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Abstract

The vibration of pipes is studied here using the Arnold–Warburton theory for thin shells and a simplified
theory valid in a lower frequency regime. The vibrational response is described numerically with the
spectral finite element method (SFEM), which uses the exact solutions of the equations of motion as basis
functions. For turbulence excitation, the set of basis functions was extended to include particular solutions,
which model a spatially distributed excitation. An efficient numerical solution to homogeneous random
excitation is presented and the results compare favourably with wind tunnel measurements.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The study of turbulent boundary layer (TBL)-induced vibration of structures is a problem that
involves the coupling of structural and fluid vibration. It is of great practical importance to a
number of fields, especially so whenever this flow-induced vibration leads to structural fatigue or
excessive noise. Many studies related to the problem in the literature consider only thin elastic
plates excited by turbulent flow, although some recent studies on pipe structures are available,
e.g., Refs. [1,2]. Both these studies use a normal mode approach.
The spectral finite element method (SFEM) is a direct finite element method for analyzing

vibrations in built-up structures [3–5]. The frequency-dependent formulation remedies some of the
restrictions of the standard FEM. Thus, it is inherently simple to handle frequency-dependent
material characteristics and boundary conditions. Most importantly, dissipative wave motion
within large elements can be studied with computational efficiency.
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The response to distributed stochastic excitation, such as TBL excitation, is most often
found by a double integral over the structure, where the integrand is given by the cross-spectral
density of the forcing and the structure’s Green function, see Ref. [6]. This may lead to
impossibly large numerical computations. In an alternative formulation, Newland and also
Lin [7] Fourier transforms the cross-spectral density and derives the response as a single integral
over the wavenumber domain. In this formulation, the integrand is given by the excitation’s
wavevector-frequency spectrum and the structure’s sensitivity function, given as the response
to a travelling pressure wave. This approach is applied here to the case of TBL excitation and
provides for an efficient numerical solution to this type of problems. This wavevector-frequency
approach [5,8] has two main advantages. First, it reduces the computational effort and second
it allows for a physical interpretation of the problem. The vibro-acoustic response can be
interpreted as the result of passing the excitation spectrum through a filter, characterized by
the sensitivity function, which only depends on the geometrical and mechanical properties of the
structure.
Langley presented a dynamic stiffness method formulation for the calculation of the sensitivity

function for a simply supported plate structure [9]. This formulation was investigated in detail in
Ref. [10] for beams and simply supported plate structures, demonstrating the feasibility of the
approach, but also deriving similar sensitivity functions for the SFEM. These functions were
then successfully used, when predicting the TBL-induced vibration of simply supported plates
in Ref. [5].
The measurements of the TBL-induced vibration of a thin-walled cylindrical shell, which are

used to assess the developed theory, were made in a wind tunnel specifically designed to minimize
acoustic contamination. Flow velocities of up to 120 m=s could be obtained in the test section.
The experimental facility and the measured characteristics of the wall pressure field have been
presented in detail in Ref. [11] and more briefly in Ref. [1].
The measured power spectral density, correlation lengths and convection velocity were included

in a semi-empirical model developed by Corcos [12]. This model was tentatively used in this study
for the numerical predictions. It is completely valid only at or near the convective wavenumber,
and therefore various other models have been developed in the wavevector-frequency domain to
increase the range of validity, see for example Refs. [13,14]. These models and similar models can
be included in the computational scheme presented here.
The outline of this paper is as follows. First general equations of motion for thin-walled pipes

are discussed. No fluid–structure interaction was considered here due to the relatively weak
coupling between structure and air, but it is recommended that for a pipe filled with a heavier fluid
at least a first order approximation be made to the equations of motion, e.g., as suggested in
reference [15, Eq. (28)]. From the Arnold–Warburton theory a simplified theory is derived, similar
to Ref. [15], which is valid for long axial wavelengths and in-extensional circumferential motion.
Ref. [15] shows that wavenumbers in fluid-filled pipes can be predicted with this simplified theory.
Here it is also shown how the forced response can be calculated. In Section 3, the response of a
pipe to a travelling pressure wave is calculated, i.e., the sensitivity function. Given this sensitivity
function, Section 4 derives a method to predict the response of the structure to TBL excitation. In
Section 5, the results from the simplified cylinder theory are first compared to those from the full
Arnold–Warburton theory and then used to predict the structural response to TBL flow. The
results compare favourably with the measurements.
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2. General and simplified equations of motion for thin-walled cylindrical pipes

Using variational principles, both general and simplified equations of motion for thin-walled
pipes are derived in this section. To predict random vibration a formulation in the frequency
domain is used. The work done by a travelling pressure wave is also considered, as the response to
such a wave will be of interest in later sections.

2.1. Hamilton’s variational principle

Consider the thin-walled cylinder in Fig. 1, where R is the radius, lx is half the length,
and h is the wall-thickness. u; v and w are the displacements on the cross-sectional mid-plane
in the x; f and z directions, respectively. To derive the equations of motion of the cylinder
Hamilton’s principle will be used. It states that the variation of the time integral between
given time limits of the difference between the kinetic energy ekin and potential energy epot must
vanish, i.e.,

d
Z t2

t1

ðepot � ekinÞ dt ¼ 0: ð1Þ

The first step is to find expressions for these different energies.
The total strain energy of a circular cylindrical shell is given by Leissa [16, Eq. (2.10)]

epot ¼
Eh

2ð1� n2Þ

Z 2p

0

Z lx=R

�lx=R

ðID–Mðu; v;wÞ þ bIMODðu; v;wÞÞ ds dj; ð2Þ

where

b ¼ h2=12R2 and s ¼ x=R: ð3Þ

E denotes Young’s modulus and n is the Poisson ratio. ID–M is the integrand of the strain energy
of the shell according to the Donnell–Mushtari theory and is given in Ref. [16, Eq. (2.11)].
IMOD is a ‘‘modifying integrand’’ which differs depending on shell theory. In this study the
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Arnold–Warburton (also Goldenveizer–Novozhilov and modified Love–Timoshenko) theory was
chosen, in which case IMOD is given in Ref. [16, Eq. (2.12a)].
The kinetic energy of the cylinder is [16, Eq. (2.14)]

ekin ¼ 1
2
rhR2

Z 2p

0

Z þlx=R

�lx=R

@u

@t

� �2
þ

@v

@t

� �2
þ

@w

@t

� �2 !
ds dj; ð4Þ

where r is density of the shell.
With the calculus of variations, the equations of motion for the cylindrical pipe can be found,

see Ref. [16, Eqs. (2.3)–(2.9)].

