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Abstract

The dynamic response of a high-speed spindle subject to a moving mass is studied. The system under
investigation consists of a ball screw and a moving nut; both of which are key components of a high-speed
feed drive system for a machine tool. The ball screw is modelled as a high-speed rotating shaft using
Timoshenko beam theory and the nut is modelled as a moving concentrated mass. The system dynamic
equation and the corresponding transient response are obtained through Lagrangian approach and
Runge–Kutta method, respectively. Influences of parameters on the transient response of the system such
as the mass moving speed, the Rayleigh coefficient and the mass ratio are discussed. Results show that the
inertia effect caused by the moving nut influences the deflection in the orthogonal direction of the moving
nut much more than that in the transverse direction. The maximum deflection in the orthogonal direction
under the moving nut could be several times larger than that under the equivalent force for a short and
stubby rotating shaft. Moreover, the moving nut reduces the critical frequencies of the spindle. Therefore,
the critical frequencies of a ball screw could be seriously overestimated if the ball screw system is modelled
either as a shaft subjected to a moving force or as a shaft alone with the moving nut excluded.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic responses of a non-rotating beam subjected to a moving load have been studied by
many researchers [1–8]. Applications are mainly related to the prediction of behaviors of railway
tracks, bridges, etc. In respect to the vibration characteristics of a rotating shaft subjected to a
moving load, reported results are also abundant [9–16]. Katz et al. [9] investigated the dynamic
response of rotating shafts based on the respective Euler, Rayleigh and Timoshenko beam models
subjected to a constant velocity moving forces using transformation methods. Argento and Scott
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[10] generalized Katz’s results to a rotating beam subjected to an accelerating distributed surface
force. Lee [11] investigated the dynamic response of a rotating Timoshenko beam subjected to
both axial forces and moving forces. The related problems in the area of deflection- and motion-
dependent forces on a rotating shaft are also studied by Argento [12,13] and Huang [14]. An
application of this class of problem is found in machining processes where the moving force
simulates a tool and the rotating shaft a workpiece. Although the vibration characteristics of a
rotating shaft has been investigated extensively, there are still some fundamental issues that
remain open and need to be addressed, especially when the rotating shaft is subjected to a moving
mass instead of a moving force.

The system under investigation in this paper consists of a ball screw and a nut moving along it,
which are the key components of a feed drive system for a machine tool. The focus is on the
dynamic response of a high-speed rotating, short ball screw shaft subjected to a high-speed
moving nut. The ball screw is modelled as a high-speed rotating shaft and the moving nut as a
moving concentrated mass. For a short and stubby rotating shaft, the shear and rotary inertia
effects must be captured for an accurate dynamic analysis. Therefore the rotating shaft is
modelled based on Timoshenko beam theory.

Equations of motion for a rotating shaft subject to moving loads based on Timoshenko theory
can be derived using either Newton’s method [9] or Hamilton’s principle [11]. Then, the shaft
deformation expressed in terms of either an inertia frame [8,10] or a co-ordinate system fixed to
the rotating shaft [16] can be determined by using the modal analysis or the assumed mode
method or the integral transformation method. The present work formulates a rotating shaft
subjected to a moving mass through the energy method and quantifies the differences in vibration
responses between a rotating shaft subjected to a moving mass and that subjected to a moving
force. In addition, the influences of the inertia effect induced by the moving mass on the whirl
speed are also investigated.

