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Abstract

A method for controlling non-linear dynamics and chaos based on avoiding homo/heteroclinic
bifurcations is considered in a unified framework. Various non-linear oscillators, both hardening and
softening, symmetric and asymmetric, considered as archetypes of a more general class of single-d.o.f.
systems, are analyzed. The Melnikov’s method is applied to analytically detect the homo/heteroclinic
bifurcations, and the results are used to select the optimal shape of the excitation permitting the maximum
shift of the undesired bifurcations in parameter space. The generic character of the optimization problem is
highlighted, and the problem itself is discussed in detail. Various control strategies are proposed, based on
the elimination either of a single bifurcation (one-side controls) or of all bifurcations (global control). The
optimization problems are solved, analytically and numerically, under various forms, by taking into
account the physical admissibility of the related optimal excitation and the easiness of implementation in
practical applications. It is shown that the solutions of one-side control problems are always system

independent. In turn, the solutions of global control problems are system independent for the large class of
(symmetric) systems considered in this work, although there are other systems whose solutions are system
dependent. These considerations support the very generic nature of the optimal control.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades there has been a growing attention to the study of non-linear dynamics of
various mechanical systems. From a practical point of view, this interest was motivated by the
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need to analyze the dynamic behaviour of more and more refined high-performance structures,
usually employed in severe operating conditions. These mechanical systems have to be designed
with the aim of reducing the amount of employed material to the minimum, and they are usually
lighter and more slender than the old ones. For such structures, linear analysis is no longer
sufficient to capture the main behaviours, and a non-linear analysis is required.
Fortunately enough, these growing engineering requirements were paralleled by a notable

advance in dynamical systems theory, which permitted discovery, analysis and successive
detection of several typical phenomena of the non-linear range playing a fundamental role in the
behaviour of many mechanical systems. Concepts like ‘‘non-linear resonance’’, ‘‘bifurcation’’ and
‘‘chaos’’ are by now well understood by many researchers in the mechanics community. Indeed,
the application of the abstract theory of dynamical systems to mechanics represents one important
achievement of recent years and a well-defined research field.
Proper design or control of these ‘‘non-linear’’ structures requires the knowledge of the non-

linear phenomena with respect to which the performances should be optimized. Thus, the analysis
of given non-linear dynamics of different mechanical systems, largely investigated in the past years
(see, e.g., Refs. [1–4]), is the necessary background upon which it is actually possible to develop
strategies for optimizing the system properties and response. In this respect, different systems
sharing the same non-linear phenomena are expected to exhibit a common underlying theoretical
behaviour, entitled to become practically meaningful in all situations wherein the considered
phenomena are important for the system.
One scope of the present paper consists in investigating whether a generic dynamic behaviour

can entail a generic approach to control—or design—of mechanical systems. As a matter of fact, if
the control is based on the peculiarities of a fundamental non-linear dynamic property and not on
the specific characteristics of the system, it may be expected that the same ideas and methods
developed to control one system should be effective for all systems sharing the same property, the
differences being of minor relevance and possibly of technical nature. Thus, the efforts paid in
the non-linear analysis of various mechanical systems, which is a difficult task usually leading to
the identification of common non-linear behaviours, may be compensated by the possibility to
develop unified control methods and techniques, with all the advantages of having a well-defined
and common framework, and with the possibility of establishing important analogies between
different mechanical systems.
Attention is focused on the homo/heteroclinic bifurcations of selected hilltop saddles. This is

motivated by the fundamental role played by this global bifurcation in non-linear dynamics, as
noted, e.g., by Kovacic and Wiggins [5] according to which ‘‘...it is not an exaggeration to claim
that in virtually every manifestation of chaotic behaviour known thus far, some type of
homoclinic behaviour is lurking in the background...’’. This observation has been repeatedly
confirmed in practice (see, e.g., Refs. [6,7]), in various circumstances and for different systems. In
fact, homo/heteroclinic bifurcations are certainly responsible for fractalization of the boundaries
of basins of attractions, for sensitivity to initial conditions, for chaotic transients and for the
appearing/disappearing of invariant chaotic sets constituted by infinitely many unstable periodic
and aperiodic orbits, which largely influence the overall dynamics and often constitute the
skeleton of chaotic attractors [8–10]. Furthermore, they may be responsible for the creation,
widening or splitting of a chaotic attractor, for the erosion of safe basin [11], and they are involved
in the escape from potential wells [12,13].
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Based on previous observations, the idea for controlling non-linear dynamics is that of
eliminating or, better, properly shifting in parameter space, the homo/heteroclinic bifurcation of
the relevant hilltop saddle, thus contributing to the removal of the non-linear phenomena
previously mentioned. This objective can be pursued in various manners [14–16] and, among
others, the modification of the shape of the excitation is chosen, i.e., the amplitude and frequency
are fixed and only the shape is allowed to vary in order to eliminate the global bifurcation as far as
possible. The proposed method has been applied with some success to an inverted piecewise linear
pendulum with rigid lateral barriers [17,18] and to specific smooth non-linear systems [13,19]. In
these works the main ideas are explained, the optimal shapes are obtained and systematic
numerical analyses are performed to confirm the theoretical predictions and the practical
effectiveness of the method.
The present paper generalizes previous separate achievements. It is aimed (i) at applying the

control to a wider class of smooth mechanical systems where the homo/heteroclinic bifurcations
play an important role, and (ii) at pointing out and studying in detail the generic character of the
proposed method and its unifying features. Attention is focused on one-degree-of-freedom (1-
d.o.f.) oscillators representing either real mechanical models or unimodal approximations of the
dynamics of non-resonant continuous systems. More precisely, the class of oscillators

.x þ ed ’x þ FðxÞ ¼ egðotÞ; ð1aÞ

gðsÞ ¼
XN
j¼1

gj sinðjs þCjÞ; ð1bÞ

is investigated. In Eq. (1) F ðxÞ is the non-linear restoring force characterizing different mechanical
behaviours, ed the viscous damping, egðotÞ the generic T-periodic ðT ¼ 2p=oÞ external excitation
and e a dimensionless smallness parameter introduced to emphasize the smallness of damping and
excitation.
The number of homo/heteroclinic orbits of the unperturbed undamped (i.e., e ¼ 0) version of

Eq. (1) depend on the function F ðxÞ; and their existence can be shown, for example, by the method
developed by Lenci and Lupini [20]. The homo/heteroclinic bifurcations are detected by the
Melnikov’s method [8–10], which is a useful mathematical tool permitting analytical computa-
tions. It allows for an analytical approach to the problem, and, consequently, for an overall, quite
systematic, investigation.
The more general case of coexistence of parametric and external excitations can be transformed

in the case of equivalent external excitation just as done in Ref. [13] for the Helmholtz oscillator.
In turn, the case of quasi-periodic external/parametric excitations only requires extended versions
of the Melnikov’s method (see, for example, Refs. [9,21]) and major efforts in computing the
Melnikov’s function, but basically it does not affect the control method. It has been addressed,
e.g., by Lima and Pettini [14] for the Duffing equation. The extension to continuous systems, on
the other hand, can be performed analogously in several cases by a further extension of the
Melnikov’s method due to Holmes and Marsden [22], which permits the analytical detection of
the global bifurcation also in the case of infinite dimensional dynamical systems. All of these
generalizations involve mostly technical aspects, sometimes of minor importance, and the
principal features of non-regular dynamics and control are illustrated and discussed in this work
without too much loss of generality, although some further developments can be already foreseen.
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The paper is organized as follows. In the following section the Melnikov analysis permitting a
theoretical prediction of global bifurcations is performed for both softening (Section 2.1) and
hardening (Section 2.2) oscillators. The optimal problems required to detect the best shape of the
excitation are also stated in Section 2, while they are analyzed and solved under various forms in
Section 3. In particular, two different control classes are identified and considered: (i) one-side
control (Section 3.1)—i.e., elimination of a single homo/heteroclinic bifurcation; (ii) global
control of symmetric systems (Section 3.2) — i.e., simultaneous elimination of two global
bifurcations. It is shown that there is a single mathematical problem of optimization,
unconstrained in the case of one-side control (Eq. (45)) and constrained in the case of global
control (Eq. (59)). Moreover, in the case of one-side control the solution is always system

independent, as it does for the global control of the large class of considered systems. This
highlights the very generic nature of the control method and, in particular, it shows how the
common dynamical event addressed (homo/heteroclinic bifurcations) entails unifying properties
of the control method, irrespective of the actually considered mechanical system.
A different situation occurs in the case of global control of asymmetric hardening systems. In

this case, the optimization problems maintain some kind of generality, thus confirming the unified
control framework, but the solutions are system dependent. This requires a more involved
analysis—though less general than that reported in this paper—which is discussed in Ref. [23] for
the case of the hardening Helmholtz–Duffing oscillator.

