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Abstract

In this paper two analytical approximate solving procedures for a complex-valued differential equation
are developed. One of the methods represents the generalization of the Krylov–Bogolubov method for a
strong differential equation with complex function. The second method is based on the first integrals of the
system. The differential equation is transformed introducing the perturbed first integrals and the polar co-
ordinates. The solution is obtained applying the straightforward series expansion. The solution for the
special case of without impact initial conditions is considered. The method is applied on the system with
strong cubic non-linearity. The small gyroscopic function and damping function are introduced. The
analytical approximate solution is compared with numerical exact one and shows a good agreement.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The differential equation considered in this paper is

.z þ c1z þ zF ðz%zÞ ¼ eZðz; ’z; ccÞ; ð1Þ

where z is a complex function, i ¼
ffiffiffiffiffiffiffi
�1

p
is an imaginary unit, %z is a complex conjugate function, e

is a small parameter, Z is a complex function, F is a function of ðz%zÞ and c1 is a constant
coefficient. The differential equation (1) is an ordinary second order differential equation with a
complex function where c1z is the linear term, zF ðz%zÞ is the strong non-linear term whose order of
non-linearity depends on the degree of z%z; and eZ is a small function which depends on
complex function z; its time derivative ’z and complex conjugate functions cc: The general initial
conditions are

zð0Þ ¼ z0; ’zð0Þ ¼ ’z0: ð2Þ
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The differential equation (1) with the initial conditions (2) represents the extension of the
previously investigated differential equation with small non-linearity

.z þ c1z ¼ eZðz; ’z; ccÞ; ð3Þ

The differential equation (3) is widely investigated and approximate analytical solution methods
[1] and [2], which are based on the Krylov–Bogolubov [3] and the Bogolubov–Mitropolski [4]
procedures, are developed. Mahmoud [5] introduced the generalized averaging solution method
for the differential equation (3) with a complex function and small non-linearity of a cubic type.
Unfortunately, the suggested procedures in this form are not applicable for solving the strong
non-linear differential equation (1).
There are many papers dealing with solution methods for strong non-linear differential

equation which describes the one-degree-of-freedom system. Most of the procedures are of the
perturbation type [6–12]: the elliptic-Krylov–Bogolubov method, the multiple scale method, etc.
The harmonic balance method is also applied to strong non-linear systems [13,14]. The averaging
method for the solution in the form of elliptic functions is developed by Coppola and Rand [15]
and Belhaq and Lakrad [16]. Xu and Cheng [17] developed the solution in the form of generalized
harmonic functions where the argument is an implicit non-linear time function.
Based on those aforementioned methods the analytical solution procedures for the two coupled

strong non-linear differential equations are considered in Refs. [18–24]. The special group of two-
degrees-of-freedom systems described with a strong non-linear differential equation with complex
function is investigated in Refs. [25–28]. The analytic solution for the ‘natural’ complex valued
version is described in Ref. [29]. The non-linearity is of the cubic type. Such differential equations
are also considered in Refs. [30–33].
In this paper the generalization of the solution procedure to the complex-valued non-linear

differential equation (1) with initial conditions (2) is carried out. Two solution procedures are
developed. The first method represents the generalization of the Krylov–Bogolubov procedure for
a complex valued differential equation where the trial perturbed solution of the system is based on
the closed form solution of the generating equation ðe ¼ 0Þ which is assumed to be known and
denoted as in the previously mentioned papers in terms of elliptic functions or generalized
harmonic functions. The other method is based on the first integrals of the generating equation
ðe ¼ 0Þ: The differential equations are transformed into the new variables based on these first
integrals. Introducing the power series expansion and equating the terms of the same order sets of
first order differential equations are obtained. Solving the equations the solution of the higher
order approximation is denoted. The method is tested on the examples where the strong non-
linearity is of the cubic type and small gyroscopic and damping terms exist. The obtained results
are compared with exact numerical one and discussed.