2. Formulation

Consider a uniform shaft of length L lying in the x–z plane and rotating at a constant angular
velocity O as shown in Fig. 1. A concentrated mass M moves with a constant speed vm along the
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Fig. 1. Geometry of a spinning shaft subjected to a moving mass.
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shaft but does not rotate with the shaft. The moving mass is assumed to remain in contact with the
shaft during the motion. The shaft has a cross-sectional area A, second moment of area I, cross-
sectional shape factor k, Young’s modulus E, shear modulus G and density r: The deformed beam
is described by the transverse translations V ðx; tÞ and W ðx; tÞ in the y and z directions and small
rotations Bðx; tÞ and Gðx; tÞ about the y- and z-axis, respectively. Based on the Timoshenko beam
theory, the translations (V, W) consist of a contribution (Vb, Wb) due to bending and a
contribution (Vs; Ws) due to transverse shear deformation. The relationships between variables of
the translation and rotation are given as follows:

V ðx; tÞ ¼ Vbðx; tÞ þ Vsðx; tÞ; W ðx; tÞ ¼ Wbðx; tÞ þ Wsðx; tÞ; ð1aÞ

Bðx; tÞ ¼ �
@Wbðx; tÞ

@x
; Gðx; tÞ ¼

@Vbðx; tÞ
@x

: ð1bÞ

Note that rotations B and G are only related to the bending deformations Wb and Vb, respectively.
Using the assumed mode method, V, W, B and G can be expressed as

V ðx; tÞ ¼
Xn

i¼1

viðtÞfiðxÞ; W ðx; tÞ ¼
Xn

i¼1

wiðtÞfiðxÞ; ð2aÞ

Bðx; tÞ ¼
Xn

i¼1

piðtÞjiðxÞ; Gðx; tÞ ¼
Xn

i¼1

qiðtÞjiðxÞ; ð2bÞ

where n is the mode number, fiðxÞ and jiðxÞ are shape functions that satisfy the corresponding
shaft boundary conditions; vi(t), wi(t), pi(t) and qi(t) are the respective modal displacements.
For a shaft with simply supported at both ends as an example, the shape functions can be
expressed as

fiðxÞ ¼
ffiffiffi
2

p
sin

ipx

L
ð3aÞ

and

jiðxÞ ¼
ffiffiffi
2

p
cos

ipx

L
: ð3bÞ

The potential energy Us of a uniform shaft which consists of strain energies of bending and shear
is given by

Us ¼
1

2

Z L

0

EIfðV
00

b Þ
2 þ ðW 00

b Þ
2g dx þ

1

2

Z L

0

kAGfðV 0
sÞ

2 þ ðW 0
sÞ

2g dx; ð4Þ

where the superscript ‘‘0’’ indicates differentiation with respect to x. Eq. (4) can be rewritten in
terms of V, W, B and G as

Us ¼
1

2

Z L

0

EIfðG0Þ2 þ ðB0Þ2g dx þ
1

2

Z L

0

kAGfðV 0Þ2 þ ðW 0Þ2 þ G2 þ B2 � 2GV 0 þ 2BWg dx: ð5Þ

The kinetic energy T, including contributions from the shaft rotating at a constant speed O and
the mass moving at a constant speed vm, is expressed as

T ¼ Ts þ TM ; ð6Þ
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where

Ts ¼
1

2

Z L

0

rAf ’V2 þ ’W2g dx þ
1

2

Z L

0

rIf ’B2 þ ’G2g dx

� 1
2
Oð2rIÞ

Z L

0

f ’GB � ’BGg dx þ 1
2
O2

Z L

0

2rI dx; ð7Þ

TM ¼ 1
2
M v2m þ

@V

@t
þ vm

@V

@x

� �2

þ
@W

@t
þ vm

@W

@x

� �2
" #					

x¼vmt

: ð8Þ

The superscript ‘‘.’’ in Eq. (7) denotes differentiation with respect to time; and Ts and TM are
the kinetic energies for the rotating shaft and the moving mass, respectively. The second and third
terms of the kinetic energy of the moving mass is due to the transverse components of the velocity
of the mass caused by the deflection of the shaft as well as the horizontal motion of the mass. The
virtual work dWg of the gravitational force on the system is

dWg ¼ MgdV jx¼vmt; ð9Þ

where dV jx¼vmt is the virtual displacement of V evaluated at x=vmt. Upon substituting Eqs. (4)–(9)
into Lagrange’s equation [17], the equations of motion for the system is given as