2. Global bifurcations and control strategy in various 1-d.o.f. systems

With the aim of showing the generic character of control and its ‘‘independence’’ of the specific
mechanical nature of the system, both softening (Section 2.1) and hardening (Section 2.2),
symmetric and asymmetric, oscillators are considered. However, in order to be concrete and
specific, only few representative cases are analyzed for each class of systems.

2.1. Softening oscillators

2.1.1. Helmholtz equation: the single-well potential with one escape direction
The standard Helmholtz oscillator

.x þ ed ’x � x þ x2 ¼ egðotÞ; ð2Þ

which is a special case of Eq. (1) obtained assuming F ðxÞ ¼ �x þ x2; is considered in this sub-
section. The Helmholtz equation (2), whose potential VðxÞ ¼ �x2=2þ x3=3 and unperturbed
phase space are reported in Figs. 1a and b, respectively, is an archetype for the study of smooth
non-linear oscillators with only one escape direction. It governs the dynamics of various
mechanical systems, such as, e.g., prestressed membranes, rolling asymmetric ships, asymmetric
cranes, etc. [13]. In spite of its seeming simplicity, it has a very complex dynamics showing several
non-linear phenomena, such as non-linear resonance, multistability, chaotic and regular
dynamics, various kinds of local and global bifurcations. From a practical point of view, a
very important aspect is the escape from the potential well, a phenomenon which leads to system
unserviceability (for example, ship capsizing) or structural failure. This aspect has been
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extensively studied in the past (see, for example, Refs. [12,24,25]) and it has been controlled by the
authors [13] using the method discussed herein. Accordingly, this section simply summarizes the
results reported in Ref. [13], where the complete analysis and detailed numerical simulations
showing the practical effectiveness of the method can be found.
In the unperturbed undamped dynamics of Eq. (2), there are two equilibrium points x1 ¼ 0;

which is the unique hilltop saddle, and x2 ¼ 1; which is a centre. The saddle has a (right)
homoclinic orbit

xhomðtÞ ¼
3

2

1

cosh2ðt=2Þ
ð3Þ

surrounding the unique potential well, while the other (left) stable and (left) unstable manifolds
diverge to infinity. The homoclinic loop separates the bounded periodic oscillations from the
unbounded trajectories, and when the excitation is added it splits into two manifolds which may
or may not intersect depending on the relative magnitude of the excitation amplitude and
damping. More precisely, for low values of amplitude the damping keeps the manifolds separated,
while for large values of amplitude the intersection takes place. There exist intermediate critical
values corresponding to homoclinic bifurcations [8], which can be analytically computed by the
Melnikov’s method.
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Fig. 1. (a) The potential VðxÞ and (b) the unperturbed phase space of the Helmholtz equation (2).
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The application of this method to Eq. (2) is standard, and the Melnikov’s function representing
the first order approximation (in e) of the signed distance between stable and unstable manifolds is
given by

MðmÞ ¼
Z

N

�N

’xhomðtÞ½�d ’xhomðtÞ þ gðot þ mÞ� dt: ð4Þ

Computing the integrals in Eq. (4) by the residues method leads to the following expression of the
Melnikov function [13]:

MðmÞ ¼ �
6

5
dþ g1

5po2

sinhðopÞ
hðmÞ

� �
; ð5Þ

where

hðmÞ ¼
XN
j¼1

hj cosðjm þCjÞ; hj ¼
gj

g1

j2 sinhðopÞ
sinhðjopÞ

: ð6a;bÞ

Note that h1 ¼ 1 and that hðmÞ is 2p-periodic and has zero mean value.
Expression (5) is written in such a way to give g1 the role of overall amplitude. The remaining

dimensionless parameters gj=g1 obtained from Eq. (6b) simply govern the shape of the excitation,
namely, they measure the superharmonic corrections to the basic harmonic excitation. In terms of
Melnikov function, the effects of such corrections are governed by the parameters hj; j > 1;
contributing to the ‘‘amplitude-free’’ oscillating part hðmÞ of the distance between the manifolds.
Apart from the unessential factor �6

5
; expression (5) shows how the distance is actually

composed of two parts, the constant part d and the oscillating part hðmÞ multiplied by its
amplitude g15po

2=sinhðopÞ: Remembering that the Melnikov function represents the distance to
the first order, one can note that (i) if g1 and o are fixed, the minimum distance between the
manifolds (attained at the minimum of hðmÞ) increases by increasing the minimum of hðmÞ; the
larger being the minimum of hðmÞ; the larger being the distance, and (ii) for a fixed o; the larger is
the minimum of hðmÞ; the larger is the multiplier g1;cr needed to realize zero distance, namely the
excitation amplitude for homoclinic bifurcation.
The previous observations are now put in a formal way. The general theory assures that, for e

sufficiently small, there is homoclinic intersection if and only if MðmÞ has a simple zero for some m;
i.e., if and only if

hðmÞ ¼ �
d
g1

sinhðopÞ
5po2

; ð7Þ

for some m in ½0; 2p�: Since the right hand side is a negative number, this is possible if and only if

g1 > d
sinhðopÞ
5po2

1

M
¼def g1;crðoÞ; ð8Þ

where

M ¼ � min
mA½0;2p�

fhðmÞg ¼ max
mA½0;2p�

f�hðmÞg ð9Þ

is a positive number which depends on the shape but not on the amplitude g1 of the excitation.
In the special case of harmonic excitation, which is usually employed to analyze the basic non-

linear forced dynamics of a mechanical system and is therefore considered as a reference case to
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measure the effectiveness of the method [13], one has hðmÞ ¼ cosðm þC1Þ; M ¼ 1 and the
corresponding critical curve gh

1;cr ¼ d sinhðopÞ=ð5po2Þ: Thus, the Melnikov’s distance can be
rewritten in the useful form

MðmÞ ¼ �
6

5
d 1þ

g1
gh
1;crðoÞ

hðmÞ

" #
; ð10Þ

while the critical curve for a generic excitation is given by

g1;crðoÞ ¼
gh
1;crðoÞ

M
: ð11Þ

In the space of governing parameters ðo; g1Þ; the curve g1;crðoÞ (corresponding to a generic
excitation) separates the zone where homoclinic intersections do not occur (below the critical
curve) from that where homoclinic intersections do occur (above the critical curve). The same
holds for gh

1;crðoÞ in the case of harmonic excitation. These curves, which are depicted in Fig. 2,
differ by a factor 1=M and they both tend to infinity for o-0 and for o-N: There is only one
minimum of the curve g1;cr for ores ¼ 0:6096 and g1;cr ¼ 0:5688d=M:
The central idea of the control method is to reduce the region of homoclinic intersection of Fig.

2 by varying the shape of the excitation. Since the dependence of g1;cr on the shape is due only to
the number M; the upper region is reduced when decreasing M; the smaller being M the smaller
being the upper region in the parameter space. To quantitatively measure the improvement
obtainable with respect to the reference harmonic excitation, the gain is introduced, which is
defined as the ratio between the critical amplitudes of the unharmonic and harmonic excitations
(see Eq. (11)),

G ¼
g1;cr

gh
1;cr

¼
1

M
: ð12Þ

The zone where there is homoclinic intersection with harmonic excitation (above gh
1;crðoÞÞ and

no intersection with unharmonic excitation (below g1;crðoÞ) is the region where the control
is expected to be effective, at least from a theoretical point of view, and it is called saved region

(Fig. 2).
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It is now clear that in order to enlarge the saved region as much as possible, one has to solve the
following optimization problem:

Maximizing G by varying the Fourier coefficients hj and

Cj; j ¼ 2; 3;y; of hðmÞ:
ð13Þ

This problem, which arises also in the control of other systems, as shown in the following sections,
will be analyzed in detail and solved in various forms in Section 3.1. After having determined the
best hj’s and Cj’s, the Fourier coefficients gj can be computed by inverting relation (6b), and the
optimal excitation is given by

gðsÞ ¼ g1
XN
j¼1

hj

sinhðjopÞ
j2 sinhðopÞ

sinðjs þCjÞ: ð14Þ

For the following purposes, it is worth emphasizing that, up to now, Eq. (13) is an abstract
mathematical problem with no memory of the original mechanical system, which indeed enters
only the Melnikov function, namely, when passing from the optimal solution hðmÞ to the optimal
excitation gðsÞ (Eq. (14)) using relations (6b).