2.2. Variational principle for harmonic vibration of non-conservative systems

For random response it is convenient to study motion in the frequency domain. For free
harmonic motion, the displacement functions are of the form eiot: These functions are
substituted into Eq. (1). One then lets t1;2-7N and apply Parseval’s identity. The governing
equations are linear and thus the different frequency components in the resulting integral
do not couple with each other. Upon this analysis follows a bi-linear functional of the
displacements at a given frequency and their complex conjugates, which is stationary for the true
motion.
With dissipative losses though, Hamilton’s principle is not valid. However, these losses may be

attributed by employing a variational principle similar to that of Hamilton, see Refs. [3,17]. Thus,
the bi-linear forms in the displacements and its complex conjugates are replaced with bi-linear
forms in the displacements and in the complex conjugates of the displacements in an adjoint
negatively damped system. This is conceptually more complex, but the approach requires no extra
calculation effort. The function considered is thus given by

L ¼
Z 2p

0

Z þlx=R

�lx=R

Eh

ð1� n2Þ
ðID–MðU ;V ;W ;Ua;Va;W aÞ

�

þ bIMODðU ;V ;W ;Ua;Va;W aÞÞ � rhR2o2ðUaU þ VaV þ W aW Þ
�
ds dj; ð5Þ

where superscript a denotes the complex conjugate in an adjoint negatively damped system. The
terms ID–M and IMOD are similar to the ones by Leissa [16, Eqs. (2.11) and (2.12a)], except that
these terms are functions of the displacements and the displacement functions in an adjoint
system. They are listed in Appendix A. Integral (5) will be referred to as the Lagrangian.
The virtual work of a distributed pressure acting on the pipe is given by, cf. Refs. [3,10],

Lp ¼
Z 2p

0

Z lx

�lx

ðp�W þ pW aÞ dx R dj; ð6Þ

where � denotes complex conjugate.
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2.3. Arnold–Warburton theory

The motion of the cylinder is now investigated using a Fourier decomposition of the
circumferential dependence of the displacements, similar to Ref. [16, Eq. (2.20)],

Uðx;jÞ ¼ UnðxÞ cosðnjÞ;

V ðx;jÞ ¼ VnðxÞ sinðnjÞ;

W ðx;jÞ ¼ WnðxÞ cosðnjÞ; ð7Þ

where n is an integer greater or equal to zero for the closed shell. The mode n ¼ 0 will not be
investigated further in this paper, because below the ring frequency, ð fring ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=rð1� n2Þ

p
=2pRÞ;

this mode does not contribute much to the vibration. Displacements (7) are inserted into
Lagrangian (5) and the integral over f is evaluated. Appendix A.1 lists the resulting Lagrangian
Ln with its numerous terms for all circumferential modes n:

2.4. Simplified theory

At this stage it was also of interest to derive a simplified Lagrangian to ease the understanding
of the underlying parameters, when modelling pipe vibrations below the ring frequency. Here the
same assumptions as in Ref. [15] are made:
The wavelength l is large compared to the cylinder radius, i.e.,

l > 2pR: ð8Þ

The circumferential in-plane motion is in-extensional and thus the in-plane strain of the
cylinder for mode n is given by

enj ¼ ðnVnðxÞ þ WnðxÞÞ=R ¼ 0; nX1: ð9Þ

Given expression (9), the number of terms in the Lagrangian Ln are greatly reduced. The strain
energy caused by the flexural motion of the shell wall now contains terms that depend only on the
radial motion. Given assumption (8), the potential energy from axial bending is less than those
from twist and circumferential bending and may be neglected for low frequencies. Furthermore,
numerical experiments [15] revealed, that changing the axial stiffness from EA=ð1� n2Þ to EA;
made the predicted wavenumbers agree better with the more exact Arnold–Warburton theory.
The terms in the resulting simplified Lagrangian are listed in Appendix A.2.
Now, consider a distributed excitation in the form of a travelling pressure wave in the x and f

directions

pðx;j; tÞ ¼ p0e
�iamx cosðnjÞeiot: ð10Þ

This pressure excites only mode n and the virtual work (6) isZ lx

�lx

ðPne
�iamxÞ�Wn þ ðPne

�iamxÞW a
n dx; ð11Þ

where

Pn ¼
Z 2p

0

p0 cos
2ðnjÞR dj ¼ p0pR: ð12Þ
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This virtual work results from external forces and is thus subtracted from Lagrangian (5).
Collecting terms in Appendix A.2 and applying the modifications discussed above, the following
simplified Lagrangian is derived

Ln ¼
Z lx

�lx

EIn
dya

n

dx

dyn

dx
þ GAKn ya

n þ
dW a

n

dx

� �
yn þ

dWn

dx

� ��

þGAKnNn

dW a
n

dx

dWn

dx
þ ðKw � o2MeÞW a

n Wn � ro2Iny
a
nyn

� ðPne
�iamxÞ�Wn � ðPne

�iamxÞW a
n

�
dx; ð13Þ

where the damping is described with a complex Young’s modulus Eð1þ iZÞ and

yn ¼ n2Un=R: ð14Þ

The coefficients in Eq. (13) are

Me ¼
rA

2
ð1þ 1=n2Þ; In ¼

phR3

n4
; Kn ¼

1

2n2
; A ¼ 2phR;

Kw ¼
EAðn2 � 1Þ2

ð1� n2Þ2R2
b; Nn ¼ 4n2ðn � 1=nÞ2b; G ¼

E

2ð1þ nÞ
: ð15Þ

With the calculus of variation, the equations of motion corresponding to the simplified
Lagrangian are found to be

EIn
d2yn

dx2
� GAKn yn þ

dWn

dx

� �
þ ro2Inyn ¼ 0; ð16Þ

GAKn
d

dx
yn þ

dWn

dx

� �
þ Nn

d2Wn

dx2

� �
� ðKw � o2MeÞWn ¼ Pne

�iamx: ð17Þ

Eqs. (13), (16) and (17) will be used in the following section for the spectral FE formulation.