ðrAMþ MBÞ.vþ 2MvmA’vþ ðkAGHþ Mv2mCÞv� kAGETq ¼ mga; ð10Þ

ðrAMþ MBÞ .wþ 2MvmA ’wþ ðkAGHþ Mv2mCÞw� kAGETp ¼ 0; ð11Þ

rIS.pþ 2OrIS’qþ EIKpþ kAGSpþ kAGEw ¼ 0; ð12Þ

rIS.qþ 2OrIS’pþ EIKqþ kAGSq� kAGEv ¼ 0; ð13Þ

where

v ¼ fv1; v2;y; vng
T; w ¼ fw1;w2;y;wng

T; p ¼ fp1; p2;y; png
T; q ¼ fq1; q2;y; qng

T;

M ¼ fmijg; mij ¼
Z L

0

fifj dx; S ¼ fsijg; sij ¼
Z

jijj dx;

K ¼ fkijg; kij ¼
Z L

0

j0
ij

0
j dx; H ¼ fhijg; hij ¼

Z L

0

f0
if

0
j dx; E ¼ feijg; eij ¼

Z L

0

jif
0
j dx;

a ¼ faig; ai ¼ fiðx ¼ vmtÞ; C ¼ fcijg; cij ¼ f0
iðx ¼ vmtÞf0

jðx ¼ vmtÞ;

A ¼ fAijg; Aij ¼ 1
2
ðfiðx ¼ vmtÞf0

jðx ¼ vmtÞ � f0
iðx ¼ vmtÞfjðx ¼ vmtÞÞ;

B ¼ fbijg; bij ¼ fiðx ¼ vmtÞfjðx ¼ vmtÞ: ð14a–vÞ

Note that matrices and vectors are represented by boldfaced letters. The terms on the left-hand
side in Eqs. (10)–(13) include the flexural stiffness, the transverse shear, the rotary inertia, the
gyroscopic effect, the lateral inertia, the coupling between transverse shear and the gyroscopic
effects and the coupling between transverse shear and the rotary inertia. One can express
Eqs. (10)–(13) using a matrix equation as

%M .Qþ %C ’Qþ %KQ ¼ %F; ð15Þ
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where

Q ¼ fv1; v2;y; vn;w1;w2;y;wn; p1; p2;y; pn; q1; q2;y; qng
T;

%F ¼ Mga; 0; 0; 0f gT;

%M ¼

rAMþ MB 0 0 0

0 rAMþ MB 0 0

0 0 rIS 0

0 0 0 rIS

2
6664

3
7775;

%C ¼

2MvmA 0 0 0

0 2MvmA 0 0

0 0 0 2rIOS

0 0 �2rIOS 0

2
6664

3
7775;

%K ¼

kAGH� Mv2mC 0 0 �kAGET

0 kAGH� Mv2mC kAGET 0

0 kAGE 0 0

�kAGE 0 0 EIKþ kAGS

2
66664

3
77775: ð16a–eÞ

If the moving mass is replaced by a moving force, the equation of motion is expressed as

%Mf
.Qþ %Cf

’Qþ %Kf Q ¼ %F; ð17Þ

where

%F ¼ Mga; 0; 0; 0f gT;

%Mf ¼

rAM 0 0 0

0 rAM 0 0

0 0 rIS 0

0 0 0 rIS

2
6664

3
7775; %Cf ¼

0 0 0 0

0 0 0 0

0 0 0 2rIOS

0 0 �2rIOS 0

2
6664

3
7775;

%Kf ¼

kAGH 0 0 �kAGET

0 kAGH kAGET 0

0 kAGE 0 0

�kAGE 0 0 EIKþ kAGS

2
66664

3
77775: ð18a–dÞ

Comparing Eqs. (16) with (18), the differences in equation of motions between a rotating shaft
subjected to a moving mass and that subjected to a moving force are MB.v;MB .w;
2MvmA’v; 2MvmA ’w;�Mv2mCv and �Mv2mCw; which characterize the inertia effect caused by the
moving concentrated mass. The first two terms represent the inertia forces in the tangential
direction, the third and forth terms are the Coriolis forces and the last two terms are the
centripetal forces.

