is sketched in Fig. 18. The equation of motion for this system
is given as

x;tt þ 2zx;t þ hðxÞ ¼ b cosðotÞ; ðA:1Þ

where hðxÞ ¼ x for jxjo1 and hðxÞ ¼ w2x � ðw2 � 1Þ sgnðxÞ for jxjX1: Also, w2 ¼ ðk1 þ k2Þ=k1;
x ¼ X=X0; t ¼ o0t; ð Þ;t ¼ @ð Þ=@t; o2

0 ¼ k1=m; 2z ¼ c=ðmo0Þ; o ¼ O=o0 and b ¼ A=ðmo2
0X0Þ:

The remaining variables are defined in Fig. 18.
The analytic solution of (A.1) is expressed as

xðtÞ ¼ xtrðtÞ þ xstðtÞ � sgnðxiÞð1=w2
i � 1Þ; i ¼ f0; 1;y;Ng ðA:2Þ

with

xtrðtÞ ¼ e�zðt�tiÞfAi cos½Oiðt� tiÞ� þ Bi sin½Oiðt� tiÞ�g;

xstðtÞ ¼ gi cosðotÞ þ di sinðotÞ;

Ai ¼ �gi cosðotÞ � di sinðotÞ þ ð�1Þi sgnðxiÞ=w2
i ;

Bi ¼ ½vi þ ð�1Þi sgnðxiÞz=w2
i þ sinðotÞðgio� dizÞ � cosðotÞðgizþ dioÞ�=Oi;

gi ¼ ðw2
i � o2Þb=Di; di ¼ 2zob=Di;

Di ¼ ðw2
i � o2Þ2 þ ð2zoÞ2; O2

i ¼ w2
i � z2; ðA:3Þ

where even and odd i yield motion during contact and free-flight, respectively, e.g., w0 ¼ w and
w1 ¼ 1:
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