3. Spectral FE formulation for distributed sources

In this section the sensitivity function is derived. It is the structural response of the pipe to a
travelling pressure wave. The procedure is only shown here for the simplified cylinder theory,
derived previously, but the same method applies also to the more general Arnold–Warburton
theory. First the exact displacement functions are found to the governing equations of motion.
These are expressed as functions of the nodal displacements and substituted into the Lagrangian.
By requiring that the first variation of this Lagrangian with respect to the nodal displacements is
zero, a system of equations for the nodal displacements is derived. Given these displacements, the
response of the pipe is described.
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3.1. Exact displacement functions

With no pressure excitation, the system of Eqs. (16) and (17) is homogeneous and has constant
coefficients. Its solutions are then of the form eknix: The constants kni are here denoted
wavenumbers and may be real, imaginary or complex, describing decaying nearfield solutions,
propagating or decaying oscillating waves, respectively. The solutions are given by a linear
eigenvalue problem, detailed in Appendix B. To gain numerical stability for long elements, these
solutions are scaled as in Ref. [4],

WnðxÞ

ynðxÞ

 !
h

¼ ðW diagðeKx�KplxÞÞCn; ð18Þ

where

K ¼ ðkn1 kn2 kn3 kn4Þ; Cn ¼ ðCn1 Cn2 Cn3 Cn4Þ
T;

C ¼
BW

By

 !
; ðKpÞi ¼

�Ki; ReðKiÞp0;
Ki; else:

(
ð19Þ

The vector K contains the four wavenumbers kni; whereas Cn contains the wave amplitudes. The
function ‘diag’ produces a diagonal matrix from a vector, similar to MATLAB. BW and By are
row vectors given by the eigenvectors corresponding to the eigenvalues kni; see the appendix.
Eq. (18) gives the exact solutions to the homogeneous equations of motion (16) and (17).
The particular solution to Eqs. (16) and (17) is of the form

WnðxÞ

ynðxÞ

 !
p

¼ Cnpe
�iamx; ð20Þ

where Cnp ¼ ðcnW cnyÞ
T: Inserting this solution into the equations of motion produces

EInð�a2mÞcny � GAKnðcny � iamcnW Þ þ ro2Incny ¼ 0; ð21Þ

GAKnð�iamcny � a2mcnW � Nna2mcnW Þ � ðKw � o2MeÞcnW ¼ Pn: ð22Þ

This system is easily solved for the two unknown parameters cnW and cny; and thus the
particular solution is found.
The exact displacement function is given by both homogenous (18) and the particular solution

(20) as

VnðxÞ ¼ ðW diagðeKx�KplxÞÞCn þ Cnpe
�iamx; ð23Þ

where

VnðxÞ ¼ ðWnðxÞ ynðxÞÞ
T: ð24Þ

The unknown wave amplitudes ðCnÞi can be related to the nodal displacements Wn ¼
ðw1 y1 w2 y2Þ

T at the ends of the cylinder with

Vnð�lxÞ

VnðþlxÞ

 !
¼Wn: ð25Þ
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This nodal vectorWn now contains the degrees of freedom in the element formulation. Solving
Eq. (25) for Cn gives that

Cn ¼ AðWn �WncÞ; ð26Þ

where

A ¼
W diagðeKð�lxÞ�KplxÞ

W diagðeKðþlxÞ�KplxÞ

 !�1

; Wnc ¼
Cnpe

�iamð�lxÞ

Cnpe
�iamðþlxÞ

 !
: ð27Þ

Finally, this solution for Cn is inserted into Eq. (23), which gives that

VnðxÞ ¼ ðW diagðeKx�KplxÞÞAðWn �WncÞ þ Cnpe
�iamx;

¼ðW diagðeKx�KplxÞÞAWn þ B diagðeaKx�aKplxÞWnp; ð28Þ

where

Wnp ¼ ð�ðAWncÞ
T 1ÞT; B ¼ ðW CnpÞ;

aK ¼ ðK � iamÞ; aKp ¼ ðKp 0Þ: ð29Þ

Eq. (28) gives the exact solutions to the differential equations (16) and (17), for all travelling
pressure waves described by Eq. (10). These exact solutions are taken as basis functions in a
frequency-dependent spectral finite element formulation for the cylindrical pipe, which is
described in what follows.

3.2. Spectral FE formulation

The displacement functions are expressed by Eq. (28). Similarly, the displacement functions for
the adjoint system are given as

Va
nðxÞ ¼ ðW diagðeKx�KplxÞÞAWa

n þ B diagðea
a
K

x�aKplxÞWa
np; ð30Þ

where Wa
np and aa

K are found in the same way as described in Section 3.1. Lagrangian (13) is
evaluated by substituting the components of Vn and V

a
n into it. The integrals and derivatives,

involving exponential functions, are then evaluated exactly, without any need for numerical
quadrature. By requiring that the first variation of this Lagrangian with respect to the nodal
displacement Wa

n is zero, a system of equations for the nodal displacement Wn is found,

DnWn ¼ Fn; ð31Þ

where the dynamic stiffness matrix Dn and the nodal force vector Fn are detailed in Appendix C
together with a derivation of the quantities. The dynamic stiffness matrix does not depend on the
excitation and for a general source, described by a superposition of pressure wave excitations, it is
therefore only the nodal force vector that needs to be recalculated. Eq. (31) describes one spectral
finite element. It has compact support and is formulated in terms of nodal displacements at the
ends. It can therefore be assembled using standard methods, e.g., Ref. [18], into a global dynamic
stiffness matrix.
For a pipe structure with clamped boundary conditions there is no nodal displacement at the

ends. By assembling two elements, however, the nodal displacement at the joint of the elements
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can be varied. Similar to the FEM, the phase of the pressure in a global co-ordinate system now
has to be transformed to the local co-ordinate system of the two elements.