2.1.2. Helmholtz–Duffing equation: the single-well potential with two asymmetric escape directions
A more realistic model of asymmetric ship rolling, entailing a more accurate (third instead of

second order) approximation of the restoring hydrostatic potential [26] and allowing escape on
both directions with a different level of dangerousness, is that described by the softening
Helmholtz–Duffing equation. This is the particular case of Eq. (1) with F ðxÞ ¼ sx þ ðs� 1Þx2 � x3

and can be written in the standard form

.x þ ed ’x þ sx þ ðs� 1Þx2 � x3 ¼ egðotÞ; ð15Þ

where s is a parameter which measures the asymmetry of the system with respect to the
unique rest position x ¼ 0 and is assumed greater than 1 without loss of generality. For s-1 one
has the symmetric case, i.e., the standard softening Duffing oscillator (Section 2.1.3), while the
other limit case s-N leads, after rescaling, to the Helmholtz equation discussed in the previous
section.
The potential V ðxÞ ¼ sx2=2þ ðs� 1Þx3=3� x4=4 for s ¼ 1:5 is depicted in Fig. 3a, which also

shows how the escape is likely to occur in the negative direction, even if it is allowed for in the
other direction, too, while the unperturbed phase space is depicted in Fig. 3b. As in the case of
Section 2.1.1, the left escape from the potential well, triggered by the homoclinic bifurcation of the
lower hilltop saddle, is the main—although not the unique—undesired phenomenon to be
controlled by the proposed method.
Apart from the centre x2 ¼ 0; in the unperturbed undamped dynamics of Eq. (15) there are two

saddles x1 ¼ �1 and x3 ¼ s: Only the left (energetically lower) saddle x1 ¼ �1 has, on its right
(see Fig. 3b), the homoclinic loop

xhomðtÞ ¼ �1þ
3
ffiffiffi
2

p
ðsþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs� 1Þð2sþ 1Þ coshðt
ffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
Þ þ ðsþ 2Þ

ffiffiffi
2

pq ð16Þ

surrounding the unique potential well, while all the other invariant manifolds diverge to infinity.
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The Melnikov’s function is again formally given by Eq. (4), which in the present case leads to
the more involved expression

MðmÞ ¼ �
4

9
df ðsÞ þ g1

9poffiffiffi
2

p
sin

offiffiffiffiffiffiffiffiffiffiffi
sþ 1

p arccosh
ðsþ 2Þ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þð2sþ 1Þ

p
 !" #

sinh
opffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
 ! hðmÞ

2
66664

3
77775; ð17Þ

where

f ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
ðs2 þ sþ 1Þ �

ffiffiffi
2

p
3

ðsþ 2Þð2sþ 1Þ


 ðs� 1Þ arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 2Þ

ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sþ 1Þðs� 1Þ

p
ðsþ 2Þ

ffiffiffi
2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sþ 1Þðs� 1Þ

p
vuut ; ð18aÞ

hðmÞ ¼
XN
j¼1

hj cosðjm þCjÞ; ð18bÞ
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hj ¼
gj

g1
j

sinh
opffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
 !

sinh
jopffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
 !

sin
joffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p arccosh
ðsþ 2Þ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þð2sþ 1Þ

p
 !" #

sin
offiffiffiffiffiffiffiffiffiffiffi
sþ 1

p arccosh
ðsþ 2Þ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þð2sþ 1Þ

p
 !" #: ð18cÞ

Note once again that h1 ¼ 1 and that hðmÞ is 2p-periodic and has zero mean value. The function
f ðsÞ; which represents the contribution of the asymmetry to the constant part of the Melnikov’s
distance, is a strictly positive increasing function ranging from f ð1Þ ¼ 3

ffiffiffi
2

p
to f ðNÞ ¼ N:

The Melnikov function (17) resembles that of Section 2.1.1. However, there is a basic difference.
In fact, while in Eq. (5) the amplitude of the oscillating part hðmÞ is always positive, in the present
case it oscillates with o: More precisely, it is positive if

2kpp
offiffiffiffiffiffiffiffiffiffiffi
sþ 1

p arccosh
ðsþ 2Þ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þð2sþ 1Þ

p
 !

pð2k þ 1Þp; kAN ð19Þ

and negative in the opposite case. In particular, for

offiffiffiffiffiffiffiffiffiffiffi
sþ 1

p arccosh
ðsþ 2Þ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þð2sþ 1Þ

p
 !

¼ kp; kAN; ð20Þ

the oscillating part vanishes identically so that there is no homoclinic bifurcation for these
‘‘antiresonant’’ values of the excitation frequency.
The condition MðmÞ ¼ 0 for homoclinic bifurcation is expressed in the present case by

hðmÞ ¼ �
d
g1

f ðsÞ
ffiffiffi
2

p
9po

sinh
opffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
 !

sin
offiffiffiffiffiffiffiffiffiffiffi
sþ 1

p arccosh
ðsþ 2Þ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þð2sþ 1Þ

p
 !" #: ð21Þ

Contrary to Eq. (7), the right hand side is no longer positive for all the excitation frequencies, so
that the two cases must be considered separately. When Eq. (19) holds, the right hand side of
Eq. (21) is negative, and the homoclinic intersection is possible if and only if

g1 > d
f ðsÞ

ffiffiffi
2

p
9po

sinh
opffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
 !

sin
offiffiffiffiffiffiffiffiffiffiffi
sþ 1

p arccosh
ðsþ 2Þ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þð2sþ 1Þ

p
 !" # 1

M
¼def g1;cr; ð22Þ

where

M ¼ � min
mA½0;2p�

fhðmÞg ¼ max
mA½0;2p�

f�hðmÞg ð23Þ
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is a positive number which accounts for the shape of the excitation. In the opposite case, the right
hand side of Eq. (21) is positive, and the homoclinic intersection is possible if and only if

g1 > �d
f ðsÞ

ffiffiffi
2

p
9po

sinh
opffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
 !

sin
offiffiffiffiffiffiffiffiffiffiffi
sþ 1

p arccosh
ðsþ 2Þ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þð2sþ 1Þ

p
 !" # 1

M
¼def g1;cr; ð24Þ

where now the number M is given by

M ¼ max
mA½0;2p�

fhðmÞg: ð25Þ

The curve g1;crðo; sÞ is thus given by Eqs. (22)–(23) in intervals (19) and by Eqs. (24)–(25)
elsewhere, and it is depicted in Fig. 4 for s ¼ 1:01; which should be compared with the previous

Fig. 2. The overall shape of the curve is governed by the term f ðsÞ
ffiffiffi
2

p
sinhðop=

ffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
Þ=ð9poÞ

(the dotted envelope in Fig. 4), while the harmonic denominator is responsible for the
‘‘anti-resonant’’ values, which in the present case are given by o ¼ k1:1446; kAN (only the first is
observable in Fig. 4). A Melnikov’s curve similar to that reported in Fig. 4 has been previously
observed, for example, by Yagasaki [27, Fig. 3] in the analysis of the hardening Duffing equation
with parametric and external harmonic excitations.
In practice, the first U-shaped region of the diagram is the most important, as it entails the

homoclinic bifurcation for the lowest value of the excitation. In the case of Fig. 4 the (lowest)
chaotic resonance occurs for ores ¼ 0:4777 and g1;crðoresÞ ¼ 0:5785d=M:
To obtain expressions similar to Eqs. (10)–(11), which highlight the common root of different

mechanical systems with respect to the present control method, one observes that with harmonic
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excitation M ¼ 1 for all o’s and the corresponding critical curve is denoted by gh
1;cr (see Fig. 4), so

that the Melnikov’s distance can be rewritten in the common form

MðmÞ ¼ �
4

9
df ðsÞ 17

g1
gh
1;crðoÞ

hðmÞ

" #
; ð26Þ

where the sign plus is to be used in intervals (19) and the minus elsewhere. The critical curve
g1;crðo;sÞ; on the other hand, can still be written in form (11), so that the gain is G ¼ 1=M; but
now the number M is defined by Eq. (23) in intervals (19) and by Eq. (25) elsewhere. Note that
with the plus in Eq. (26) M is (minus) the minimum of hðmÞ; while with the minus it is the
maximum of hðmÞ:
As in the Helmholtz oscillator, (i) the shape of the excitation modifies the critical value g1;cr only

by means of the number M; and the smaller is M the smaller is the region with homoclinic
intersections; (ii) the zone where the unharmonic excitation is effective is called saved region in
Fig. 4; (iii) in order to avoid homoclinic bifurcation, as much as possible, one has to solve the
optimization problem (13); (iv) after having determined the best hj’s and Cj’s, the optimal
excitation can finally be obtained by inverting relations (18c).