As an alternative, one can derive the equation of motion for the same rotating shaft subjected to
a moving mass using Hamilton’s principle as shown in the appendix. Instead of a system of
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ordinary differential equations derived previously using assumed-mode method, the equations of
motion consists of two partial differential equations, one is designated for the transverse
translations V ðx; tÞ and the other for W ðx; tÞ: The equation of motion denotes the force
equilibrium and each term represents a distributed force caused by the transverse shear, the
gyroscopic effect, the lateral inertia, the rotary inertia and couplings induced from the moving
mass. Consequently, the enhanced couplings among the transverse shear, the gyroscopic effect,
the lateral inertia and the rotary inertia arising from the moving mass can be identified explicitly
as described in the appendix.

The numerical scheme of the system is obtained by introducing state vectors into the equations
of motion and hence reducing these equations to a set of first order state equations with specified
initial conditions that are solved by using the Runge–Kutta method [18].

3. Non-dimensionalization

The dimensionless shaft deflections, moving mass speed, mass size, shaft rotational speed, and
Rayleigh beam coefficient are defined as follows:

V=Vs; W=Vs; a ¼ vm=vcr; %O ¼ O=o1EB; b ¼
pr0

L
; %m ¼

M

rAL
; ð19Þ

where vcr ¼ ðp=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
is the fundamental critical speed of a pined–pined, non-rotating

Euler–Bernoulli beam, b is the Rayleigh beam coefficient, r0 is the radius of gyration, o1EB and
Vs ¼ MgL3=48EI are the first natural frequency and the static deflection at midspan of a
pined–pined Euler–Bernoulli beam. The non-dimensional parameters related to the mass moving
speed, mass size, the Rayleigh coefficient and shaft rotating speed are 0pap1:5; 0:1p %mp0:4;
bp0:3; and %Op2:5; respectively, which covers most of the high-speed, short and stubby rotating
shaft in engineering application. In order to evaluate the dynamic response, several parameters
must be specified to illustrate some features of the theoretical results. A rotating steel shaft with
pined–pined boundary conditions is chosen and the corresponding parameters are: r=7700 kg/
m3, k ¼ 0:9; E=207GPa, G=77.6GPa, L=1m and g=9.81m/s2, which are the same shaft
parameters and material properties defined in Ref. [11] for the purpose of comparison. Numerical
results were computed using 10 modes in order to satisfy the criterion of convergence.

4. Numerical results and discussion

In this paper, of interest are the differences in the maximum shaft deflection caused by a moving
mass and that by an equivalent moving force to see the influence of inertia effect caused by the
moving mass on a high-speed rotating shaft response. Numerical results have been divided into
three sections to investigate the effects of moving mass speed, moving mass size and the shaft
diameter on the shaft response, respectively. Also, a study of influences of the moving mass on the
critical speed prediction is included.
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4.1. Influences of the shaft diameter and mass moving speed on the shaft response