3.3. Sensitivity function

Solving Eq. (31) gives the nodal displacementsWn of the structure, when excited by a pressure
wave p0e

�iamx cosðnjÞ: GivenWn; the modal response of the structure WnðxÞ is given by Eq. (28).
For future reference, the modal response to a pressure wave with p0 ¼ 1 N=m2 and spatial
dependence am will here be denoted by the modal sensitivity function Gnðx; am;oÞ: The sensitivity
function, in turn, is the response to the same pressure at any position r ¼ ðx;jÞ on the cylinder
and is related to the modal sensitivity function by

Gðr; am;oÞ ¼ Gnðx; am;oÞ cosðnjÞ: ð32Þ

This function may, similar to Newland [6, Chapter 16], also be expressed as an integral

Gðr; am;oÞ ¼
Z

S

Hðr; s;oÞe�iamxs cosðnjsÞ ds; ð33Þ

where s ¼ ðxs;jsÞ: S is the surface of the structure and Hðr; s;oÞ represents the response at
location r to a harmonic point load of unit magnitude at location s: From reasons of symmetry the
modal response WnðxÞ of the structure to the pressure wave p0e

�iamx sinðnjÞ will be the same,
except of course that the radial displacement now has a sinusoidal j dependence. Thus the
sensitivity function is in this case given by

Gðr; am;oÞ ¼ Gnðx; am;oÞ sinðnjÞ: ð34Þ

4. Pipe response to TBL excitation

4.1. Response to distributed random excitation

The response to distributed random excitation is given by Newland [6] as

SWW ðr1; r2Þ ¼
Z

S

Z
S

H�ðr1; s1;oÞHðr2; s2;oÞSPPðs1; s2;oÞ ds1 ds2; ð35Þ

where the cross spectral densities of the response and the pressure are defined by

SWW ðr1; r2;oÞ ¼ /W�ðr1;oÞ;W ðr2;oÞS;

SPPðs1; s2;oÞ ¼ /P�ðs1;oÞ;Pðs2;oÞS: ð36Þ

/S denotes statistical expectation. If the distributed excitation Pðs;oÞ is assumed to be a sample
function from a process, which is stationary and homogenous in space, SPPðs1; s2;oÞ is a function
of only the frequency and the spatial separations,

xx ¼ xs1 � xs2 and xj ¼ js1 � js2: ð37Þ

ARTICLE IN PRESS

F. Birgersson et al. / Journal of Sound and Vibration 278 (2004) 749–772 757



This assumption is valid for most large structures excited by a stationary turbulent flow. Far
downstream, e.g., 80R; from pipe singularities such as the entrance or a bend, the boundary layer
fills the entire pipe and the flow can be assumed stationary and homogeneous in space, see Ref.
[19]. From now on SPP is therefore a function of the spatial separations only.

4.2. Cross-spectral density of the pressure

The pressure cross spectrum is described by Corcos’ model [12]. From a curve fit for the
narrowband spatial correlation between wall pressures, Corcos obtained

SPPðs1; s2;oÞ ¼ FppðoÞe�cjRojxjj=Uce�cxojxxj=Uceioxx=Uc ; ð38Þ

where Fpp is the wall pressure power spectral density. cx and cj are constants describing the spatial
coherence of the wall pressure field, in the longitudinal and circumferential directions,
respectively. Uc is the convection velocity. In this work experimentally determined values for
Fpp; cx; cj and Uc are used.
The cross-spectral density of the pressure can be expressed as an exponential Fourier series in

the x direction and with a trigonometric Fourier series in the f direction. The period of the
exponential Fourier series has to be taken as at least twice the length of the pipe structure, because
integral (35) of xsi is over the length of the structure and thus xx needs to be evaluated in the
interval �2lxy2lx: Outside this interval the cross-spectral density can be made periodic as any
existing pressure outside the integration limits will not affect the result. Upon this basis the cross-
spectral density is given by

SPPðs1; s2;oÞ ¼ FppðoÞ
XN

m¼�N

SPPxðamÞeiamxx

XN
n¼1

SPPjðnÞ cosðnxjÞ; ð39Þ

where

am ¼ 2pm=4lx: ð40Þ

A series expansion with sinðnxjÞ does not give any contribution, as the cross-spectral
density is symmetric to xj ¼ 0: Furthermore the mode n ¼ 0 is not included here, as it does not
contribute much to the response. The quantities SPPxðamÞ and SPPjðnÞ are for Corcos’ model (38)
given by

SPPxðamÞ ¼
1

4lx

Z 2lx

�2lx

e�cxojxxj=Uceioxx=Uce�iamxx dxx ¼
1

4lx

1� e�d12lx

d1
þ
ed22lx � 1

d2

� �
;

d1 ¼ cxo=Uc þ io=Uc � iam; d2 ¼ �cxo=Uc þ io=Uc � iam; ð41Þ

SPPjðnÞ ¼
2

2p

Z p

�p
e�cjRojxjj=Uc cosðnxjÞ dxj ¼

1

p
ed3p � 1

d3
þ
ed4p � 1

d4

� �
;

d3 ¼ �Rcjo=Uc þ in; d4 ¼ �Rcjo=Uc � in: ð42Þ
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4.3. Cross-spectral density of the response

The series in Eq. (39) is inserted into integral (35) and the order of summation and integration
interchanged

SWW ðr1; r2;oÞ

¼ FppðoÞ
X

m

X
n

SPPxðamÞSPPjðnÞ

�
Z þp

�p

Z þp

�p

Z þlx

�lx

Z þlx

�lx

ðHðr1; s1;oÞe�iamxs1Þ�ðHðr2; s2;oÞe�iamxs2Þ

� ðcosðnjs1Þ cosðnjs2Þ þ sinðnjs1Þ sinðnjs2ÞÞ R djs1 R djs2 dxs1 dxs2

¼ FppðoÞ
X

m

X
n

SPPxðamÞSPPjðnÞ

� fðGnðx1; am;oÞ cosðnj1ÞÞ
�Gnðx2; am;oÞ cosðnj2Þ

þ ðGnðx1; am;oÞ sinðnj1ÞÞ
�Gnðx2; am;oÞ sinðnj2Þg: ð43Þ

The definitions of the sensitivity functions in Eqs. (32)–(34) were used. These functions
describe the response to travelling pressure waves and were previously calculated with the spectral
FEM in Section 3. Considering only the auto-spectral density of the response at location r gives
specifically

SWW ðr; r;oÞ ¼ FppðoÞ
X

m

X
n

SPPxðamÞSPPjðnÞjGnðx; am;oÞj2: ð44Þ

Hence the auto-spectral density has no j dependence, which is expected from reasons of
symmetry and the assumption of a homogeneous TBL.