Remark 1. In addition to the previous similitudes, there is a single difference, resting on the
different definition of M for different intervals of the excitation frequency. However, this
difference is only formal and not substantial, because the associated optimization problems are in
fact equivalent. With definition (23) one has to minimize the maximum of �hðmÞ; while with
Eq. (25) one has to minimize the maximum of þhðmÞ: The solution of the latter problem is just the
solution of the former with the even Fourier coefficients changed of sign or, equivalently, it is
� %hðm þ pÞ; where %hðmÞ is the solution of the former problem. However, these solutions are
different, although strictly related, so that the optimal excitation is step-wise dependent on the
value of the excitation frequency.

2.1.3. Duffing equation: the single-well potential with two symmetric escape directions
In rolling of symmetric cargo in a symmetric environment [28], the capsize is allowed to occur

both on the right and on the left directions, and the restoring hydrostatic potential has symmetric
barriers with respect to the rest position. This case is described by the symmetric version of
Eq. (15), which is obtained by choosing s ¼ 1

.x þ ed ’x þ x � x3 ¼ egðotÞ ð27Þ

(note that a different scaling is used with respect to Ref. [28], that the quadratic viscous damping is
neglected and that water-on-deck is excluded). Eq. (27) describes the single mode dynamics of
other mechanical systems and structures, and it is an archetype for the dynamics of a class of 1-
d.o.f. mechanical systems (see, for example, Refs. [29,30]), in particular, for those which are just
below a non-degenerate subcritical pitchfork bifurcation.
Contrary to Eq. (15), the capsizing (escape from the potential well) is equally probable in both

directions, because the two hilltop saddles x3;1 ¼ 71 have the same energy level. This property in
turn implies that the homoclinic loop of Eq. (15) is substituted by a heteroclinic loop, with the two
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heteroclinic orbits given by

xhetðtÞ ¼ 7tanhðt=
ffiffiffi
2

p
Þ: ð28Þ

On each heteroclinic orbit, the Melnikov function is given by Eq. (4) with xhetðtÞ instead of
xhomðtÞ [10], and after some computations this yields

MðmÞ ¼ �d
2
ffiffiffi
2

p
3

18
g1

gh
1;crðoÞ

hðmÞ

" #
; ð29Þ

where

gh
1;crðoÞ ¼ d

2

3

sinh
opffiffiffi
2

p
 !

op
; hðmÞ ¼

P
N

j¼1 hj sinðjm þCjÞ;

hj ¼
gj

g1

j sinh
opffiffiffi
2

p
 !

sinh
jopffiffiffi
2

p
 ! : ð30a–cÞ

The heteroclinic bifurcation under generic excitation occurs for g1;cr ¼ gh
1;cr=M; where M ¼

maxfhðmÞg for the orbit going from �1 to +1 (sign minus in Eq. (29)) and M ¼ �minfhðmÞg for
the other orbit (sign plus in Eq. (29)).
If the amplitude threshold of only one of the two heteroclinic bifurcations is to be increased,

irrespective of what happens to the other, the optimization problem (13) with the appropriate
choice of G ¼ 1=M must be solved, and this basically leads to the same mathematical problem, as
noted in Remark 1. This strategy permits to break the (perturbed) heteroclinic loop responsible
for the chaotic saddle via the horseshoe dynamics, and therefore it contributes to regularize
the non-linear dynamics of the system, to eliminate part of the fractal basin boundaries and to
reduce unpredictability. However, the heteroclinic intersection of the non-controlled orbit allows
for the penetration of tongues of the basin of attraction of the infinity into the basins of the finite
attractors (usually defined as safe basin [11]), and this may result in a faster safe basin erosion
leading to an earlier failure of the system. Thus, a different strategy, aimed at preserving the
lifetime of the system, may be that of avoiding simultaneously the upper and lower heteroclinic
bifurcations.
The simultaneous shift of the two bifurcations entails the simultaneous decrement of

�minfhðmÞg and of maxfhðmÞg: It is possible to numerically show (see Section 3.2) that the
optimal solution is characterized by the condition �minfhðmÞg ¼ maxfhðmÞg; so that in the
present case the optimization problem is

Maximizing G by varying the Fourier coefficients hj and

Cj; j ¼ 2; 3;y; of hðmÞ; under the constraint�minfhðmÞg ¼ maxfhðmÞg; ð31Þ

where, due to the constraint, there is no ambiguity in the definition of the gain. This problem is
just problem (13) with the addition of the constraint accounting for the simultaneous control of
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the two heteroclinic bifurcations. It will be encountered in a similar context in the following (see
Section 2.2), and will be analyzed in detail and solved in various forms in Section 3.2.

2.1.4. The mathematical pendulum

Another largely investigated dynamical system is the mathematical pendulum, which stands as
one of the most important archetype for the analysis of various aspects of non-linear dynamics
[8,10,31]. It is governed by the equation

.x þ ed ’x þ sinðxÞ ¼ egðotÞ; ð32Þ

obtained by posing F ðxÞ ¼ sinðxÞ in Eq. (1).
It falls in the realm of the present work, and its analysis is qualitatively identical to that of

Section 2.1.3, because, after rescaling, Eq. (27) is just the third order approximation of Eq. (32).
Accordingly, only the expressions of the heteroclinic orbits, of the Melnikov function and of the
critical curve for the harmonic excitation are reported:

xhetðtÞ ¼ 72atan½sinhðtÞ�; ð33aÞ

MðmÞ ¼ �8d 18
g1

gh
1;crðoÞ

hðmÞ

" #
; ð33bÞ

gh
1;crðoÞ ¼ d

4

p
cosh

op
2

� �
; hðmÞ ¼

P
N

j¼1 hj sinðjm þCjÞ;

hj ¼
gj

g1

coshðop=2Þ
coshðjop=2Þ

: ð33c–eÞ

2.2. Hardening oscillators

In this paper only the class of two-well hardening oscillators, representing the most common
mechanical systems, will be considered. The case of several potential wells, which deserves a
theoretical interest but is concerned only with specific applications, will be discussed in the future.
In this section symmetric oscillators are considered, whereas a representative case of asymmetric
oscillator is considered in Ref. [23].

2.2.1. Duffing equation: symmetric two-well potential
The hardening twin-well Duffing equation is one of the most widely investigated equations in

the field of applied non-linear dynamics [1,3,8,10] and it describes the single-mode non-linear
dynamics of buckled beams [32], of magnetoelastic pendulum [3] and of many others mechanical
systems and structures. It can be written in the form

.x þ ed ’x � x þ 2x3 ¼ egðotÞ; ð34Þ

which is the particular case of Eq. (1) with FðxÞ ¼ �x þ 2x3: The associated potential V ðxÞ ¼
�x2=2þ x4=2 and the unperturbed phase space are depicted in Figs. 5a and b, respectively.
In addition to the previous mechanical applications, Eq. (34) is the archetype of twin-well

symmetric oscillators and exhibits very rich non-linear dynamics. For example, for large values of
the excitation there is a cross-well (scattered) chaotic attractor, which substitutes the escape to
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infinity of the previous softening oscillators [25,33], and is considered as one of the unwanted
dynamical events whose elimination (or shift) represents a very desirable practical performance of
the control method [34].
The unperturbed undamped dynamics are characterized by the presence of two centres x1 and

x3 and a unique (hilltop) saddle x2 ¼ 0; now having two symmetric homoclinic loops, one on the
right and one on the left of the phase space (see Fig. 5b), which can be expressed in the following
form:

xr;l
homðtÞ ¼ 7

1

coshðtÞ
: ð35Þ

The presence of two simultaneous homoclinic orbits, apparently analogous to the heteroclinic
ones of Sections 2.1.3 and 2.1.4, is the new point with respect to the cases of Sections 2.1.1 and
2.1.2, and it has very important consequences in terms of control, as will be shown in the
following. Accordingly, there are two different Melnikov’s functions, formally given by Eq. (4),
which can be written in the standard form