2. Generalization of the Krylov–Bogolubov method for the differential equation with complex

function

The method represents a generalization of the Krylov–Bogolubov method developed for the
complex-valued differential equation (3) with small non-linearity [1]. The method is based on the
generating solution of the differential equation (1) for e ¼ 0 with arbitrary initial conditions (2).
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Perturbing that solution, the trial solution of Eq. (1) is formed. Using this assumed solution and
some constraints the differential equation (1) is transformed into a new system of two coupled first
order complex-valued differential equations. The approximate solution is obtained using the
averaging procedure.
For e ¼ 0 the generating equation for (1) has the form

.z þ c1z þ zF ðz%zÞ ¼ 0: ð4Þ

Its solution is

z ¼ f ðK1;K2;K3;K4; tÞ; ð5Þ

where K1;K2;K3;K4 are constants dependent on the initial conditions (2). Perturbing this
generating solution (5) the trial solution of Eq. (1) is

z ¼ f ðK1ðtÞ;K2ðtÞ;K3ðtÞ;K4ðtÞ; tÞ; ð6Þ

where K1ðtÞ;K2ðtÞ;K3ðtÞ;K4ðtÞ are real time dependent functions. The solution (6) has to satisfy the
equation (1). It requires the following constraint to be introduced: the first time derivative of (6)
must have the same form as the first time derivative of the generating solution (5) and it is

’z ¼
@f

@t
: ð7Þ

Comparing the time derivative of (6) and the relation (7) the following complex-valued equation is
obtained

Xj¼4
j¼1

@f

@Kj

’Kj ¼ 0: ð8Þ

It is a first order ordinary differential equation with real variables but with real and imaginary
terms.
Introducing the solution (6), the relation (7) and its time derivative into (1) it is

Xj¼4
j¼1

@

@Kj

@f

@t

� �
’Kj ¼ eZ f ;

@f

@t
; cc

� �
: ð9Þ

Eq. (9) is also a first order differential equation with real and imaginary terms which with Eq. (8)
represent the transformed differential equation (1) with the new variables Kj: Separating the real
and imaginary terms in the differential equations (8) and (9) a system of four coupled first order
differential equations is obtained

’Kj ¼
DKj

D
; j ¼ 1;y; 4; ð10Þ

where

D ¼ jaij j; i ¼ 1;y; 4; j ¼ 1;y; 4;

a1j ¼ Re
@f

@Kj

� �
; a2j ¼ Im

@f

@Kj

� �
;
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a3j ¼ Re
@

@Kj

@f

@t

� �� �
; a4j ¼ Im

@

@Kj

@f

@t

� �� �
; ð11Þ

DKj ¼

b1p

b2p

b3p

b4p

���������

���������
; p ¼ 1;y; 4; ð12Þ

b1p ¼ 0 for p ¼ j; b1p ¼ a1j for paj;

b2p ¼ 0 for p ¼ j; b2p ¼ a2j for paj;

b3p ¼ eReðZÞ for p ¼ j; b3p ¼ a3j for paj;

b4p ¼ e ImðZÞ for p ¼ j; b4p ¼ a4j for paj: ð13Þ

Solving the differential equations (10) for KjðtÞ the exact solution (6) of the differential equation
(1) is obtained.
Unfortunately, usually it is impossible to find the closed form solution for (10) in analytical

form. As it is suggested by Krylov and Bogolubov [3] the equations (10) have to be averaged.
Namely, as the motion is periodical with period T the averaged equations are

’Kj ¼
DKj

D

� �
; j ¼ 1;y; 4; ð14Þ

where / �S � ð1=TÞ
R T

0 ð�ÞdT : Solving the averaged system of differential equations (14) and
substituting the so obtained values for KjðtÞ into (6) the approximate analytical solution of (1) is
obtained.
The advantage of the method is its simplicity. The solution method is based on the generating

solution which is perturbed. Unfortunately, it is difficult to obtain the closed form generating
solution of (4) for arbitrary initial conditions (2). The averaging which is introduced in solution
process has a significant influence on the accuracy of the solution. Usually, the approximate
averaged solution is on the top of the exact solution only for a short time interval and small values
of non-linearity.

