
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 278 (2004) 1147–1162

Geometric stiffening effect on rigid-flexible coupling dynamics
of an elastic beam

J.Y. Liu*, J.Z. Hong

Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China

Received 20 December 2002; accepted 24 October 2003

Abstract

In the previous work, the authors examined the effect of the geometric stiffness terms on the stability of
an elastic beam undergoing prescribed large overall motion. The aim of the present work is to extend the
geometrically non-linear formulations to an elastic beam with free large overall motions. The equations of
motion are derived taking into account the foreshortening deformation term, therefore, the equations
include the geometric mass and force matrices, which have geometric stiffening effect on the rigid-flexible
coupling dynamics of the system. The numerical results obtained in this investigation reveal the significant
difference between the deformations with and without stiffening effect. Furthermore, the stiffening effect on
the large overall motion is investigated. An influence ratio is employed as a criterion to clarify the
application range of the conventional linear modelling method, in which the stiffening effect is neglected.
The effectiveness of the criterion is examined by two simulation examples.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In the hybrid co-ordinate formulation of flexible multibody systems, the displacements of each
body are partitioned into displacements due to large overall motions and displacements due to
deformation. Two sets of co-ordinates are used to identify the configuration of each flexible body:
reference and elastic co-ordinates. The reference co-ordinates define the position and orientation
of a body reference, and the elastic co-ordinates describe the elastic deformation with respect to
the body-fixed co-ordinate system. Using the linear finite element method and modal truncation
approach, the deformation of the flexible multibody system can be expressed by a small number of
co-ordinates [1,2]. However, in the conventional linear modelling method, the quadratic term in
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longitudinal deformation, which accounts for the foreshortening effect, is not included in the
deformation expressions. It has been shown that such formulation produces erroneous simulation
results when the structures undergo large overall motions [3].
In order to solve the problem of the conventional linear modelling method, the geometrically

non-linear formulations are put forward in Refs. [4,5]. Due to the large rotations, the non-linear
strain–displacement relations are used for deriving the dynamic equations, and the geometric non-
linearities are included via the stiffness terms. Since an accurate representation of axial
displacement requires the use of large number of axial shape functions if the non-linear stiffness
matrices are used, a further improvement in the formulation can be achieved by using an axial co-
ordinate along the deformed axis [6–10]. The use of this representation takes into account the
foreshortening effect without the need to include high frequency axial modes, and the geometric
stiffness terms are included in the equations of motion. In order to clarify the limit of the validity
of the conventional modelling method, a criterion on inclusion of stress stiffening effects is put
forward in Ref. [11]. In these literatures, only the effect of the geometric stiffness terms on the
deformation of the body undergoing prescribed large overall motion is investigated. Recently,
dynamic performance of a rotating and translating beam is investigated in Ref. [12], and the
coupling between the deformation and the base displacement is revealed. However, with the
prescribed rotating speed, the effect of dynamic stiffening on the rotating speed is not taken into
account.
The objective of the paper is to extend the geometrically non-linear formulations to an elastic

beam with free large overall motions. By using an axial co-ordinate, the foreshortening
deformation is included in the longitudinal deformation. The modal assumption method is used
for discretization and the equations of motion of an elastic beam are derived based on virtual
work principle. The influence of the geometric force and mass matrices on the rigid-flexible
coupling dynamics of the system is investigated. An influence ratio is defined to clarify the limit of
the validity of the conventional linear model.

2. Kinematics of an elastic beam

In this section, a dynamic model of an elastic beam is established based on the following
assumptions. The beam is homogeneous and isotropic, and the effects due to eccentricity
are not considered. The beam has a slender shape so that the shear and rotary inertia effects are
neglected.
Consider the elastic beam undergoing free large overall motions as shown in Fig. 1. To describe

the motion of the beam, two co-ordinate systems are introduced. O0–X0Y0Z0 is the global co-
ordinate system, and O1–X1Y1Z1 is the body-fixed frame. The position vector of an arbitrary
point on the central line of the elastic beam can be defined with respect to O0–X0Y0Z0 as

r, ¼ r,0 þ r,; ð1Þ

where

r, ¼ r,0 þ u,; ð2Þ
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and, as shown in Fig. 1, r,0 is the position vector of the reference point O1; r,0 is the position vector
of the arbitrary point with respect to O1–X1Y1Z1 in the undeformed state, and u, is the
deformation vector.