Mr;lðmÞ ¼ �d
2

3
17

g1
gh
1;crðoÞ

hðmÞ

" #
; ð36aÞ
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Fig. 5. (a) The potential V ðxÞ and (b) the unperturbed phase space of the hardening Duffing equation (34).
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gh
1;crðoÞ ¼ d

2

3po
cosh

op
2

� �
> 0; ð36bÞ

hðmÞ ¼
XN
j¼1

hj cosðjm þCjÞ; hj ¼
gj

g1
j
cosh

op
2

� �
cosh

jop
2

� �: ð36c;dÞ

The curve gh
1;crðoÞ represents the loci of the right and left homoclinic bifurcations (they coincide) in

the reference case of harmonic excitation, and is depicted in Fig. 6.
The peculiarity of the present oscillator appears at this point. In fact, the presence of two

homoclinic orbits permits to choose among different control strategies. Indeed, one can control
only the right (left) homoclinic bifurcation, irrespective of what happens in the left (right)
potential well, or one can try to control simultaneously the right and the left homoclinic
bifurcations. This question, anticipated in Section 2.1.3 with reference to the heteroclinic
bifurcations, becomes herein more important from the application viewpoint, since the first
approach is aimed at obtaining a topologically ‘‘localized’’ control, whereas the second approach
is aimed at controlling, on average, the ‘‘whole’’ phase space. The two approaches have been
discussed in detail by the authors in the case of the inverted pendulum [18,35], where it has been
shown that the former (‘‘one-side’’ control) provides large gains, while the latter (‘‘global’’
control) provides lower gains. Their different features have been shown in Ref. [18], where it is
also numerically confirmed that, at least for the inverted pendulum, the global and one-side
controls are actually complementary rather than competing.
The three different cases are now investigated separately:
(ia) ‘‘One-side’’ control on the right well (right control): The condition MrðmÞ ¼ 0 for some

mA½0; 2p�; guaranteeing the homoclinic intersection of the right stable and unstable manifolds,
occurs in the region of the parameter space defined by

g1 > gr
1;cr ¼ gh

1;cr

1

Mr
; ð37Þ
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where, as in Eq. (23),

Mr ¼ � min
mA½0;2p�

fhðmÞg ¼ max
mA½0;2p�

f�hðmÞg ð38Þ

is a positive number which accounts for the shape of the excitation. To avoid right homoclinic
tangency by an appropriate choice of the shape of the excitation, the gain G ¼def Gr ¼ 1=Mr must
be maximized, i.e., problem (13) must be solved, and then the optimal excitation is obtained by
way of Eq. (36d).
(ib) ‘‘One-side’’ control on the left well (left control): The condition MlðmÞ ¼ 0 for some

mA½0; 2p�; guaranteeing the homoclinic intersection of the left stable and unstable manifolds,
occurs in the region of the parameter space defined by

g1 > gl
1;cr ¼ gh

1;cr

1

Ml
; ð39Þ

where, as in Eq. (25),

Ml ¼ max
mA½0;2p�

fhðmÞg ð40Þ

is a positive number which accounts for the shape of the excitation. To avoid left homoclinic
tangency by an appropriate choice of the shape of the excitation, the gain G ¼def Gl ¼ 1=Ml must
be maximized, i.e., problem (13) must be solved, and then the optimal excitation is obtained by
way of Eq. (36d). Actually, the optimal gains obtainable with the two one-side controls are equal,
see Remark 1.
(ii) ‘‘Global’’ control: To control simultaneously the right and the left homoclinic tangencies, the

right and the left gains, Gr ¼ 1=Mr and Gl ¼ 1=Ml ; where Mr ¼ �minfhðmÞg and Ml ¼
maxfhðmÞg; must be increased simultaneously.
Mathematically, increasing Gr and Gl simultaneously entails increase of their minimum value,

namely

Maximizing G ¼ minfGr;Glg by varying the coefficients hj and

Cj; j ¼ 2; 3;y; of hðmÞ:
ð41Þ

However, all the numerical solutions of Eq. (41) which will be obtained in Section 3.2 will
satisfy the condition Gr ¼ Gl ¼def G as expected, namely, �minfhðmÞg ¼ maxfhðmÞg: In such a
case, problem (41) can be rewritten in the simplified form (31), which shows that Eq. (41) is
actually a constrained version of Eq. (13). Accordingly, the optimal gain is lesser than that of
Eq. (13), as it will be confirmed numerically in Section 3.2. The counterpart of this reduction is the
possibility to control the whole phase space.

2.2.2. Non-linear equation with large odd stiffness
For illustrative purposes, in the previous section the control method has been developed with

reference to the classical Duffing equation with cubic non-linearity, which permits easy
computations. However, this is a particular case of the more general class of oscillators with
odd non-linearities

.x þ ed ’x � x þ nx2n�1 ¼ egðotÞ; ð42Þ
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which are obtained by choosing F ðxÞ ¼ �x þ nx2n�1 in Eq. (1) ðnAN; n > 1Þ and can be treated
analogously. The associated potential is V ðxÞ ¼ �x2=2þ x2n=2 which, compared with that of
Fig. 5, is much sharper for jxj > 1:
The present case is formally identical to that of Section 2.2.1, and the same control strategies

apply. Accordingly, only the expressions of the homoclinic orbits, of the Melnikov function and
of the critical curve for the harmonic excitation are reported

xr;l
homðtÞ ¼ 7

1

cosh1=ðn�1Þ½ðn � 1Þt�
; ð43aÞ

Mr;lðmÞ ¼ �df ðnÞ 17
g1

gh
1;crðoÞ

hðmÞ

" #
; ð43bÞ

gh
1;crðoÞ ¼ d

f ðnÞ
gðo; nÞ

> 0; ð43cÞ

hðmÞ ¼
XN
j¼1

hj cosðjm þCjÞ; hj ¼
gj

g1

gðjo; nÞ
gðo; nÞ

; ð43d; eÞ

where ðGðzÞ ¼
R
N

0 tz�1e�t dt is the gamma function [36])

f ðnÞ ¼
n4n=ðn�1Þ

G
2n

n � 1

� � XN
k¼0

ð�1Þk
G k þ

2n

n � 1

� �
k!½n þ kðn � 1Þ�

�
41=ðn�1Þ

G
2

n � 1

� � XN
k¼0

ð�1Þk
G k þ

2

n � 1

� �
k!½1þ kðn � 1Þ�

; ð44aÞ

gða; nÞ ¼
2n=ðn�1Þ

G
1

n � 1

� � XN
k¼0

ð�1Þk
G k þ

1

n � 1

� �
Gðk þ 1Þ

1

a
2kðn � 1Þ þ 1

þ
2kðn � 1Þ þ 1

a

: ð44bÞ

Eqs. (43) and (44) reduce to the corresponding ones of Section 2.2.1 in the case of classical Duffing
equation n ¼ 2 (in fact, f ð2Þ ¼ 2=3 and gða; 2Þ ¼ ðpaÞ=coshðpa=2ÞÞ:

Remark 2. In the previous sections the various oscillators have been classified with respect to their
main mechanical properties, in particular, the kind of stiffness (hardening/softening), which
permits a clear distinction between the physical undesired phenomena one wishes to control. In
fact, while for softening oscillators the drawback is the erosion of the safe basin [12] and the
successive escape from the potential well, for hardening systems it is the cross-well steady chaos.
However, it is also possible to pursue another classification of the considered oscillators, based on
their symmetric or asymmetric nature. This distinction deserves attention from a dynamical
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systems point of view, because, apart from some pathological situations, symmetric oscillators are
structurally unstable and are particular cases of asymmetric oscillators, though not always being a
limit, in an appropriate sense, of the latter, as shown by the case of the softening (Helmholtz–)
Duffing equation.