3. Method based on the first integrals

To eliminate the disadvantage of the previous method the following procedure is suggested.
The differential equation (1) is transformed into new variables which represent the polar co-
ordinates and the two first integrals of the system. The power series approach is applied.
Separating the terms with the same order of the small parameter e sets of first order differential
equations are obtained. Solving these equations the solution in the first or higher approximation
are obtained.
Introducing the polar co-ordinates r and y where r is the position co-ordinate and y the

angle co-ordinate, and the polar form of the complex function z ¼ r expðiyÞ into (1) and (2)
and separating the real and imaginary terms a system of two second order differential equations
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is obtained

.r� r’y2 þ c1rþ rF ðrÞ ¼ eFrðr; ’r; y; ’yÞ;

r.yþ 2 ’r’y ¼ eFyðr; ’r; y; ’yÞ; ð15Þ

with

rð0Þ ¼ A; ’rð0Þ ¼ B; yð0Þ ¼ C; ’yð0Þ ¼ D; ð16Þ

where eFr and eFy are small real functions. The solution method in this paper considers the
differential equations (15) and initial conditions (16).
The generating equation, when e ¼ 0; is

.r0 � r0 ’y
2
0 þ r0F ðr0Þ ¼ 0;

r0 .y0 þ 2 ’r0 ’y0 ¼ 0: ð17Þ

The differential equations (17) have the form of the differential equations of central motion of a
particle. Eq. ð17Þ2 represents a cyclic first integral

r20 ’y0 ¼ A2D � K10 ¼ const:; ð18Þ

for the cyclic co-ordinate y0: This integral represents twice the value of the so called sectorial
velocity. Its value is constant for the system (17).
Introducing the relation (18) into ð17Þ1 it transforms to another first integral of energy type

1
2 ’r

2
0 þ

1

2

K2
10

r20
þ 1

2
c1r20 þ

Z
rF ðrÞdr

� �
0

¼ 1
2

B2 þ
1

2

K2
10

A2
þ 1

2
c1A

2 þ
Z

rFðrÞdr
� �

A

� K20 ¼ const: ð19Þ

It can be concluded that for the conservative system (17) the energy integral (19) is constant.
Solving the relation Z r0

A

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K20 � K2

10=r
2
0 � c1r20 � 2

R
rFðrÞdr

� �
0

q ¼ t; ð20Þ

the r0 ¼ r0ðtÞ co-ordinate variation is obtained. Substituting the solution of (20) into (18) and
integrating it is

y0 ¼ C þ K2
10

Z t

0

dt

r20ðtÞ
: ð21Þ

Using the results of the generating equation (17) the differential equation (15) is transformed
into a system of four coupled first order ordinary differential equations

dy
dt

¼
K1

r2
;

dr
dt

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K2 �

K2
1

r2
� c1r2 � 2

Z
rFðrÞdr

s
;
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dK1

dt
¼ erFyðr; y;K1;K2Þ;

dK2

dt
¼ e 2K2 �

K2
1

r2
� c1r2 � 2

Z
rF ðrÞdr

� �1=2

Frðr; y;K1;K2Þ; ð22Þ

with initial conditions

rð0Þ ¼ A; yð0Þ ¼ C; K1ð0Þ ¼ K10; K2ð0Þ ¼ K20; ð23Þ

where

K1 ¼ r2 ’y; K2 ¼ 1
2 ’r

2 þ
1

2

K2
1

r2
þ 1

2
c1r2 þ

Z
rF ðrÞdr; ð24Þ

are the perturbed time dependent first integrals. So the task of obtaining the solution zðtÞ of
Eq. (1) i.e., (15) has been transformed into the equivalent one of obtaining the four solutions
K1ðtÞ; K2ðtÞ; rðtÞ; yðtÞ of the system of Eqs. (22). These equations are usually quite complicated. It
is at this point that one returns to the approximate solving procedure and applies the
straightforward series expansion for the small parameter e

r ¼ r0 þ er1 þ e2r2 þy; ð25Þ

y ¼ y0 þ ey1 þ e2y2 þy; ð26Þ

K1 ¼ K10 þ eK11 þ e2K12 þy; ð27Þ

K2 ¼ K20 þ eK21 þ e2K22 þy : ð28Þ

The relation (27) represents an adiabatic invariant and describes the slow variation of the
sector velocity in time due to existence of small functions. The relation (28) is also an adiabatic
invariant which considers the energy increase or decrease dependently on the properties of the
small forces.
The Taylor series expansion for functions Fyðr; y;K1;K2Þ; Frðr; y;K1;K2Þ and FðrÞ about r0;