The normalized deflections V/Vs, W/Vs of a simply supported beam rotating at the speed
%O ¼ 2:5 under a moving mass, %m ¼ 0:2 are plotted in Fig. 2 for a ¼ 0:1 and Fig. 3 for a ¼ 1:5;
respectively. In order to aid the comparison, deflections for the same beam subjected to an
equivalent moving force with amplitude that is equal to Mg are also displayed along with those of
the moving mass. Deflections of the shaft, V/Vs. W/Vs increase while the Rayleigh coefficient
increases as expected in both Figs. 2 and 3. The maximum deflections V/Vs and W/Vs caused by
the moving force and those by the moving mass are close to each other in Fig. 2. The main
discrepancy between them is that the deflection W/Vs under the mass shifts obviously toward later
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Fig. 2. Normalized deflections under the moving mass and the equivalent moving force for %O ¼ 2:5; %m ¼ 0:2; a ¼ 0:1
and various Rayleigh coefficients. (a) V/Vs, (b) W/Vs.
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part of the beam. However, with an increase of either the force or the mass travelling speed, both
deflections, V/Vs and W/Vs, will move toward to the later part of the prescribed motion. The
deflection W/Vs occurs because of the gyroscopic effect and becomes large mainly due to a higher
rotational speed %O and a large Rayleigh coefficient. The inertia force caused by the moving mass
enhances the couplings between the transverse shear and the gyroscopic effect and that between
transverse shear and the rotary inertia. In order to quantify the difference in the estimation of the
deflection caused by the moving mass and the equivalent moving force, the maximum deflections
with respect to two transverse axes are also listed Tables 1–4. Notice that the numerical results for
the deflection under the moving force agree well with reported results by Katz [9] and Lee [11].
One can find that the rotational speed has little effect on the spindle vibration response because
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the nut simulated as a moving mass does not rotate with the spindle. However, for a beam with
b ¼ 0:3 and the mass travelling speed a ¼ 1:5; the maximum deflection is W/Vs=0.78, as shown in
Fig. 3(b) and in Table 4, which is seven times larger than W/Vs=0.11 under the equivalent force
listed in Table 4.

4.2. Influences of moving mass size on the shaft response

Fig. 4 shows the normalized deflections V/Vs and W/Vs of a shaft with b ¼ 0:15; rotating at a
speed %O ¼ 2:5; under the action of a moving mass %m ¼ 0:2 and %m ¼ 0:4; respectively. Likewise
Fig. 5 also displays the same beam subjected to an equivalent moving force with a speed a ¼ 1:5:
Note that both V/Vs and W/Vs are changeless for the moving force, because the deflection is
normalized with respective to the static deflection at midspan caused by the force equivalent to the
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Table 2

Maximum normalized deflections V=Vs under the moving mass, %m ¼ 0:2

a %O ¼ 0; b ¼ 0:03 %O ¼ 0; b ¼ 0:15 %O ¼ 0; b ¼ 0:3 %O ¼ 2:5; b ¼ 0:03 %O ¼ 2:5; b ¼ 0:15 %O ¼ 2:5; b ¼ 0:3

0.11 1.095 1.205 1.517 1.095 1.189 1.361

0.5 1.593 1.684 1.925 1.593 1.675 1.862

1.5 0.585 0.699 1.587 0.585 0.695 1.322

Table 3

Maximum normalized deflections W=Vs under the moving force

a %O ¼ 0; b ¼ 0:03 %O ¼ 0; b ¼ 0:15 %O ¼ 0; b ¼ 0:3 %O ¼ 2:5; b ¼ 0:03 %O ¼ 2:5; b ¼ 0:15 %O ¼ 2:5; b ¼ 0:3

0.11 0 0 0 0.004 0.080 0.175

0.5 0 0 0 0.005 0.131 0.357

1.5 0 0 0 0.002 0.042 0.110

Table 4

Maximum normalized deflections W=Vs under the moving mass, %m ¼ 0:2

a %O ¼ 0; b ¼ 0:03 %O ¼ 0; b ¼ 0:15 %O ¼ 0; b ¼ 0:3 %O ¼ 2:5; b ¼ 0:03 %O ¼ 2:5; b ¼ 0:15 %O ¼ 2:5; b ¼ 0:3

0.11 0 0 0 0.004 0.075 0.190

0.5 0 0 0 0.005 0.113 0.339

1.5 0 0 0 0.002 0.051 0.777

Table 1

Maximum normalized deflections V=Vs under the moving force

a %O ¼ 0; b ¼ 0:03 %O ¼ 0; b ¼ 0:15 %O ¼ 0; b ¼ 0:3 %O ¼ 2:5; b ¼ 0:03 %O ¼ 2:5; b ¼ 0:15 %O ¼ 2:5; b ¼ 0:3