3. Optimal problems and solutions

In Section 2 it has been shown how the problems of avoiding homoclinic or heteroclinic
intersections can be mathematically formulated as appropriate optimization problems. Moreover,
it has been shown that there is only one basic mathematical problem of optimization (Eq. (13))
where the minimum (or the maximum) of hðmÞ is controlled (one-side controls), with an added
constraint in the case of global control (Eq. (31)). This ensues from the basic role played by the
homo/heteroclinic connection of proper hilltop saddles in the system phase space organization
and evolution, which is a common aspect to the non-linear dynamics of various mechanical
systems. It also entails a common character of the problem solution, because problems (13) and
(31) are system independent and can be solved without any reference to the specific oscillator.
They will be addressed in Sections 3.1 and 3.2, respectively.
In previous works of the authors [17,18], the control method has been applied to a symmetric

inverted pendulum with unilateral barriers, whose dynamics are non-smooth due to the impacts
on the lateral walls. The analysis is simpler, thanks to the hypothesis of piece-wise linearity, and it
does not require the Melnikov theory because the distance between stable and unstable manifolds
can be computed exactly. This system leads just to the optimization problems (13) and (31) in the
case of one-side and global control, respectively, the only difference being in the relation between
the excitation and hðmÞ: This fact further supports the generic character of the two optimization
problems (13) and (31) and of their solutions, which actually hold in the case of non-smooth
dynamics, too; generally speaking, this underlines the generic character of the control.

3.1. One-side control

When only one homoclinic bifurcation is to be controlled, the associated optimization problem
is Eq. (13), which is rewritten in a form more appropriate for computing its solution:

Maximizing minmA½0;2p�fhðmÞg by varying the Fourier coefficients hj

and Cj; j ¼ 2; 3;y; of hðmÞ ¼ cosðm þ c1Þ þ
PN
j¼2

hj cosðjm þCjÞ:
ð45Þ

The gain associated to the previous problem, which measures the effectiveness of the optimal
solution with respect to the harmonic case, is G ¼ �1=minfhðmÞg; and the optimal gain is clearly
the maximum of this expression.
Apart from inessential technical points, problem (45) is exactly the same mathematical problem

which arises in the optimal chaos control of the inverted pendulum, which has been investigated in
Ref. [17]. It has also been deeply studied and solved in various forms in Section 3 of Ref. [13], so
that only the main points of that analysis and the necessary modifications required to extend its
generality are summarized in the following.
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3.1.1. Optimal solution

The solution hðmÞ is given by a positive Dirac delta of amplitude p at m ¼ 0 plus the constant
function �1=2 [17]. The Fourier coefficients are hj ¼ 1;Cj ¼ C1 ð¼ 0 without loss of generality)
and the optimal gain is 2, i.e., the critical amplitude is doubled in principle.
Unfortunately, the previous mathematical optimal solution is not acceptable from a physical

point of view, because the corresponding optimal excitations would be a divergent series, as
shown for example in the case of Section 2.1.1, whose optimal excitation would be (see Eq. (14))

gðsÞ ¼ g1
XN
j¼1

sinhðjopÞ
j2 sinhðopÞ

sinðjsÞ: ð46Þ

This drawback is not a pathological property of the Helmholtz oscillator, but holds in general. In
fact, it is a consequence of the asymptotic relation ðPðjÞ is a polynomial expression in the j
variable)

gjDhj const:ejoc=PðjÞ; c > 0; j-N; ð47Þ

between the Fourier coefficients of the hðmÞ and of the excitation, which is shared by all the
considered oscillators (see Eqs. (6b), (18c), (30c), (33e), (36d), (43e)).
The previous considerations mean that some further constraints should be added to problem

(45) in order to take into account the physical admissibility of the searched optimal excitation.
This will be done in different manners in the following sections. In any case, due to the new
constraint, the physically admissible best gain is reduced, and the value G ¼ 2 remains as a
(hypothetically optimal) value of comparison (indeed, it is an upper bound) for the actual optimal
problems: the more the constrained optimal G is close to 2, the more the associated optimal
excitation is effective, at least from a theoretical point of view.

3.1.2. Optimal solutions with a finite number of superharmonics
The first way to obtain optimal admissible excitations is to consider only a finite number of

superharmonic corrections added to the basic harmonic excitations, so that the question of
convergence automatically disappears. Although it may appear unpleasant to give up the
possibility of having infinite superharmonics, it will be shown in the following (see Table 1) that it
is possible to obtain reduced-order solutions which are very satisfactory from a practical point of
view, having a high gain and being easily reproducible in experiments and/or applications.
Initially, note that the choice Cj ¼ C1ð¼ 0Þ remains optimal also with a finite number of

superharmonics, so that the reduced optimal problems have actually the only variables hj; j ¼
2; 3;y;N: Furthermore, it is easy to verify that the functional to be maximized (which is the
minimum of hðmÞÞ is concave with respect to the variables hj; and that the solution is unique.
The first case N ¼ 2 corresponds to a single superharmonic, and can be solved analytically [13].

Easy computations show that the solution is hðmÞ ¼ cosðmÞ þ ð
ffiffiffi
2

p
=4Þ cosð2mÞ corresponding to

the optimal gain G ¼
ffiffiffi
2

p
: Comparing this value with the upper bound G ¼ 2; it is possible to see

that, although the critical amplitude is considerably increased with respect to the harmonic
excitation ðG ¼ 1Þ even with a single superharmonic, the upper bound is yet far, and better results
can be obtained by adding further superharmonics. The corresponding optimal problems are,
however, more difficult and are solved numerically.
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A MonteCarlo simulation with at least 50 000 trials is initially performed to localize the
solution, and successively the method of Nelder and Mead [37] is adopted with reflection
coefficient a ¼ 1; contraction coefficient b ¼ 0:9 and expansion coefficient g ¼ 1:1 and with
random initial condition. The numerical results are reported in Table 1, where the last row
corresponds to the (non-admissible) case of Section 3.1.1 and is reported for the sake of
comparison. It is clear from Table 1 that the optimal solutions with a finite number of
superharmonics tend to the ‘‘mathematical’’ optimal solution of Section 3.1.1 when N-N:
The results of Table 1 can be applied to any considered system (in this sense the solution to

problem (45) could be referred to as ‘‘universal’’). To illustrate this point, the external excitations
of some mechanical systems considered in Section 2 in the case N ¼ 2 are reported:

gðsÞ ¼ g1½sinðsÞ þ ð
ffiffiffi
2

p
=8Þ coshðopÞ sinð2sÞ�; Helmholtz oscillator; ð48aÞ

gðsÞ ¼ g1 sinðsÞ þ

ffiffiffi
2

p
8

cosh
opffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
 !

cos
offiffiffiffiffiffiffiffiffiffiffi
sþ 1

p arccosh
ðsþ 2Þ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þð2sþ 1Þ

p
 !" # sinð2sÞ

2
66664

3
77775;

softening Helmholtz–Duffing;o satisfying Eq: ð19Þ;

ð48bÞ

glowerðsÞ ¼ g1 sinðsÞ þ

ffiffiffi
2

p
4

cosh
opffiffiffi
2

p
 !

sinð2sÞ

" #
; softening Duffing; ð48cÞ

grðsÞ ¼ g1 sinðsÞ þ

ffiffiffi
2

p
8

coshðopÞ
coshðop=2Þ

sinð2sÞ

" #
; hardening Duffing: ð48dÞ

3.1.3. On the constrained problem with infinite number of superharmonics
The solutions obtained in the previous section are optimal within the restricted class of

excitations with a finite number of superharmonics. Although they give gains which can be very
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Table 1

The numerical results of various optimization problems with increasing finite number of superharmonics in the case of

one-side control

N GN h2 h3 h4 h5 h6 h7 h8 h9

2 1.4142 0.353553

3 1.6180 0.552756 0.170789

4 1.7321 0.673525 0.333274 0.096175

5 1.8019 0.751654 0.462136 0.215156 0.059632

6 1.8476 0.807624 0.567084 0.334898 0.153043 0.042422

7 1.8794 0.842528 0.635867 0.422667 0.237873 0.103775 0.027323

8 1.9000 0.872790 0.706011 0.527198 0.355109 0.205035 0.091669 0.024474

9 1.9130 0.877014 0.705931 0.518632 0.341954 0.195616 0.091497 0.031316 0.005929

N 2 1 1 1 1 1 1 1 1
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satisfactory for applications (see Table 1), they do not exploit the full potential of having infinite

number of superharmonics, which is one important characteristic of the proposed control
method. This point is addressed in this section.
It is worth while to initially emphasize that the loss of convergence is due to relation (47), which

implies an exponential growth of the Fourier coefficients of the excitation. Among various
possible choices for overcoming this point, only the bounds

jhj jpAa j; j ¼ 2; 3;y; ao1 ð49Þ

are considered in this section. In Eq. (49) A is a given constant related to the physical ‘‘cost’’ of the
control, while the positive number a is of the form a ¼ e�oc and depends on the system. For
example, for the Helmholtz equation a ¼ e�op; for the symmetric hardening Duffing equation
a ¼ e�op=2; etc.
Inequalities (49) guarantee that

hðmÞ ¼ cosðm þ c1Þ þ
P

N

j¼2 hj cosðjm þCjÞpcosðm þ c1Þ þ A
P

N

j¼2 a j

¼ cosðm þ c1Þ þ A
a2

1� a
;