3. Description of deformation

Considering the foreshortening deformation, the longitudinal deformation of the arbitrary
point on the central line can be written as [8]

u1 ¼ s þ uF ; ð3Þ

where s is an axial co-ordinate which is equal to the stretch in the beam along the elastic axis, and
u2 is the transverse deformation, and uF is the deformation associated with the foreshortening
effect, which can be written as

uF ¼ �
1

2

Z x

0

@u2

@x

� �2

dx: ð4Þ

The modal assumption method is used for discretization. The axial and transverse deformations
are represented by means of the shape function matrices /1ðxÞ and /2ðxÞ as

s ¼ /1ðxÞp; u2 ¼ /2ðxÞp; ð5Þ

where p is the modal vector.
Substituting Eq. (5) into Eq. (4), one obtains

u1 ¼ /1p�
1
2
pTHp; ð6Þ

where

H ¼
Z x

0

@/2

@x

� �T @/2

@x

� �
dx: ð7Þ

Let r; r0 be the co-ordinates of r,; r, with respect to O0–X0Y0Z0; and q0; q00; u
0; be the co-

ordinates of r,; r,0; u, with respect to O1–X1Y1Z1; and A be a matrix transforming a vector of
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Fig. 1. Elastic beam with free large overall motions.

J.Y. Liu, J.Z. Hong / Journal of Sound and Vibration 278 (2004) 1147–1162 1149



O1–X1Y1Z1 to O0–X0Y0Z0; which is given by

A ¼
cos y �sin y

sin y cos y

" #
; ð8Þ

then Eq. (1) reads

r ¼ r0 þ Aq0; ð9Þ

where

q0 ¼ q00 þ u0; ð10Þ

q00 ¼
x

0

" #
; u0 ¼

u1

u2

" #
¼

/1

/2

" #
p�

1

2

pTHp

0

" #
: ð11Þ

Differentiating Eq. (9) yields

’r ¼ ’r0 þ ’yA*Iq0 þ A’u0; ð12Þ

where

*I ¼
0 �1

1 0

" #
; ’u0 ¼

/1

/2

" #
’p�

pTH’p

0

" #
ð13Þ

and the second differentiation of Eq. (9) leads to

.r ¼ .r0 þ .yA*Iq0 þ A.u0 � ’y2Aq0 þ 2’yA*I’u0; ð14Þ

where

.u0 ¼
/1

/2

" #
.p�

pTH.p

0

" #
�

’pTH’p

0

" #
: ð15Þ

4. Virtual work of the elastic force

Using a non-linear strain–displacement relationship, the axial normal strain of an arbitrary
point of the beam is expressed as [12]

ex ¼
@u�1
@x

þ
1

2

@u2

@x

� �2

; ð16Þ

where

u�1 ¼ u1 � y
@u2

@x
¼ s þ uF � y

@u2

@x
: ð17Þ

Substituting Eq. (17) into Eq. (16), the axial normal strain can be written as

ex ¼
@s

@x
� y

@2u2
@x2

ð18Þ
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and the virtual work of the elastic force is given by

dWf ¼ �
Z

V

sxdex dV ¼ �
Z

V

Eexdex dV

¼ �
Z l

0

EA
@s

@x

� �
d

@s

@x

� �
þ EI

@2u2
@x2

� �
d

@2u2
@x2

� �� �
dx; ð19Þ

where

I ¼
Z

A

y2 dA ð20Þ

is the area moment of inertia. Substituting Eq. (5) into Eq. (19) yields

dWf ¼ �dpTKf p; ð21Þ

where Kf is the elastic stiffness matrix, which reads

Kf ¼
Z l

0

EA
@/1

@x

� �T @/1

@x

� �
þ EI

@2/2

@x2

� �T
@2/2

@x2

� �" #
dx: ð22Þ

5. Dynamic equations

The application of the variational procedures gives the principle of virtual work in the formZ
V

drTð�r.rþ fÞ dV þ dWf ¼ 0; ð23Þ

where f ¼ ½f1 f2�T is the body force vector. Substituting Eqs. (9), (14), (21) into Eq. (23) yields

dqT½ðMþ DMÞ.q� ðQþ DQÞ� ¼ 0; ð24Þ

where q ¼ ½rT0 y pT�T is the generalized co-ordinate of the elastic beam, and M; Q are the
generalized mass and force matrices, and DM; DQ are the geometric mass and force matrices
caused by the inclusion of foreshortening deformation, which can be written as