0.11 1.039 1.149 1.471 1.039 1.133 1.405

0.5 1.602 1.717 1.940 1.602 1.704 1.863

1.5 0.603 0.637 0.764 0.603 0.634 0.737

U.C. Gu, C.C. Cheng / Journal of Sound and Vibration 278 (2004) 1131–1146 1139



moving mass. Discrepancies in the deflection between the moving mass and the moving force
increase when the moving mass becomes large as expected. Moreover, the deflection under the
moving mass shifts toward later part of the beam as the mass ratio increases. One can easily
predict that the maximum values of V/Vs and W/Vs increase for a greater moving mass due to high
inertia effect. Nevertheless, doubling the moving mass size raises more than two times of the
maximum value of W/Vs and obviously the inertia effect influences W/Vs more than V/Vs.

4.3. Influences of moving mass on the critical speeds

A rapid transition of a rotating shaft through a critical speed is expected to limit the whirl
amplitudes. Therefore a correct prediction of the critical speed is crucial in determining the
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vibration characteristics of a shaft in a design phase. The critical speeds for rotating shafts with
b ¼ 0:03 and b ¼ 0:3 are plotted in Figs. 6 and 7, respectively, while the mass located at the
midspan is moving at a speed a ¼ 0:1: The critical speeds derived from a shaft model with shear
deformation included decrease as b increases. The critical speed corresponding to the nth flexural
mode of the rotating Timoshenko shaft model is given by [19]

ðnpÞ4 þ 2an2b2c2 � ðdþ 1Þa2n2b2c2 � a2c2 � 2da3 b
p

� �4

c4 þ da4 b
p

� �4

c4 ¼ 0; ð20Þ

where d ¼ 2ð1þ mÞ=k; c ¼ O=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rAL4

p
; a ¼ on=O and m is the Poisson ratio. If the shear

deformation of the rotating shaft is taken into account but the coupling effects induced by the
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shear deformation; such as the coupling between transverse shear and the gyroscopic effects and
the coupling between transverse shear and the rotary inertia is neglected, Eq. (20) can be
simplified as

ðnpÞ4 þ 2an2b2c2 � ðdþ 1Þa2n2b2c2 � a2c2 ¼ 0: ð21Þ

Then the critical speed corresponding to the nth flexural mode can be obtained analytically as

ac ¼
n2b2c7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4b4c2 þ n4p4 dþ 1ð Þn2b2 þ 1

� �q
dþ 1ð Þn2b2 þ 1

: ð22Þ
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Note that a ¼ 1; the rotational speed c is equal to (np)2 times the natural frequency on which
corresponds to the nth flexural mode of the shaft. When bo1 as occurs in most engineering
application, Eq. (22) can be furthermore approximated as

ac

ðnpÞ2
¼

ðb=pÞ2c

dþ 1ð Þn2b2 þ 1
7

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ 1ð Þn2b2 þ 1

q : ð23Þ

Eq. (23) clearly shows that the critical speed decreases as b increases and the critical speed
varies much rapidly for a large b when the rotational speed increases. These behaviors
are the same for the shaft with a moving mass as seen in Figs. 6 and 7 although the critical speed
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calculated using Eq. (23) excludes the effect caused by the moving load. The trends of critical
speeds corresponding to different flexural modes are similar to each other and the critical speeds
are smaller under the action of moving mass compared to those under the equivalent force. In
other words, the critical speeds of the spindle could be seriously overestimated if the ball screw
system is modelled either as a shaft subjected to a moving force or as a shaft alone without a
moving nut.