5. Vibrational response of pipe structure

In this section, the theory from Sections 2 and 3 is validated by comparing calculated dispersion
characteristics and impulse response functions with both simplified cylinder theory and Arnold–
Warburton theory. The developed method in Section 4, in combination with the simplified
cylinder theory, is then used to predict the TBL-induced vibration velocity and a comparison with
measurements is made.

5.1. Pipe structure

A thin-walled cylindrical pipe was excited by a fully developed internal turbulent flow. The pipe
material was steel with density r ¼ 7850 kg=m3; Young’s modulus E ¼ 215 GPa and the Poisson
ratio n ¼ 0:32: The damping was modeled with a complex Young’s modulus Eð1þ iZÞ; where the
frequency-independent loss factor Z ¼ 5� 10�4 was found from measurements. The geometrical
data were as follows: half the length lx ¼ 0:23 m; radius R ¼ 0:0625 m and wall-thickness h ¼
0:5 mm: It was presumed that the pipe motion was blocked at the ends, as the test section was
fitted to thick-walled cylinders. The investigated frequency range is well below the ring frequency,

ARTICLE IN PRESS

F. Birgersson et al. / Journal of Sound and Vibration 278 (2004) 749–772 759



which for this pipe is at approximately 13 kHz: Fig. 2 shows a part of the pipe rig facility and the
spectral finite element model of the test section. One spectral finite element fully describes the
forced motion to distributed excitation of a free or simply supported pipe. With clamped
conditions one more element has to be used as otherwise all nodal degrees of freedom are
restrained. The test section was mounted in the wind tunnel of the Acoustics Center of !Ecole
Centrale de Lyon, 5:5 m downstream from the pipe entrance to achieve a homogeneous and
stationary flow in the test section. Acoustic mufflers were located both upstream and downstream
of a centrifugal blower, that propelled the air, in order to reduce the background noise.
Furthermore, the various pipe sections were accurately matched to avoid disturbances due to any
discontinuities. The measurements confirmed a difference of 30 dB between the vibration level of
the test section and the rest of the pipe.

5.2. Wavenumbers

In Fig. 3 the calculated wavenumbers for propagating waves are compared for the simplified
theory and the more accurate Arnold–Warburton theory. The wavenumbers for the simplified
theory were calculated in Appendix B. For the Arnold–Warburton theory, the same approach as
described by Leissa [13, Chapter 2.2] was used. From the figure it is seen that the results are in
good agreement for frequencies up to 3000 Hz; with relative differences below 10%. At
frequencies somewhere above 6000 Hz; i.e., half the ring frequency, the use of the simplified
cylinder theory becomes questionable for the pipe investigated here.

5.3. Resonance frequencies

The pipe resonance frequencies are found from the maxima of detðD�1Þ: Both the Arnold–
Warburton theory and the simplified theory agree well with experimental results. The relative
difference between the predicted and measured frequencies are less than 3%, excluding f12; which
differs by 6%, see Table 1.
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Fig. 2. Pipe rig facility and spectral finite element model of test section with three nodes.
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5.4. Response to point force excitation

To develop an understanding for the convergence of the response to distributed excitation, a
point force was decomposed into a series of cosine waves in the j direction and an exponential
Fourier series in the x direction:

F0dðx � xsÞdðj� jsÞ

E F0
1

2lx

XM
m¼�M

ei2mpx=2lxe�i2mpxs=2lx
1

2p
1þ 2

XN

n¼1

cosðnðj� jsÞÞ

 !
; ð45Þ

for large values of M and N: The constant term can be ignored in the expression within
parentheses, since it is a constant pressure term and will only excite the breathing mode n ¼ 0;
which has a small mobility well below the ring frequency. To each of these terms the derived
spectral FEM in Section 3 can predict the response and the total response is then given by
superposition.
A point force was applied in the middle of the clamped pipe and the forced radial displacement

at a point located 20 cm from the pipe end was calculated with the spectral FEM. Both the
simplified cylinder theory and the Arnold–Warburton theory was used. The simplified theory
requires two boundary conditions at each end. Thus for a clamped pipe the displacements Un and
Wn are set to zero. The Arnold–Warburton theory has four boundary conditions and the added
conditions at the edges, Vn ¼ 0 and dWn=dx ¼ 0; can be satisfied. The calculated results are
compared in Fig. 4. The difference between the methods increases with higher frequencies, which
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Fig. 3. Wavenumber times radius for various circumferential modes n: Solid, simplified cylinder theory; dotted,
Arnold–Warburton theory.
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is only expected from the simplifications made in Section 2. In the figure is also shown the forced
response to an approximate point force, with M;N ¼ 5 in Eq. (45), calculated with the simplified
theory. By adding more terms this solution could be seen to converge towards the expected
response from a point force. This analysis shows that the developed scheme for distributed
excitation is working.

5.5. Turbulence excitation

The pipe was excited by the wall pressure fluctuations induced by an internal turbulent flow and
in order to estimate the various parameters in Corcos’ model (38). The thin test section was
replaced by a rigid section equipped with nine flush-mounted Br .uel and Kjær 4135 microphones
with an external diameter of 6:35 mm: By comparing the measured r.m.s. value of the
displacement of the test section, which was approximately 0:26 mm; with the viscous sub-layer
thickness of approximately 12:5 mm; it was a reasonable assumption that the vibrations of the test
section did not modify the turbulent wall pressure field. Two measurement series were then made
to describe the cross spectrum in the longitudinal and circumferential direction respectively. First,
the microphones were located along a line in the longitudinal direction with microphone spacings
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Table 1

Resonance frequencies of in vacuo pipe (Hz)

fmn m

1 2 3 4 5 6

n ¼ 1 2091

(2094)

—

n ¼ 2 976 2217

(982) (2247)

919 —

n ¼ 3 574 1295 2230

(577) (1314) (2273)

565 1301 —

n ¼ 4 571 937 1528 2250

(572) (948) (1560) (2306)

571 945 1560 —

n ¼ 5 799 952 1282 1757 2327

(799) (960) (1305) (1801) (2397)