M ¼

Mrr Mry Mrp

Myr Myy Myp

Mpr Mpy Mpp

2
64

3
75; Q ¼

Qr

Qy

Qp

2
64

3
75; ð25Þ

Mrr ¼ rAlI; DMrr ¼ 0; ð26Þ

Myr ¼ MT
ry ¼ ½�Y2p E1 þ Y1p�AT; ð27Þ

DMyr ¼ DMT
ry ¼ ½0 � pTCp=2�AT; ð28Þ

Mpr ¼ MT
rp ¼ ½YT

1 YT
2 �A

T; ð29Þ

DMpr ¼ DMT
rp ¼ ½�Cp 0�AT; ð30Þ
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Myy ¼ J11 þ 2Z11pþ pTðW11 þW22Þp; ð31Þ

DMyy ¼ �pTDp�
Z l

0

rApTHp/1p dx þ
1

4

Z l

0

rApTHppTHp dx; ð32Þ

Mpy ¼ MT
yp ¼ ðW21 �W12Þpþ ZT

12; ð33Þ

DMpy ¼ DMT
yp ¼

Z l

0

rAHp/2p dx �
1

2

Z l

0

rA/T
2 p

THp dx; ð34Þ

Mpp ¼ W11 þW22; ð35Þ

DMpp ¼ �
Z l

0

rA/T
1 p

TH dx �
Z l

0

rAHp/1 dx þ
Z l

0

rAHppTH dx; ð36Þ

Qr ¼ 2’yA
Y2 ’p

�Y1 ’p

" #
þ ’y2A

E1 þ Y1p

Y2p

" #
þ V

f1

f2

" #
; ð37Þ

DQr ¼ A
’pTC’p

0

" #
þ 2’yA

0

pTC’p

" #
� ’y2A

pTCp=2

0

" #
; ð38Þ

Qy ¼ �2’y½Z11 ’pþ pTðW11 þW22Þ’p� þ
1

r
½�f 0

1Y2pþ f 0
2ðE1 þ Y1pÞ�; ð39Þ

DQy ¼ 2’y pTD’pþ
Z x

0

rApT/T
1 p

TH’p dx þ
1

2

Z x

0

rApTHp/1 dx’p

�

�
1

2

Z x

0

rApTHppTH’p dx

�
�
Z x

0

rApT/T
2 ’p

TH’p dx �
1

2r
f 0
2p

TCp; ð40Þ

Qp ¼ � 2’yðW21 �W12Þ’pþ ’y2ZT
11 � ½Kf � ’y2ðW11 þW22Þ�p

þ
1

r
ðf 0
1Y

T
1 þ f 0

2Y
T
2 Þ; ð41Þ

DQp ¼ � ’y2Dp� ’y2
Z l

0

rA 1
2
/T
1 p

THp� 1
2
HppTHpþHp/1p

� �
dx

� 2’y
Z l

0

rAðHp/2 ’p� /T
2 p

TH’pÞ dx �
1

r
f 0
1Cp; ð42Þ

f 0
1

f 0
2

" #
¼ AT f1

f2

" #
; ð43Þ

where

E1 ¼
Z

V

rx dV ¼ rAl2=2; J11 ¼
Z

V

rx2 dV ¼ rAl3=3; ð44Þ
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Wmk ¼
Z

V

r/T
m/k dV ¼

Z l

0

rA/T
m/k dx; m; k ¼ 1; 2; ð45Þ

Yk ¼
Z

V

r/k dV ¼
Z l

0

rA/k dx; Z1k ¼
Z

V

rx/k dV ¼
Z l

0

rAx/k dx; k ¼ 1; 2; ð46Þ

C ¼
Z

V

rH dV ¼
Z l

0

rA

Z x

0

@/2

@x

� �T @/2

@x

� �
dx

 !
dx

¼
Z l

0

rA

Z l

x

@/2

@x

� �T @/2

@x

� �
dx

 !
dx ¼

Z l

0

rAðl � xÞ
@/2

@x

� �T @/2

@x

� �
dx; ð47Þ

D ¼
Z

V

rxH dV ¼
Z l

0

rAx

Z x

0

@/2

@x

� �T @/2

@x

� �
dx

 !
dx

¼
Z l

0

rA

Z l

x
x

@/2

@x

� �T @/2

@x

� �
dx

 !
dx

¼
1

2

Z l

0

rAðl2 � x2Þ
@/2

@x

� �T @/2

@x

� �
dx: ð48Þ

Since dq is arbitrary, the dynamic equations can be written as

ðMþ DMÞ.q ¼ Qþ DQ: ð49Þ

In case of prescribed large overall motion with .r00 ¼ AT.r0 ¼ ½ .x0
0 .y0

0�
T; ’y ¼ o; .y ¼ ’o and f ¼ 0;

the equations of motion can be obtained as follows:

ðMpp þ DMppÞ.pþ ðGþ DGÞ’pþ ðKþ DKÞp ¼ Fþ DF; ð50Þ

where

G ¼ 2oðW21 �W12Þ; DG ¼ 2o
Z l

0

rAðHp/2 � /T
2 p

THÞ dx; ð51Þ

K ¼ Kf � o2ðW11 þW22Þ þ ’oðW21 �W12Þ; ð52Þ

DK ¼ DK1 þ DK2; DK1 ¼ o2D; DK2 ¼ � .x0
0C; ð53Þ

F ¼ o2ZT
11 � ’oZT

12 � .x0
0Y

T
1 � .y0

0Y
T
2 ; ð54Þ

DF ¼ �o2

Z l

0

rA 1
2
/T
1 p

THp� 1
2
HppTHpþHp/1p

� �
dx: ð55Þ

Eq. (50) shows that DMpp DG; DK and DF; which arise from the inclusion of the foreshortening
deformation, are all taken into account in the present model. Furthermore, the quadratic and
cubic terms of deformation are kept in force expression. However, the inclusion of the high order
terms may suffer from the requirement that much computation time is needed.
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In case of small deformation, the high order terms of deformation can be ignored, then Eq. (50)
is approximated to first order as

Mpp .pþG’pþ ðKþ DKÞp ¼ F: ð56Þ

It is shown that the geometric stiffness matrix DK; which is ignored in conventional modelling
methods, is composed of two parts: DK1 and DK2: As shown in Eq. (53), DK1 and DK2 increase
with rotating speed and axial base acceleration growing, therefore, the neglect of DK may lead to
significant error in case of high rotating speed and large base acceleration.

6. Numerical results

In this section, two examples are given in order to demonstrate the geometric stiffening effect
on the rigid-flexible coupling dynamics of the elastic beam and to clarify the applicability of the
conventional linear model.
(1) Beam undergoing prescribed translation and rotation: A cantilever beam attached to a

rotating rigid body is shown in Fig. 2. The spin up of the rigid body is given by

o ¼
ðO=TÞ½t � ðT=2pÞ sinð2pt=TÞ�; 0ptots;

O; tXts:

(
ð57Þ

and the acceleration of the beam base is given by

.x0
0 ¼ �o2b; .y00 ¼ ’ob: ð58Þ

The properties of the beam are as follows: Mass density r ¼ 2:7667	 103 kg=m3; modulus of
elasticity E ¼ 6:8952	 1010 N=m2; area moment of inertia I ¼ 8:219	 10�9 m4; cross-section
area A ¼ 7:3	 10�5 m2; and length l ¼ 8:0 m:
To illustrate the validity of the first order approximation in case of small deformation, three

computer programs are designed. In the first program, all the high order terms of deformation are
kept in the dynamic equations, and in the second program, the dynamic equations are
approximated to first order, and in the third program, the geometric stiffness matrix DK is
neglected, therefore, the stiffening effect in not taken into account. Finally, the simulation results
are compared with the one obtained by Mayo et al. [6]. Gear method is used for integration and
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the first three modes of the beam are chosen. The time–history of tip deflection for O ¼ 6 rad=s;
T ¼ 15 s and b ¼ 0 are shown in Fig. 3.
As can been seen, there is no significant difference between the results obtained the first and the

second program, respectively, and they agree well with Mayo’s result. However, the result
obtained by the third program shows significant difference. It is demonstrated that the first order
Eq. (56) can be used for simulation in case of small deformation and that the geometric stiffness
matrix DK should be taken into account in case of high rotating speed.
For tXts; the rotating speed is constant, thus, o ¼ O; ’o ¼ 0; and then Eq. (56) reads