5. Conclusions

The dynamic response of a high-speed spindle subject to a high-speed moving mass is
studied. Dynamic equations of the system and the corresponding transient response are
obtained using Lagrangian approach and Runge–Kutta method, respectively. Influences of
parameters on responses of the system such as the mass moving velocity, the Rayleigh
coefficient and the mass ratio are discussed. The vibration response of a beam subjected to a
moving mass is larger than an equivalent moving force when the Rayleigh coefficient, the mass
moving speed and the mass ratio increase as expected. The inertia force caused by the moving
mass enhances the couplings between transverse shear and the gyroscopic effect. As a result, for a
beam with large Rayleigh coefficient the maximum deflection under the moving mass is larger
than a beam under an equivalent force, especially in the orthogonal direction of the moving mass.
Moreover, the critical speed of a ball screw could be seriously overestimated if the ball screw
system is modelled either as a shaft subjected to a moving force or as a shaft alone without the
moving nut.
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Appendix

The equations of motion for a short and stubby rotating shaft subjected to a moving mass are
derived using Hamilton’s principle and are expressed as follows:

EI �
MV2

mEI

kGA
dðx � VmtÞ

� �
@4V

@x4
þ MV2

mdðx � VmtÞ
@2V

@x2

þ �
EIr
kG

� rI þ
MEI

kGA
dðx � VmtÞ �

MV2
mrI

kGA
dðx � VmtÞ

� �
@4V

@x2@t2

þ rA þ Mdðx � VmtÞð Þ
@2V

@t2
þ

2Or2I

kG
þ 2O

rIM

kGA
dðx � VmtÞ

� �
@3W

@t3
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þ
r2I

kG
þ
rIM

kGA
dðx � VmtÞ

� �
@4V

@t4
� 2O rI �

MV2
mrI

kGA
dðx � VmtÞ

� �
@3W

@x2@t

� �

þ 2MVm

@2V

@x@t
þ

rI

kGA

@4V

@x@t3
�

EI

kGA

@4V

@x3@t
þ

2OrI

kGA

@3W

@x@t2

� �
dðx � VmtÞ ¼ f ðx; tÞ; ðA1Þ

where the shaft has a cross-sectional area A, second moment of area I, cross-sectional shape factor
k; Young’s modulus E, shear modulus G and density r: The deformed beam is described by the
transverse translations V ðx; tÞ and W ðx; tÞ in the y and z directions, respectively. Notice that the
above equation is derived for y co-ordinate. Similarly, one can derive the equation of motion for
the z co-ordinate and combine them into a single equation using complex notation. If M ¼ 0; the
equation of motion shown above is reduced to a rotating shaft based on Timoshenko beam model
without a moving mass. The equation of motion is obviously complicated. Nevertheless, the
equation of motion denotes the force equilibrium and each term represents a distributed force
caused by the transverse shear, the gyroscopic effect, the lateral inertia, the rotary inertia and
couplings induced from the moving mass. The couplings arising from the moving mass can be
assorted as follows:

A. The moving mass inertia that enhances couplings between transverse shear, rotary inertia and
the gyroscopic effects is represented by

2OrIMV2
m

kGA

@3W

@x2@t
þ

4OrIMVm

kGA

@3W

@x@t2
þ

2OMrI

kGA

@3W

@t3

� �
dðx � VmtÞ: ðA2Þ

B. The moving mass that enhances couplings between transverse shear and the rotary inertia is
represented by

MrI

kGA

@4V

@t4
þ

2MVmrI

kGA

@4V

@x@t3
�

MV2
mrI

kGA

@4V

@x2@t2

� �
dðx � VmtÞ: ðA3Þ

C. The moving mass that enhances the transverse shear is represented by

�
MV2

mEI

kGA

@4V

@x4
�

2MVmEI

kGA

@4V

@x3@t
þ

MEI

kGA

@4V

@x2@t2

� �
dðx � VmtÞ: ðA4Þ

D. The moving mass that enhances the lateral inertia effect is represented by

2MVm

@2V

@x@t
þ M

@2V

@t2
þ MV2

m

@2V

@x2

� �
dðx � VmtÞ: ðA5Þ
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