795 960 1311 1815 —

n ¼ 6 1139 1207 1371 1651 2030 2485

(1138) (1212) (1389) (1687) (2092) (2574)

1131 1206 1387 1700 — —

n ¼ 7 1557 1593 1679 1836 2071 2377

(1554) (1596) (1694) (1868) (2125) (2459)

1544 1589 1689 1874 — —

Italics: predictions with spectral FEM, simplified theory; ðyÞ: predictions with spectral FEM, Arnold–Warburton
theory; bold: measurements.
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varying from 8 to 144 mm:Next, the microphones were located on the circumference with angular
separations varying from 8 to 120
: Fig. 5 shows the circumferential configuration.
From rough frequency-independent estimates of the measurement results, the various

parameters were found to be [1]: cx ¼ 0:15; cj ¼ 0:75 and Uc ¼ 0:75U0; with U0 the centre line
velocity of 100 m=s: An alternative estimate for cx and cj was given in Ref. [11] with the values of
0.09 and 0.6, respectively. The difference reflects the difficulties in adapting the approximate
Corcos model to measurement results. Both sets of parameters are used here to show the
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Fig. 5. Circumferential positioning of microphones to measure wall pressure cross spectrum.

Fig. 4. Transfer mobility. Solid, simplified cylinder theory; dotted, Arnold–Warburton theory; dashed, simplified

cylinder theory with approximate point force M;N ¼ 5:
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sensitivity of the vibration predictions to these parameters. The pressure auto spectrum, FppðoÞ;
was taken directly from measurement results, see Fig. 6. In the low-frequency range, below
200 Hz; some peaks occur in Fig. 6. These peaks were identified as longitudinal acoustic modes
that occur in the pipe between the ends and can be predicted as in Ref. [20]. In the high-frequency
range the decrease of the pressure auto-spectrum is theoretically accentuated by the spatial
averaging over the face of the microphone and Corcos [12] therefore proposed a frequency
correction. However, given a centre line velocity of 100 m=s and a microphone diameter of
6:35 mm; this correction is negligible in the frequency range of interest here, i.e., 0–3000 Hz:

5.6. Vibrational response to turbulence excitation

When predicting the response to turbulence excitation, all the theory derived so far will
prove useful. First, the sensitivity function is found with the SFEM in combination with the
simplified cylinder theory, and then the response is predicted with Eq. (44). In this equation
ten circumferential modes were considered, i.e., n ¼ 1;y; 10 and the response converged for
mX10:
Fig. 7 compares the predicted auto-spectrum of the vibration velocity at a point, located 20 cm

upstream from the pipe end, to measurement results. The prediction was based on the parameters
for Corcos’ model given in reference [1], i.e., ðcx ¼ 0:15; cj ¼ 0:75Þ: The frequency resolution was
0:05 Hz at 500 Hz and then logarithmically spaced. This was sufficient to capture the amplitudes
of all resonances. The figure shows the response integrated to the 1 Hz bandwidth from the
measurements. The acceleration measurements were made with both very light Br .uel and Kjær
4374 ð0:65 gÞ piezoelectric accelerometers and a laser vibrometer POLYTEC (OFV-302). As the
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Fig. 6. Wall pressure power spectral density for a centre line velocity of 100 m=s:
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surface mass of the test section was as low as 3:9 kg=m2; the accelerometers introduced a non-
negligible added mass effect and therefore only the results from the non-contact laser
measurements were used in this paper.
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Fig. 7. Vibrational velocity of turbulence excited pipe, dB rel 1 m2=s2: Solid line, measured; dashed line, as calculated
with Eq. (44).
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Fig. 8. As in Fig. 7, but in 1/3-octave bands. ð&Þ; measured; ð Þ; calculated with parameters from Ref. [1]; ð\Þ;
calculated with parameters from Ref. [11].
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The first resonance was at 565 Hz; see Table 1. Below this frequency the velocity amplitude
should decrease with decreasing frequency, since the pipe motion is blocked at the ends.
The measurements, however, showed constant amplitudes at low frequencies. Most likely,
this was either due to measurement noise or to global vibrations of the entire measurement
set up.
Fig. 8 compares measured and calculated results in 1/3-octave bands. The first pipe resonance

falls within the 630 Hz band and from this band and upwards in frequency the results show good
agreement. The spectral FE model overpredicted the power spectral density of the velocity with
about 3 dB if the parameters for Corcos model in Ref. [1] were used. If instead the parameters
were taken from Ref. [11], i.e., as ðcx ¼ 0:09; cf ¼ 0:6Þ; the difference between measured and
predicted results in 1/3-octave bands was reduced to less than 2 dB from the 800 Hz band and up,
but the difference in the lower bands increased.
Keeping in mind that the damping loss factor is not likely to be constant with frequency and

that the use of Corcos’ model is known to overpredict the response in the low wavenumber
domain [21], these results are encouraging. The use of the simplified cylinder theory and Eq. (44)
seem to be applicable and result in moderate calculation times. Six thousand logarithmically
spaced frequency points required a computational time of approximately 5 min on a 1 GHz
personal computer. Hence, the method seems to be at least 20 times faster than a previous
numerical method, based on a boundary integral formulation and a matched asymptotic
expansion [1]. It also allows the prediction of the power spectral density of the velocity at any
point on the pipe with no extra calculation effort.

6. Conclusions

The aim of this study was to develop an efficient numerical method for the prediction of
turbulence-induced vibration in pipe structures. This is achieved by first deriving the sensitivity
function, i.e., the structural response to a travelling pressure wave, using a spectral FEM for
distributed excitation. The cross-spectral density of the TBL wall pressure is then expressed as a
finite Fourier series and the structural response to each term in this series is calculated. The total
response to random excitation is given by synthesis of these responses.
The calculations are based on a simplified cylinder theory [15]. A comparison between this and

the Arnold–Warburton theory proved the usefulness of the simplified theory in a lower frequency
regime. The procedure presented in Sections 2 and 3 may also be applied to all the other thin
circular cylindrical shell theories given in Ref. [16, Chapter 2].
The turbulence induced vibration of a pipe was calculated and the results compare favourably

with measurement results. The presented approach makes a direct comparison between the spatial
characteristics of the random excitation and of the structural response possible [5]. Many different
descriptors of the turbulence excitation can be included in the formulation as long as they have a
Fourier series expansion in the wavenumber domain. A Chase model [14] has been handled by the
authors by employing a fast Fourier transform to evaluate the Fourier series expansion. If the
correlation lengths and convection velocity vary as functions of frequency, this can easily be
accounted for in Eqs. (41) and (42).
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Appendix A. Calculation of the Lagrangian

Lagrangian (5) is to be evaluated.