ð50Þ

so that

min
mA½0;2p�

fhðmÞgp� 1þ A
a2

1� a
; ð51Þ

or, remembering that G ¼ �1=minfhðmÞg;

Gp
1

1� Aa2=ð1� aÞ
; ð52Þ

which shows that the right-hand side is a (constrained) upper bound for the optimal gain G:
Summing up Eq. (52) with the unconstrained upper bound Gp2; it is possible to obtain the
following overall upper bound for the optimal gain:

Gp

2 if A >
1� a

a2
1

2
;

1

1�
Aa2

ð1� aÞ

if Ao
1� a

a2
1

2
;

8>>>><
>>>>:

ð53Þ

which is illustrated in Fig. 7 for various values of A: Inverting the lower right inequality in
Eq. (53) one gets aoð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8A

p
Þ=ð4AÞ; which shows that the constrained upper bound

reduces the unconstrained upper bound Gp2 only for medium and low values of a, namely,
remembering that a ¼ e�oc; for medium and large values of o: Actually, in this range the exact
solution can be determined.
The test function [36, Eq. (17.17.2)]

hðmÞ ¼ cosðmÞ þ A
XN
j¼2

ð�aÞ jcosðjmÞ ¼ cosðmÞ þ Aa2
cosð2mÞ þ a cosðmÞ
1þ 2a cosðmÞ þ a2

ð54Þ
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satisfies constraints (49). It is possible to show that, for

Ap
ð1� aÞ3

a2ða2 � 3a þ 4Þ
; ð55Þ

the minimum (attained for m ¼ p) is �1þ Aa2=ð1� aÞ; and the associated gain is

G ¼
1

1� Aa2=ð1� aÞ
: ð56Þ

Comparing Eq. (56) with Eq. (53) it is possible to see that the gain associated with the test
function (54) coincides with the constrained upper bound, and this proves the following
proposition:

Proposition 1. In range (55), function (54) is a solution of problem (45) under constraint (49).

The optimal gains (56) associated with the solution of Proposition 1 are depicted with solid lines
in Fig. 7 for various values of A: The line b–b; on the other hand, delimits the range of validity of
the exact solutions, and is obtained by substituting the limit value of A; given by Eq. (55) with the
equality sign, in Eq. (56), thus providing the limiting value of the exact G

a2 � 3a þ 4

3� a
: ð57Þ

3.1.4. On the constrained problems with finite but bounded number of superharmonics
In this section the optimal problems with finite number of superharmonics, as those of

Section 3.1.2, are considered under the assumption of the previous section that the
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Fig. 7. The upper bound (53) of the optimal gain G for various values of A: The solid thick lines are the exact solutions
of Proposition 1, while the line b–b delimits the range of validity of the exact solutions, and is given by Eq. (57). The

other thick lines are the reduced (constrained and unconstrained) optimal gains G2; G3 and G4; respectively.
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superharmonic corrections satisfy constraints (49). This is not required for convergence problems,
as in Section 3.1.3, but it has rather different motivations. From one side, in fact, the results of the
previous section do not provide any information on the constrained gain for high values of a; i.e.,
for low values of the excitation frequency (Fig. 7), where Proposition 1 does not apply. From the
other side, the feasibility of the reduced optimal control of Section 3.1.2 should be improved. In fact,
the optimal excitations may have very large superharmonic amplitudes for high but also for medium
values of o; as shown by Eq. (48), thus becoming practically useless. Accordingly, it is necessary to
look for reduced optimal solutions with bounded amplitudes of the superharmonic corrections.
The reduced optimal solution with N terms satisfies constraints (49) as long as

aXjhj=Ajð1=jÞ; j ¼ 2; 3;y;N; ð58Þ

where the hj are reported in Table 1.
As in Section 3.1.2, the first case N ¼ 2 is the easier one and can be solved analytically. One has

G2 ¼
ffiffiffi
2

p
and h2 ¼

ffiffiffi
2

p
=4 for 1=ð2ð3=4ÞAð1=2ÞÞoa; G2 ¼ 8Aa2=ð1þ 8A2a4Þ and h2 ¼ Aa2 for

1=ð2Að1=2ÞÞoao1=ð2ð3=4ÞAð1=2ÞÞ; G2 ¼ 1=ð1� Aa2) and h2 ¼ Aa2 for ao1=ð2Að1=2ÞÞ: The curve
G2 ¼ G2ðaÞ is reported in Fig. 7 for various values of A:
The other cases N > 2 have been solved numerically with the same method as in Section 3.1.2,

by accounting for constraints (49) through a penalty term added to the functional, and the
resulting functions GN ¼ GNðaÞ are also reported in Fig. 7. Note how for increasing number of
superharmonics the curves accumulate quite fast on a corresponding curve (for each given A

value) which represents the optimal solution of the constrained optimal problem with infinite
superharmonics.

3.2. Global control of two-well symmetric systems

In the case of global control of symmetric systems, the mathematical problem providing the
optimal excitation is Eq. (31), which is rewritten in a form equivalent to Eq. (45) but differing
from it for the presence of the constraint:

Maximizing min
mA½0;2p�

fhðmÞg by varying the Fourier

coefficients hj and Cj; j ¼ 2; 3;y; of hðmÞ ¼ cosðm þ c1Þ þ
PN
j¼2

hj cosðjm þCjÞ;

under the constraint min
mA½0;2p�

fhðmÞg ¼ � max
mA½0;2p�

fhðmÞg: ð59Þ

3.2.1. Optimal solution
As for the case of one-side control, also the previous problem has been solved in Ref. [17]. The

solution is the piecewise constant function

hðmÞ ¼

p
4
; 0omo

p
2
;
3p
2
omo2p;

�
p
4
;

p
2
omo

3p
2
;

8><
>: ð60Þ
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whose Fourier series, which has only odd superharmonics, is

hðmÞ ¼
XN
j¼1

1

j
sin

jp
2

� �
cosðjmÞ; ð61Þ

and the optimal gain is G ¼ 4=pD1:2732: Thus, the theoretical optimal gain is drastically reduced
with respect to the one-side control ðG ¼ 2Þ; and this drawback counterbalances the advantage of
controlling the whole phase space rather than only one part of it. This shows that the two
approaches are actually complementary rather than competing, as noted in other authors’ works
[18], having complementary scopes and different theoretical gains.
The similitude with the one-side control is unhappily maintained also in the physical

inadmissibility of the theoretical optimal solution (60), again due to Eq. (47), so that also in this
case one must consider reduced, constrained and reduced/constrained optimal excitations, just as
in Section 3.1. The value G ¼ 4=p is a theoretical upper bound and a term of comparison for the
physically admissible solutions obtained in the following sections.