y0; K10 and K20; which is signed as ðÞ0; is

Fyðr; y;K1;K2Þ ¼ ðFyÞ0 þ e r1
@Fy

@r

� �
0

þy1
@Fy

@y

� �
0

þK11
@Fy

@K1

� �
0

þK21
@Fy

@K2

� �
0

� �
þ e2y; ð29Þ

Frðr; y;K1;K2Þ ¼ ðFrÞ0 þ e r1
@Fr

@r

� �
0

þy1
@Fr

@y

� �
0

þK11
@Fr

@K1

� �
0

þK21
@Fr

@K2

� �
0

� �
þ e2y; ð30Þ

FðrÞ ¼
Z
r
rFðrÞdr ¼ðFÞ0 þ eðr1 þ er2 þyÞ

dF

dr

� �
0

þ
e2

2!
ðr1 þ er2 þ?Þ2

d2F

dr2

� �
0

þ?: ð31Þ
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Substituting the functions (25)–(31) into (22) and separating the terms with the same order of the
small parameter e the following set of equations is obtained:
For e0: Eqs. (18)–(21),

with initial conditions : K10ð0Þ ¼ A2D; r0ð0Þ ¼ A; y0ð0Þ ¼ C; ð32Þ

K20ð0Þ ¼ 1
2
ðB2 þ c1A

2 þ A2D2Þ þ
Z

rF ðrÞdr
� �

A

;

For e:

dK11

dt
¼ ðFyÞ0r0;

dK21

dt
¼ ðFrÞ0 ’r0;

dr1
dt

¼
1

’r0
K21 þ K2

10

r1
r30

�
K10K11

r20
� r1

dF

dr

� �
0

� �
;

dy1
dt

¼
K11

r20
� 2K10

r1
r30
;

with initial conditions : K11ð0Þ ¼ 0; K21ð0Þ ¼ 0; ð33Þ

r1ð0Þ ¼ 0; y1ð0Þ ¼ 0;

For e2:

dK12

dt
¼ ðFyÞ0r1 þ r0 r1

@Fy

@r

� �
0

þy1
@Fy

@y

� �
0

þK11
@Fy

@K1

� �
0

þK21
@Fy

@K2

� �
0

� �
;

dK22

dt
¼ ðFrÞ0 ’r1 þ ’re¼0 r1

@Fy

@r

� �
0

þy1
@Fy

@y

� �
0

þK11
@Fy

@K1

� �
0

þK21
@Fy

@K2

� �
0

� �
;

dr2
dt

¼
1

2 ’r0
2K22 þ

K2
10

r20

r21
r20

þ 2
r2
r0

� �
þ 4

K10K11r1
r30

�

�
K2
11 þ 2K10K12

r20
� 2r2

dF

dr

� �
0

�r21
d2F

dr2

� �
0

�
�

’r1
2 ’r0

;

dy2
dt

¼
K12

r20
� 2K11

r1
r30

�
K10

r20

r21
r20

þ 2
r2
r0

� �
;

with initial conditions : K12ð0Þ ¼ 0; K22ð0Þ ¼ 0; ð34Þ

r2ð0Þ ¼ 0; y2ð0Þ ¼ 0:

y

For e0 the solutions are r0; y0; K10 and K20: Substituting these solutions into the set of
differential equations (33) with the small parameter e the functions r1; y1; K11 and K21 are
obtained. Namely, integrating the first two relations of (33) for the corresponding initial
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conditions the functions K11 and K21 in the first approximation are obtained

K11ðtÞ ¼ e
Z t

0

½rFyðr; y;K1;K2Þ
0dt;

K21ðtÞ ¼ e
Z t

0

2K2 �
K2
1

r2
þ c1r2 þ 2

Z
rF ðrÞdr

� �1=2

Frðr; y;K1;K2Þ

" #
0

dt: ð35Þ

Using the previously obtained functions r0; r1; y0; y1;K10;K11;K20 and K21 and solving the system
of differential equations (34) the functions r2; y2; K12 and K22 in the second approximation are
obtained.
Usually for technical reasons the solution in the first approximation is satisfactory. The

approximate analytic solution in the first approximation and in the complex form is

z ¼ ðr0 þ er1Þ expðy0 þ ey1Þ: ð36Þ

Comparing the suggested procedure with first integrals with the previously mentioned method
has an advantage as it gives the solutions of higher order of approximation. The main problem
which appears for this method is that it requires the exact solution for the system of differential
equations (32) which is very often connected with difficulties.
The procedure with first integrals is very convenient for solving the systems with special initial

conditions especially for the case of without impact initial conditions, when the first time
derivatives of the polar co-ordinates are zero.