L ¼
1

R

Z 2p

0

Z þlx

�lx

Eh

ð1� n2Þ
ðID–MðU ;V ;W ;Ua;Va;W aÞ þ bIMODðU ;V ;W ;Ua;Va;W aÞÞ

�

� rhR2o2ðUaU þ VaV þ W aW Þ
�
dx dj: ðA:1Þ

Since the displacement functions are functions of x; the variable substitution x ¼ Rs was made.
ID–M and IMOD are given by Leissa [16, Eqs. (2.11) and (2.12a)]

ID–M ¼
@Ua

@s
þ

@Va

@j
þ W a

� �
@U

@s
þ

@V

@j
þ W

� �

� ð1� nÞ
@Ua

@s

@V

@j
þ W

� �
þ

@U

@s

@Va

@j
þ W a

� �
�
1

2

@Va

@s
þ

@Ua

@j

� �
@V

@s
þ

@U

@j

� �� �

þ b ðr2W aÞðr2W Þ � ð1� nÞ
@2W a

@s2
@2W

@j2
þ

@2W

@s2
@2W a

@j2
� 2

@2W a

@s@j

� �
@2W

@s@j

� �� �� �
; ðA:2Þ

IMOD ¼ �
@Va

@j
r2W �

@V

@j
r2W a þ

@Va

@j

� �
@V

@j

� �

� ð1� nÞ �
@Va

@j
@2W

@s2
�
@V

@j
@2W a

@s2
þ 2

@Va

@s

@2W

@s@j
þ 2

@V

@s

@2W a

@s@j
� 2

@Va

@s

� �
@V

@s

� �� �
: ðA:3Þ

A.1. Arnold–Warburton theory

The modal displacement functions are defined by Eq. (7). The displacement functions for the
adjoint system are given on a similar form:

Uaðx;jÞ ¼ Ua
n ðxÞ cosðnjÞ;

Vaðx;jÞ ¼ Va
n ðxÞ sinðnjÞ;

W aðx;jÞ ¼ W a
n ðxÞ cosðnjÞ: ðA:4Þ
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Substituting the expressions for the displacements into the Lagrangian and integrating over j
produces the modal Lagrangian Ln;

Ln ¼
p
R

Z þlx

�lx

Eh

ð1� n2Þ
ðeaÞTðIn þ bInbÞe

�

� rhR2o2ðUa
n Un þ Va

n Vn þ W a
n WnÞ

�
dx; ðA:5Þ

where

e ¼ ðUn Vn Wn dUn=dx dVn=dx dWn=dx d2Wn=dx2ÞT; ðA:6Þ

In and Inb are ð7� 7Þ symmetric matrices with non-zero entries given by

ðInÞ1;1 ¼ ð1� nÞn2=2; ðInÞ2;2 ¼ n2; ðInÞ3;3 ¼ 1; ðInÞ4;4 ¼ R2;

ðInÞ5;5 ¼ ð1� nÞR2=2; ðInÞ1;5 ¼ �ð1� nÞnR=2;

ðInÞ2;3 ¼ n; ðInÞ2;4 ¼ nnR; ðInÞ3;4 ¼ nR;

ðInbÞ2;2 ¼ n2; ðInbÞ3;3 ¼ n4; ðInbÞ5;5 ¼ ð1� nÞ2R2;

ðInbÞ6;6 ¼ ð1� nÞ2n2R2; ðInbÞ7;7 ¼ R4; ðInbÞ2;3 ¼ n3;

ðInbÞ3;7 ¼ �n2nR2; ðInbÞ5;6 ¼ ð1� nÞ2nR2; ðA:7Þ

and In ¼ ITn ; Inb ¼ ITnb:

A.2. Simplified theory

The modal displacement functions are defined by Eqs. (7) and (9). The displacement functions
for the adjoint system are similarly:

Uaðx;jÞ ¼ Ua
n ðxÞ cosðnjÞ;

Vaðx;jÞ ¼ �W a
n ðxÞ sinðnjÞ=n;

W aðx;jÞ ¼ W a
n ðxÞ cosðnjÞ: ðA:8Þ

Substituting the expressions for the displacements into the Lagrangian and integrating over j
produces the modal Lagrangian Ln: For reasons mentioned in Section 2, the term proportional to
ðd2W a=dx2Þd2W=dx2 is neglected in Isnb: Furthermore ðI

s
n
Þ3;3 is changed from R2 to R2ð1� n2Þ; as

suggested in Ref. [15].

Ln ¼
p
R

Z þlx

�lx

Eh

ð1� n2Þ
ðeaÞTðIs

n þ bIs
nbÞe

�

� rhR2o2 Ua
n Un þ W a

n Wn 1þ
1

n2

� �� ��
dx; ðA:9Þ
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where

e ¼ ðUn Wn dUn=dx dWn=dxÞT; ðA:10Þ

Isn and I
s
nb are ð4� 4Þ symmetric matrices, with non-zero entries given by

ðIsnÞ1;1 ¼ ð1� nÞn2=2; ðIs
nÞ3;3 ¼ R2ð1� n2Þ;

ðIsnÞ4;4 ¼ ð1� nÞR2=ð2n2Þ; ðIsnÞ1;4 ¼ ðIs
nÞ4;1 ¼ ð1� nÞR=2;

ðIsnbÞ2;2 ¼ ðn2 � 1Þ2; ðIsnbÞ4;4 ¼ ð1� nÞ2R2ðn2 � 1Þ2=n2: ðA:11Þ

Appendix B. Exact solutions to the equations of motion

The homogeneous equations of motion for the cylindrical shell are given by Eqs. (16) and (17)

EIn

d2yn

dx2
� GAKn yn þ

dWn

dx

� �
þ ro2Inyn ¼ 0;