3.2.2. Optimal solutions with a finite number of superharmonics
The optimal solutions of problem (59) with increasing finite number of superharmonics will be

determined likewise to what has been done in Section 3.1.2. Note that the choice Cj ¼ C1ð¼ 0Þ is
optimal and that, as in Eq. (61), there are no even superharmonics, so that the reduced problems
have the only variables hj; j ¼ 3; 5; 7;y;N: Furthermore, the solution is again unique.
The first case N ¼ 3; which is that considered in Ref. [38], corresponds to a single

superharmonic, and can be solved analytically. The optimal solution has h3 ¼ �1=6 and the
optimal gain is G ¼ 2=

ffiffiffi
3

p
D1:1547: Contrary to the one-side control, with just one super-

harmonic it is possible to obtain more than one-half of the maximum theoretical gain, even if the
upper bound is yet far. The successive problems have been solved with the same numerical tool of
Section 3.1.2; the constraint �minfhðmÞg ¼ maxfhðmÞg is automatically satisfied by the
combination of odd superharmonics, so that there is no need to further modify the algorithm.
The results are reported in Table 2, which clearly shows that also in this case the reduced order
solutions tend to the mathematical solution of Section 3.2.1 when N-N:

3.2.3. On the constrained problem with infinite number of superharmonics
The guidelines and ideas of Section 3.1.3 are used in this section to obtain the solution of the

problem with infinite superharmonics. The same constraint (49) is considered to assure
convergence of the series representing the optimal excitation, and the main difference with the
analysis of Section 3.1.3 is that only odd superharmonics are involved in the present case.
By using inequalities (49) one obtains

hðmÞ ¼ cosðm þ c1Þ þ
P

N

j¼2 hð2j�1Þ cos½ð2j � 1Þm þCj�

pcosðm þ c1Þ þ A
P

N

j¼2 a2j�1 ¼ cosðm þ c1Þ þ A
a3

1� a2
;

ð62Þ

so that

min
mA½0;2p�

fhðmÞgp� 1þ A
a3

1� a2
; ð63Þ
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or, remembering that G ¼ �1=minfhðmÞg;

Gp
1

1� Aa3=ð1� a3Þ
; ð64Þ

which shows that the right hand side is a (constrained) upper bound for the optimal gain G:
Summing up Eq. (64) with the unconstrained upper bound Gp4=p; it is possible to obtain the
following overall bound for the optimal gain:

Gp

4=p if A >
1� a2

a3
1�

p
4

� �
;

1

1�
Aa3

1� a2

if Ao
1� a2

a3
1�

p
4

� �
;

8>>>><
>>>>:

ð65Þ

which is illustrated in Fig. 8 for various values of A: As in Eq. (53), the constrained upper bound
reduces the unconstrained upper bound only for medium and low values of a; i.e., for medium and
large values of o; where the exact solution can be determined.
The test function

hðmÞ ¼ cosðmÞ � A
XN
j¼2

a2j�1 cos½ð2j � 1Þm� ¼ cosðmÞ � Aa3
cosð3mÞ � a2 cosðmÞ
1� 2a2 cosð2mÞ þ a4

ð66Þ

satisfies constraints (49). For

Ap
ð1� a2Þ3

a3ða4 � 2a2 þ 9Þ
; ð67Þ

the minimum (attained for m ¼ p) is �1þ Aa3=ð1� a2), and the associated gain is

G ¼
1

1� Aa3=ð1� a2Þ
: ð68Þ

Comparing Eq. (68) with Eq. (65) it is possible to see that the gain associated with the test
function (66) coincides with the constrained upper bound, and this proves the following
proposition:
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Table 2

The numerical results of various optimization problems with increasing finite number of superharmonics in the case of

global control of symmetric systems

N GN h3 h5 h7 h9 h11 h13 h15

3 1.1547 �0.166667
5 1.2071 �0.232259 0.060987

7 1.2310 �0.264943 0.100220 �0.028897
9 1.2440 �0.284314 0.125257 �0.053460 0.016365

11 1.2518 �0.296177 0.141769 �0.071125 0.031854 �0.009969
13 1.2568 �0.304101 0.153247 �0.083936 0.044376 �0.020352 0.006420

15 1.2597 �0.307322 0.156798 �0.087358 0.047836 �0.024047 0.010154 �0.002998
N 1.2732 �0.333333 0.200000 �0.142857 0.111111 �0.090909 0.076923 �0.066667
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Proposition 2. In range (67), function (66) is a solution of problem (59) under constraint (49).

The optimal gains (68) associated with the solution of Proposition 2 are depicted with solid lines
in Fig. 8 for various values of A: The line b–b; on the other hand, delimitates the range of validity
of the exact solutions, and is obtained by substituting the limit value of A; given by Eq. (67) with
the equality sign, in Eq. (68), thus providing the limiting value of the exact G

a4 � 2a2 þ 9

8
: ð69Þ

3.2.4. On the constrained problems with finite but bounded number of superharmonics
This section is the companion, for global control, of Section 3.1.4, and has the same

motivations.
The reduced optimal solution with N terms satisfies constraints (49) as long as

aXjhð2j�1Þ=Aj½1=ð2j�1Þ�; j ¼ 2; 3;y; ðN þ 1Þ=2; ð70Þ

where the hð2j�1Þ are reported in Table 2. The first case N ¼ 3 can be solved analytically. One has
G3 ¼ 2=

ffiffiffi
3

p
and h3 ¼ �1=6 for ð6AÞð�1=3Þoa; G3 ¼ 3

ffiffiffiffiffiffiffiffiffiffiffi
3Aa3

p
=ð1þ 3Aa3Þð3=2Þ and h3 ¼ �Aa3 for

ð9AÞð�1=3Þoaoð6AÞð�1=3Þ; G3 ¼ 1=ð1� Aa3) and h3 ¼ �Aa2 for aoð9AÞð�1=3Þ: The curve G3 ¼
G3ðaÞ is reported in Fig. 8 for various values of A:
The other cases N > 3 have been solved numerically with the same method as in Section 3.1.2,

by accounting for constraints (49) through a penalty term added to the functional, and the
resulting functions GN ¼ GNðaÞ are also reported in Fig. 8. Note how for an increasing number of
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Fig. 8. The upper bound (65) of the optimal gain G for various values of A: The solid thick lines are the exact solutions
of Proposition 2, while the line b–b delimits the range of validity of the exact solutions, and is given by Eq. (69). The

other thick lines are the reduced (constrained and unconstrained) optimal gains G3; G5 and G7; respectively.
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superharmonics the curves accumulate quite fast on a corresponding curve which represents the
optimal solution of the constrained optimal problem with infinite superharmonics.

4. Conclusions

An extensive theoretical analysis has been carried out to illustrate the generic features of a
method for controlling non-linear dynamics and chaos previously developed by the authors for
different mechanical systems, separately. Several softening and symmetric hardening 1-d.o.f.
oscillators, characterized by the presence of a homo/heteroclinic bifurcation playing a central role
in the dynamics organization and evolution, have been analyzed. Based on this common dynamic
behaviour, a control method aimed at avoiding those bifurcations has been analyzed and
discussed in-depth in a unified context.
The analysis has been developed in a theoretical framework by means of the Melnikov’s

method, which permits the analytical detection of homo/heteroclinic bifurcations in the case of
small damping and excitation. While allowing for a proper frameworking of the control procedure
within the overall scenario of system dynamics, the analytical approach is not actually a
peculiarity of the method, which indeed can be applied to any kind of homo/heteroclinic
bifurcation, possibly detected numerically [34].
The global bifurcations have been removed in an optimal way by selecting, for fixed frequency

and amplitude, the best shape of the excitation permitting the maximum shift of the critical event
in parameter space. In the case of more than one homo/heteroclinic bifurcation, one can choose to
control either one single bifurcation (one-side controls) or all of the bifurcations simultaneously
(global control). Each of these different approaches leads to a related mathematical problem of
optimization. It has been shown that there is only one optimization problem, under a system-
independent constraint in the case of global control. This constitutes an important unifying

feature of the control method.
The obtained mathematical problem is just the same as found for the inverted pendulum [17].

This ensues from the common dynamical root shared by strongly non-linear (smooth) and
piecewise linear (discontinuous) systems, which is reflected in the generic nature of the control
method, irrespective of the system which it is applied to. This permits conjecture that applying the
method to further systems would lead again to the same optimization problem, with possibly
minor technical differences.
The mathematical problem has been discussed and solved in various forms. The exact solution

in the case of infinite superharmonics has been found, and it has been shown that it is physically
inadmissible, because it gives a divergent Fourier representation of the optimal excitation. Thus,
other schemes have been developed to overcome this drawback. In particular, reduced (i.e., with
finite number of superharmonics), constrained (with a further constraint introduced in the
optimization problem to account for physical admissibility) and reduced/constrained solutions
have been obtained numerically and analytically. It is worth remarking that, in any case, the
physical admissibility is expressed by the same mathematical constraint, thus further confirming
the generality of the method.
Of course, it is necessary to verify whether the control procedure actually works for the

considered systems. This is shown by the satisfactory performances highlighted in the numerical
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analysis of the impact inverted pendulum [18], of the Helmholtz oscillator [13] and of the
hardening Duffing oscillator [19].
All of the obtained optimal solutions are system independent. However, a basic difference

occurs between symmetric and asymmetric hardening systems: the latter are seen to exhibit a
singular behaviour characterized by a more involved scenario of global control and by system-
dependent optimal solutions [23].
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