3.1. Initial conditions without impact

For this special case of initial conditions

rð0Þ ¼ A; ’rð0Þ ¼ 0; yð0Þ ¼ C; ’yð0Þ ¼ 0; ð37Þ

i.e.,

rð0Þ ¼ A; yð0Þ ¼ C; K1ð0Þ ¼ 0; K2ð0Þ ¼ K20; ð38Þ

the system of differential equations (32)–(34) simplifies. The corresponding solution of the set of
Eqs. (32) for e ¼ 0 is

K10 ¼ K1ð0Þ ¼ 0; y0 ¼ yð0Þ ¼ C;

K20 ¼ K2ð0Þ ¼ 1
2

c1A
2 þ

Z
rF ðrÞdr

� �
A

;

t ¼
Z r0

A

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K20 � c1r20 � 2FðrÞ0

q : ð39Þ

The functions in the first approximation are

K1 ¼ eK11; K2 ¼ K20 þ eK21;

y ¼ C þ ey1; r ¼ r0 þ er1; ð40Þ
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where K11ðtÞ; K21ðtÞ; r1ðtÞ and y1ðtÞ are the solutions of the system of differential equations

dK11

dt
¼ ðFyÞ0r0;

dK21

dt
¼ ðFrÞ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K20 � c1r20 � 2FðrÞ0

q
;

dy1
dt

¼
K11

r20
;

dr1
dt

¼
1

’r0
K21 � c1r0r1 � r1

dF

dr

� �
0

� �
; ð41Þ

with K11ð0Þ ¼ 0; K21ð0Þ ¼ 0; r1ð0Þ ¼ 0; y1ð0Þ ¼ 0: Eq. ð41Þ4 is the Bernoulli first order ordinary
differential equation

dr1
dt

þ r1
c1r0
’r0

þ
1

’r0

dF

dr

� �
0

� �
¼

K21

’r0
: ð42Þ

Using the complex form of the solution z ¼ r expðiyÞ and the previously obtained results it is
z ¼ ðr0 þ er1Þ expðiðC þ ey1ÞÞ: ð43Þ

The small function with parameter e in the differential equation (15) affects both polar co-
ordinates in spite of the fact that the initial conditions are without impact. Dependently on the
type of the small non-linear function the following two special cases may appear:
(a) For the case when the right side of the first equation (33) is zero it is K11 ¼ 0 and y1 ¼ 0: The

solution in the first approximation is

z ¼ ðr0 þ er1Þ expðiy0Þ: ð44Þ

The small function with e ¼ 0 has an influence only on the deflection co-ordinate r; but not on the
angle position y which remains constant. The solution is periodical along a straight line whose
angle is constant and has the value y ¼ yð0Þ ¼ C: The sectorial velocity is also zero in the first
approximation. The small function has an influence only on the energy variation of the system
and the amplitude of vibration r:
(b) For the case when right side of the second equation (33) is zero it is K21 ¼ 0 and for the first

approximation K2 ¼ K20 ¼ const: It means that the small function with the parameter e has no
meaningful influence on energy variation in the first approximation. The deflection co-ordinate r
does not depend on the small function in the first approximation and it is r ¼ r0: At the other side
this type of small non-linearity introduces a perturbation in the angle position y and the sectorial
velocity is varying in time. The solution is in the first approximation

z ¼ A exp½iðC þ ey1Þ
: ð45Þ

3.2. Examples

To prove the correctness of the suggested procedure some examples are considered. For all of
them it is common that the strong non-linearity is of cubic type.

3.2.1. The strong non-linearity is cubic

If the strong non-linearity is of cubic type the differential equation (17) transforms to

.r0 � r0 ’y
2
0 þ c1r0 þ r30 ¼ 0;

r0 .y0 þ 2 ’r0 ’y0 ¼ 0; ð46Þ
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with initial conditions

rð0Þ ¼ A; ’rð0Þ ¼ 0; yð0Þ ¼ C; ’yð0Þ ¼ 0: ð47Þ

For the system (46) with initial conditions (47) according to (39) the first integrals are

K10 ¼ K1ð0Þ ¼ 0;