GAKn
d

dx
yn þ

dWn

dx

� �
þ Nn

d2W

dx2

� �
� ðKw � o2MeÞWn ¼ 0:

These equations can be expanded to form a set of four first order differential equations. For this
purpose the following variable substitution is made:

Un ¼ ðWn yn dyn=dx gnÞ
T and gn ¼ yn þ

dWn

dx
: ðB:1Þ

The variable gn is specifically introduced for numerical stability. If instead the more obvious
choice Un ¼ ðWn yn dyn=dx dWn=dxÞT was used, the equations are badly conditioned at low
frequencies, where ynE� dWn=dx: Thus follows

dUn;3=dx � ðGAKn=EInÞUn;4 þ ðro2In=EInÞUn;2 ¼ 0; ðB:2Þ

dUn;4=dx � ðNn=ð1þ NnÞÞUn;3 � ðKw � o2MeÞ=ðGAKnð1þ NnÞÞUn;1 ¼ 0; ðB:3Þ

or equivalently

dUn

dx
¼

0 �1 0 1

0 0 1 0

0 �ro2In

EIn
0 GAKn

EIn

Kw�o2Me

GAKnð1þNnÞ
0 Nn

1þNn
0

0
BBBBB@

1
CCCCCAUn: ðB:4Þ

Eq. (B.4) can be solved for solutions of the form eknix: The four eigenvalues of the matrix on the
right-hand side then gives the wavenumbers kni for a given angular frequency. To each eigenvalue
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exists an eigenvector and thus the solutions will be given by

WnðxÞ

ynðxÞ

dynðxÞ=dx

gnðxÞ

0
BBB@

1
CCCA ¼

BW

By

Bdy=dx

Bg

0
BBBB@

1
CCCCA diagðeKxÞ

0
BBBB@

1
CCCCACn; ðB:5Þ

where BW ;y;dy=dx;g are row vectors. K is a vector with the wavenumbers kni; ‘diag’ produces a
diagonal matrix from a vector and Cn is a vector of wave amplitudes.

Appendix C. Evaluation of dynamic stiffness matrix and nodal force vector

With the components of Vn and V
a
n from Eqs. (28) and (30), the simplified Lagrangian (13) can

be evaluated.

Ln ¼
Z lx

�lx

B1
dya

n

dx

dyn

dx
þ B2 ya

n þ
dW a

n

dx

� �
yn þ

dWn

dx

� �
þ B3

dW a
n

dx

dWn

dx

�

þ B4W
a
n Wn þ B5y

a
nyn � ðPne

�iamxÞ�Wn � ðPne
�iamxÞW a

n

�
dx; ðC:1Þ

where

B1 ¼ EIn; B2 ¼ GAKn; B3 ¼ GAKnNn;

B4 ¼ ðKw � o2MeÞ; B5 ¼ �ro2In: ðC:2Þ

The first variation of this Lagrangian with respect to the nodal displacementsWa
n is to be zero.

The different terms are similar and can be evaluated separately and then added together. Here, the
first term in Eq. (C.1) is evaluated to illustrate the procedure:Z lx

�lx

B1
dya

n

dx

dyn

dx
dx

¼ B1

Z lx

�lx

fððK:�By:�eKx�KplxÞAWa
n þ ðaa

K:�ðBy cnyÞ:�ea
a
K

x�aKplxÞWa
npÞ

T

� ððK:�By:�eKx�KplxÞAWn þ ðaK:�ðBy cnyÞ:�eaKx�aKplxÞWnpÞg dx

¼ B1

Z lx

�lx

fððK:�By:�eKx�KplxÞAWa
nÞ
TððK:�By:�eKx�KplxÞAWnÞ

þ ððK:�By:�eKx�KplxÞAWa
nÞ
TðaK:�ðBy cnyÞ:�eaKx�aKplxÞWnpg dx þ O

¼ WaT
n A

TB1ððK:�ByÞ
TðK:�ByÞ:�EIðK;Kp;K;KpÞÞAWn

þ WaT
n A

TB1ððK:�ByÞ
TðaK:�ðBy cnyÞÞ:�EIðK;Kp;aK;aKpÞÞWnp þ O; ðC:3Þ

where ð:�Þ denotes element wise multiplication (as in MATLAB). O contains terms that do not
depend onWa

n and therefore do not contribute to the variation. ðv1v2Þ
T ¼ vT2 v

T
1 was used and also

that dot products are commutative.
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Above the matrix generating function EI is defined as

EIðK;Kp;aK;aKpÞ ¼
Z lx

�lx

ðeKx�KplxÞTðeaKx�aKplxÞ dx; ðC:4Þ

so that its entries are given by

ðEIÞij ¼ððeðKÞiðþlxÞ�ðKpÞi lxÞðeðaKÞjðþlxÞ�ðaKpÞj lxÞ

� ðeðKÞið�lxÞ�ðKpÞi lxÞðeðaKÞjð�lxÞ�ðaKpÞj lxÞÞ=ððKÞi þ ðaKÞjÞ: ðC:5Þ

All the terms given in Eq. (C.1) are evaluated in this way and added to get the final expression.
The first variation of this new Lagrangian with respect to Wa

n is to be zero, producing the
following system of linear equations in the nodal displacement Wn; the first of which is just
Eq. (32),

DnWn ¼ Fn;

Dn ¼ ATðQ1:�EIðK;Kp;K;KpÞÞA; ðC:6Þ

Fn ¼ � ATðQ2:�EIðK;Kp; aK; aKpÞÞWnp

þ ATPnðBTW :�EIðK;Kp;�iam; 0ÞÞ; ðC:7Þ

where

Q1 ¼B1ðBy:�KÞ
TðBy:�KÞ þ B2ðBy þ BW :�KÞTðBy þ BW :�KÞ

þ B3ðBW :�KÞTðBW :�KÞ þ B4B
T
WBW þ B5B

T
yBy;

Q2 ¼B1ðBy:�KÞ
TððBy cnyÞ:�aKÞ

þ B2ðBy þ BW :�KÞTððBy cnyÞ þ ðBW cnW Þ:�aKÞ

þ B3ðBW :�KÞTððBW cnW Þ:�aKÞ þ B4B
T
W ðBW cnW Þ þ B5B

T
y ðBy cnyÞ: ðC:8Þ
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