Mpp .pþG’pþ ðKþ DKÞp ¼ o2ZT
11 þ o2bYT

1 : ð59Þ

To illustrate the effect of DK; we define

Z ¼ oT ; T ¼

ffiffiffiffiffiffiffi
rA

EI

r
l2; ð60Þ

where Z is the dimensionless angular velocity of the beam.
It has been investigated in Ref. [13] that for a slender beam, an accurate solution can be

obtained using the first transverse mode without the inclusion of any axial modes in case that
Zo3:414; therefore, the axial deformation can be neglected. Choosing the first transverse mode
leads to the simplified dimensionless equation as

d2B
dt2

þ Z210ð1� 0:08090Z2 þ 0:09653Z2 � 0:1271xÞB ¼ 0; ð61Þ

where

B ¼
p

l
; t ¼

t

T
; x ¼

.x0
0T

2

l
¼ �Z2d; d ¼

b

l
; ð62Þ

are dimensionless modal co-ordinate, time, axial base acceleration and rigid body length,
respectively, and Z10 is the first dimensionless natural frequency of the cantilever beam without
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large overall motion, which is given by

Z10 ¼ 3:516; ð63Þ

and the first dimensionless frequency of the rotating and translating beam with and without
geometric stiffening is given by

Z1p ¼ Z10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:08090Z2 þ 0:09653Z2 � 0:1271x

q
ð64Þ

and

Z1c ¼ Z10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:08090Z2

p
; ð65Þ

respectively.
The first dimensionless frequency obtained by the present method is compared with that in Ref.

[9]. It is shown that for Z ¼ 2 and d ¼ 0; Z1p ¼ 3:624 (3.62 in Ref. [9]), and for Z ¼ 2 and d ¼ 1;
Z1p ¼ 4:407 (4.40 in Ref. [9]). Therefore, the results obtained by present model agree well with
Ref. [9].
Eqs. (61) and (62) show that the underlined terms lead to different frequency results obtained

by the present and conventional models. These terms are related to Z and x; respectively. In order
to reveal the difference between two models, influence ratio c is defined as

c ¼ 0:09653Z2 � 0:1271x ¼ 0:09653Z2 þ 0:1271Z2d ð66Þ

and relative error of the first frequency of the rotating and translating beam by present and
conventional methods is defined as

e ¼ ðZ1p � Z1cÞ=Z1p; ð67Þ

where Z1p; Z1c; c; e for different Z and d are shown in Figs. 4 and 5.
As shown in Fig. 4, with the rotating speed growing, the first frequency obtained by the

conventional linear model decreases rapidly. Furthermore, it is shown that the first frequency
obtained by the conventional linear model for d ¼ 0 (dot line) is well hidden behind that for d ¼ 2
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(dot dash line), it seems that the first frequency has nothing to do with d: However, the use
of the present model leads to different result. It is shown that the first frequency obtained
by the present model increases with the rotating speed. Furthermore, it is shown that the
increasing rate for d ¼ 2 is much higher than that for d ¼ 0 due to the growth of the axial base
acceleration.
It is interesting to note in Fig. 5 that for both d ¼ 0 and 2, e is less than 0.05 in case of co0:1;

and the error arising from the use of the conventional model depends on c instead of Z: Since the
error is not significant for eo0:05; the conventional linear model can be employed for simulation
without any trouble for co0:1:
(2) Single pendulum with gravity: To illustrate the effect of the foreshortening deformation on

the large overall motion, the dynamic performance of a single pendulum with free rotation is
investigated. The motion of the pendulum is caused by gravity in X0 direction, as shown in Fig. 6.
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Under gravity, the body force vector is

f ¼
f1

f2

" #
¼

rg

0

" #
;

f 0
1

f 0
2

" #
¼ AT f1

f2

" #
¼ rg

cos y

�sin y

" #
: ð68Þ

Since x0 ¼ y0 ¼ 0; the equations of motion are given by

ðMyy þ DMyyÞ.yþ ðMyp þ DMypÞ.p ¼ Qy þ DQy;

ðMpy þ DMpyÞ.yþ ðMpp þ DMppÞ.p ¼ Qp þ DQp: ð69Þ

In case of small deformation, the equations can be simplified. With the first order
approximation, Eq. (69) can be written as

ðJ11 þ 2Z11pÞ.yþ ½pTðWT
21 �WT

12Þ þ Z12�.p

¼ �2’yZ11 ’pþ
1

r
½�f 0

1Y2pþ f 0
2ðE1 þ Y1pÞ�;