K20 ¼ K2ð0Þ ¼ 1
2

c1A
2 þ 1

4
c3A

4: ð48Þ

The polar co-ordinates are

r0 ¼ Acnðot;mÞ; y0 ¼ yð0Þ ¼ C ¼ const:; ð49Þ

where

m ¼
c3A

2

2ðc1 þ c3A2Þ
; o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ c3A2

p
: ð50Þ

cnðot;mÞ is a Jacobi elliptic function [34] where m is the modulus of the function and ot its
argument. Using the relations (49) the solution of (46) in the complex form is

z ¼ Acnðot;mÞ expðiCÞ: ð51Þ

This solution is the exact closed form analytical solution for the initial conditions (47). The
solution is periodical and it is along a straight line with constant inclination angle y0 ¼ yð0Þ ¼ C:
For the numerical values c1 ¼ 2 and c3 ¼ 1 and initial conditions

rð0Þ ¼ A ¼ 0:1; ’rð0Þ ¼ 0; yð0Þ ¼ C ¼ p=3; ’yð0Þ ¼ 0; ð52Þ

it is

z ¼ 0:1cnð1:41774t; 0:00284Þ expðip=3Þ; ð53Þ

where

m ¼ 0:00284; o ¼ 1:41774: ð54Þ

3.2.2. Small gyroscopic function

For the small gyroscopic function the differential equation is

.z þ c1z þ c3zðz%zÞ ¼ 2egi’zð1þ pðz%zÞÞ; ð55Þ

where eg is the coefficient of the gyroscopic force and p is a small coefficient of non-linearity.
Transforming the small function on the right side into polar co-ordinates it is

Fr ¼ �2egr’yð1þ pr2Þ; Fy ¼ 2eg ’rð1þ pr2Þ: ð56Þ

Due to (41) it is evident that as ðFrÞ0 ¼ 0 it is K21 ¼ 0 and r1 ¼ 0: The functions K11 and y1 are

K11 ¼ �egA2 1þ
pA2

2

� �
þ egA2cn2ðot;mÞ 1þ

pA2

2
cn2ðot;mÞ

� �
; ð57Þ

y1 ¼ eg
Eðot;mÞ
om0 1þ

pA2

2m

� �
�

1

om0 1þ
pA2

2

� �
dnðot;mÞtnðot;mÞ �

pA2

2m
t

� �
; ð58Þ
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where m0 ¼ 1� m; Eðot;mÞ is the Legendre’s incomplete elliptic integral of the second kind, dn

and tn are Jacobi elliptic functions [34] with modulus m and frequency o (48). The solution in the
first approximation is

z ¼Acnðot;mÞ exp iC þ ieg
Eðot;mÞ
om0 1þ

pA2

2m

� ���

�
1

om0 1þ
pA2

2

� �
dnðot;mÞtnðot;mÞ �

pA2

2m
t

��
: ð59Þ

The solution is periodical and two different periods appear: o and O which correspond to Jacobi
elliptic function and the circular function, respectively. For oEO the effect of fluttering is evident.
For the numerical values c1 ¼ 2; c3 ¼ 1; eg ¼ 0:1 and p ¼ 1 and initial conditions (52) it is

z ¼ 0:1cnð1; 41774t; 0:00284Þ

� exp i
p
3
þ 0:19526Eð1:41774t; 0:00284Þ � 0:17857t

hn
� 0:071089dnð1; 41774t; 0:00284Þtnð1; 41774t; 0:00284Þ

io
: ð60Þ

Using the fact that the modulus m (54) has the value approximately zero and after expansion in
series the elliptic functions and elliptic integral E (see Ref. [35]) it is

zE0:1 cosð1:41774tÞ exp i
p
3
þ 0:09826t

� �h i
: ð61Þ

To prove the correctness of the approximate analytical solution (61) it is compared with the
exact numerical one. For the introduced numerical values the differential equation (55) is

.x þ 2x þ xðx2 þ y2Þ ¼ �2eg ’yð1þ pðx2 þ y2ÞÞ;

.y þ 2y þ yðx2 þ y2Þ ¼ 2eg ’xð1þ pðx2 þ y2ÞÞ; ð62Þ

where the initial conditions (52) are

xð0Þ ¼ 0:05; ’xð0Þ ¼ 0; yð0Þ ¼ 0:0866; ’yð0Þ ¼ 0: ð63Þ

Applying the Runge Kutta numerical procedure the exact solution of the system (62) is
obtained. In Fig. 1 the analytical (xA � t and yA � t) (61) and numerical solution (xN � t and
yN � t) are compared. It is evident that the analytical solution is on top of the numerical one. The
difference is negligible for a long time period and also for the small value to e ¼ 0:1:

3.2.3. Small damping function

The differential equation with small damping function is

.z þ c1z þ c3zðz%zÞ ¼ �eb’z; ð64Þ

where eb is the coefficient of the damping function. Transforming the small function on the right
side into polar co-ordinates it is

Fr ¼ �eb ’r; Fy ¼ �ebr’y: ð65Þ
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Due to (41) it is evident that as ðFyÞ0 ¼ 0 it is K11 ¼ 0 and y1 ¼ 0: The function K21 is

K21 ¼ �ebA2o
1� m

3m
ot þ

2m � 1

3m
Eðot;mÞ � 1

3
snðot;mÞcnðot;mÞdnðot;mÞ

� �
: ð66Þ

According to (42) the polar co-ordinate r1 is obtained from the Bernoulli equation

dr1
dt

þ f ðtÞr1 ¼ gðtÞ; ð67Þ

where

f ðtÞ ¼ �
ðc1 þ c3A

2cn2ðot;mÞÞcnðot;mÞ
osnðot;mÞdnðot;mÞ

;

gðtÞ ¼ ebA
ð1� mÞot þ ð2m � 1ÞEðot;mÞ

3msnðot;mÞdnðot;mÞ
� 1

3
cnðot;mÞ

� �
: ð68Þ
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Fig. 1. Time–history diagrams when the gyroscopic term exists: (a) x � t obtained analytical ðxA � tÞ and numerical

ðxN � tÞ; and (b) y � t obtained analytical ðyA � tÞ and numerical ðyN � tÞ:

L. Cveticanin / Journal of Sound and Vibration 278 (2004) 1181–11951192



For the parameter values eb ¼ 0:1; c1 ¼ 2 and c3 ¼ 1 and initial conditions (52) the modulus of
the Jacobi elliptic function (54) is approximately zero and the function (66) simplifies to

K21E�
ebA2o

2
ot �

sinð2otÞ
2

� �
: ð69Þ

The approximate solution of the Bernoulli differential equation (67) for (69) after some
transformation and simplification is

r1E�
eb
2o

At cosðotÞ: ð70Þ

For the aforementioned numerical values the approximate analytic solution of (64) is

zE0:1ð1� 0:035tÞcosð1:41774tÞ expðjp=3Þ: ð71Þ

The differential equation (64) is solved numerically. Applying the Runge–Kutta numerical
procedure the exact numerical solution is obtained. In Fig. 2 the approximate analytical solution
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(xA � t and yA � t) (71) is compared with numerical (xN � t and yN � t) one. It can be concluded
that the analytical solution is on top of the numerical solution. From the solution it can be seen
that the small damping function which is a linear function of the time derivative of the complex
function z decreases the amplitude r in time and tends to zero. The velocity of amplitude decrease
depends not only on the value of coefficient of damping eb but also on the value of the initial
amplitude A which affects the frequency of vibration o:

4. Conclusion

From the previous considerations it can be concluded:

1. The generalized Krylov–Bogolubov solution procedure for the differential equation (1) with
complex function is a very convenient one due to its simplicity. The approximate analytical
solution obtained in the first approximation is quite satisfactory for technical reasons for the
small value of the parameter e and short time interval. The disadvantage of the method is that
it is applicable if the generating closed form analytical solution is known.

2. The approximate analytic method based on the first integrals is especially appropriate for the
special initial conditions where the initial conditions which are the first time derivatives of the
polar co-ordinates are zero. Those initial conditions are named ‘initial conditions without
impact’. Using the straightforward series expansion the first and higher order approximate
analytical solution is obtained. Comparing the analytical approximate solution with the exact
numerical one it is concluded that the difference is negligible.

3. The mathematical model (1) considered in this paper represents the differential equation of
the vibration of a strong non-linear Jeffcott rotor (symmetrically supported shaft-disc system)
with small forces. The strong non-linearity is usually caused by the non-linear elastic force in
the shaft. The analytical solutions obtained for the system with strong cubic non-linearity,
small gyroscopic force and small damping force considered in this paper give very useful
information about the vibrations of the rotor and are of special interest for rotor dynamics.
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