½ðW21 �W12Þpþ ZT
12�.yþ ðW11 þW22Þ.p

¼ �½Kf � ’y2ðW11 þW22Þ þ ’y2D�pþ ’y2ZT
11

� 2’yðW21 �W12Þ’pþ
1

r
ðf 0
1Y

T
1 þ f 0

2Y
T
2 Þ: ð70Þ

The properties of the beam are given as follows: Mass density r ¼ 2:7667	 103 kg=m3;
modulus of elasticity E ¼ 6:8952	 1010 N=m2; area moment of inertia I ¼ 5:0	 10�9 m4; cross-
section area A ¼ 2:5	 10�4 m2; and length l ¼ 2:0 m:
Gear method is used for integration and the first three modes of the beam are chosen. For

yð0Þ ¼ 90�; ’yð0Þ ¼ �15 rad=s; the simulation is carried out using three different modelling
methods: the high order modelling method, the first order modelling method, and the second
order conventional modelling method without inclusion of the stiffening terms DMyy; DMyp;
DMpy; DMpp; DQy; DQp: The time–history of the tip deflection of the beam is shown in Fig. 7, and
the angular velocity of the beam is shown in Fig. 8.
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Fig. 7. Tip deflection of the beam for case of yð0Þ ¼ 90�; oð0Þ ¼ �15 rad=s: —, high-order modelling; - - -, first-order

modelling; -
-, without stiffening.
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It is shown that the results obtained by high order modelling method coincide well with that
obtained by first order approximation. However, the neglect of the stiffening terms may lead to
significant error.
Since the equations can be approximated to first order in case of small deformation, we can

capture the stiffening terms in Eq. (70). It is shown that due to the neglect of the quadratic
deformation terms, DMyy; DMyp; DMpy; DMpp and DQy disappear, therefore, the important
stiffening term is

DQp ¼ �’y2Dp: ð71Þ

The influence ratio, which is defined in Eq. (66), is used to illustrate the stiffening effect. Since
.r0 ¼ 0; x vanishes, thus, the time-varying influence ratio is given by

cðtÞ ¼ 0:09653½ZðtÞ�2 ð72Þ

and the time–history of ratio cðtÞ is shown in Fig. 9.
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Fig. 8. Angular velocity of the beam for case of yð0Þ ¼ 90�; oð0Þ ¼ �15 rad=s: —, high-order modelling; - - -, first-order

modelling; -
-, without stiffening.
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As can be seen, the minimum value of the ratio is 0.64, which is much high than 0.1. Due to the
high ratio, large difference between tip deflections occurs. Since the rotation and deformation are
coupled, the angular velocities of the beam with and without stiffening display significant deviation.
In case that the initial angular velocity is reduced to oð0Þ ¼ �5 rad=s; Figs. 10 and 11 show

little difference in tip deflection and angular velocity. It is revealed that the difference decreases
significantly with the angular velocity reducing. The time–history of ratio cðtÞ is shown in Fig. 12.
It is illustrated that in case of jcðtÞjo0:1; the foreshortening deformation can be ignored due to the
coincidence of the simulation results obtained by the two models.

7. Conclusions

The dynamic performance of a cantilever beam undergoing prescribed translation and rotation
is investigated. It is shown that in case of small deformation, the terms of deformation in the
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Fig. 10. Tip deflection of the beam for case of yð0Þ ¼ 90�; oð0Þ ¼ �5 rad=s: —, present modelling; - - -, without

stiffening.
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Fig. 11. Angular velocity of the beam for case of yð0Þ ¼ 90�; oð0Þ ¼ �5 rad=s: —, present modelling; - - -, without

stiffening.
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equation can be approximated to one order. The defined influence ratio c; which is related to the
dimensionless axial base acceleration and angular velocity, is used for determination of the
application range of the conventional model. According to the relative error of the first frequency
of the rotating beam, the application range of the conventional model is clarified. It is shown that
the conventional model is suitable in case that the influence ratio c is less than 0.1.
The study on the dynamic stiffening of an elastic beam undergoing prescribed large overall

motion is extended to an elastic beam with free large overall motions. The effectiveness of the
criterion for the application range of the conventional model is examined. Numerical results for a
single pendulum show that the conventional model can be used for jcðtÞjo0:1:
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