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Abstract

The proposed adaptive control algorithm combines the recursive least-squares system identification
algorithm and the generalized predictive control (GPC) design algorithm, referred to as recursive
generalized predictive control (RGPC.) In the GPC design process, the prediction horizon and control
horizon are the constants to be chosen. Two new parameters are defined to describe the effects of the
prediction and control horizons and those parameters provide the effective ranges of the horizons. The
RGPC algorithm adjusts the control penalty based on the stability of a closed-loop system model. A time-
varying algorithm for the control penalty allows to design an aggressive controller. The multi-sampling rate
algorithm is added between the system identification and the control design in order to design a higher
order controller. The RGPC algorithm is applied to three different systems: a cantilevered beam, a sound
enclosure, and an optical jitter suppression testbed.
r 2003 Published by Elsevier Ltd.

1. Introduction

Predictive control, including long-range predictive control (LRPC) [1], can be thought of as an
extension of the one-step-ahead predictive control architecture [2–5]. Early predictive control was
based on the simple impulse [6] or step [7] response models. These discrete-time control methods
provide good control performance but are limited to stable models. Later methods were
developed using a more efficient model, such as a controlled autoregressive integrated moving
average (CARIMA) [8,9] or CARMA [10] model. Of these, generalized predictive control (GPC)
by Clarke and his co-workers has been shown to be particularly effective by removing the
shortcomings of the earlier design models [8,9,11].
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The GPC method can be related to the linear quadratic (LQ) optimal control design method
[12]. The GPC solution approaches the LQ regulator by extending the control and prediction
horizons to very large values. The prediction and control horizons are the finite horizons of
system output and input prediction, respectively. However, there are also significant differences.
Weighting matrices are used as tuning parameters in the LQ approach whereas prediction and
control horizons are used in the GPC approach. In the LQ approach, the Riccati equation is
solved [13–15]. In the GPC approach, the solution is obtained using the pseudo-inverse of a
matrix that results from posing the problem as a least-squares minimization.
One of the extensions of GPC is the continuous generalized predictive control (CGPC)

algorithm [16]. The CGPC algorithm rederives the discrete-time GPC in a continuous-time
setting [8,9,11]. The CGPC algorithm solves problems with discrete-time methods such as
numerical sensitivity, sample rate selection, and non-minimum phase zeros [17–20]. Further
research has been performed to solve the stability problem of CGPC [21,22]. The CGPC method
guarantees closed-loop stability only in certain limiting cases [16,21]. The CGPC with guaranteed
closed-loop stability is referred to as stable continuous generalized predictive control (SCGPC)
[23]. Several discrete-time GPC methods were proposed to solve the stability problem [24–27]. The
guaranteed stable GPC algorithm modifies the constraint limits on the inputs in the presence of a
class of bounded disturbances [26]. Another stable GPC algorithm is proposed for a nominal
model [28].
Recent developments based on GPC concepts are related to multivariable control [29–32] and

adaptive control [8,9,33]. The GPC concept for multivariable control and multi-input and multi-
output (MIMO) control was proposed using a non-minimal linear model [34]. The minimum
variance control [35] and generalized minimum variance controllers [36] were extended for a
MIMO linear system. These controllers cannot properly handle both an unstable system and a
system with non-minimum phase. In order to control these systems, the MIMO GPC algorithm
using the extended horizon approach was developed [37], and later was further extended for a
deterministic system [38,39].
In this research, the adaptive control algorithm, which combines the process of the

recursive least-squares (RLS) system identification and the process of the generalized predictive
control (GPC) design, is developed and referred to as recursive generalized predictive control
(RGPC). The algorithm is designed for real-time control and applied to actual testbed. The
experimental results from this research will demonstrate the feasibility of the proposed control
algorithm.

2. Recursive system identification

Using the linear combinations of past output and input measurements as states, a system can be
identified in ARX representation,

yðtÞ ¼ �
Xp

i¼1

aiyðt � iÞ þ
Xp

i¼1

biuðt � iÞ þ eðtÞ; ð1Þ

where yðtÞ is the measured output and uðtÞ is the input to the system [40–43]. For m outputs and n

inputs system, each ai ði ¼ 1; 2;y; pÞ is an m � m matrix and each bi is an m � n matrix. The RLS
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system identification process is the experimental determination of the model parameters in such a
way that the output computed from the model in Eq. (1) is as close as possible with the measured
output in the sense of least squares.
The cost function is defined to be

V ¼
1

2

Xt

i¼1

rt�iðyðiÞ � yjTðiÞÞ2; ð2Þ

where

y ¼ ½ a1 ? ap b1 ? bp �; ð3Þ

jðtÞ ¼ ½�yTðt � 1Þ ? � yTðt � pÞ uTðt � 1Þ ? uTðt � pÞ� ð4Þ

and 0opp1: The parameter r is the forgetting factor or discounting factor. The cost function of
Eq. (2) implies that a temporal weighting of the data is introduced. The most recent data is given
unit weight, but data that are M time steps old is weighted by rM [44,45].
The minimization of the cost function, given in Eq. (2), results in

y ¼ yWCTðCWCTÞ�1; ð5Þ

where

y ¼ ½yð1Þ yð2Þ ? yðtÞ�; ð6Þ

C ¼ ½jTð1Þ jTð2Þ ? jTðtÞ� ð7Þ

and a data weighting matrix, W; is a diagonal matrix with the weights in the diagonal.
Using the non-recursive system parameter estimation given in Eq. (5), the recursive parameter

estimation algorithm using the least-squares method can be obtained [14,40,45–47]. The model
parameter, y; is obtained recursively by

yðtÞ ¼ yðt � 1Þ þ fyðtÞ � yðt � 1ÞjTðtÞgLðtÞ; ð8Þ

where the correcting factor, LðtÞ; becomes

LðtÞ ¼
jðtÞPðt � 1Þ

rþ jðtÞPðt � 1ÞjTðtÞ
ð9Þ

and

PðtÞ ¼
1

r
Pðt � 1Þ½I� jTðtÞLðtÞ�: ð10Þ

When the recursive equation is used in all time steps, t > 0; it is convenient to start the algorithm
with zero initial condition for yð0Þ and

Pð0Þ ¼ P0; ð11Þ

where P0 is positive definite. One choice is

P0 ¼ aI ð12Þ

for a > 0 and the matrix I is an identity matrix. The constant, a; then becomes a parameter
to be chosen. In the literature, it is shown that the value of a is related to the convergence
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speed of the model parameters [45,48]. The constant a is commonly assigned a small
value ð0oap1Þ for high signal-to-noise ratio and a large value ða > 1Þ for low signal-to-noise
ratio.
The last parameter to be chosen is the forgetting factor, r; in Eqs. (9) and (10). The choice

of the forgetting factor is presented in several adaptive control literature [45,47,48]. A simple
strategy is

r ¼ exp½�ts=Tf �; ð13Þ

where ts is the sampling time in seconds and Tf is the time constant for exponential forgetting [45].

3. The generalized predictive control

The generalized predictive controller is designed for a system written in ARX form such as

Xp

i¼0

aiyðt � iÞ ¼
Xp

i¼0

biuðt � iÞ; ð14Þ

where a0 ¼ IðmÞ and b0 ¼ zerosðm; nÞ: The matrix IðmÞ is an m � m identity matrix and the matrix
zerosðm; nÞ is an m � n matrix with zero entries. The parameters with subscript zero are used for
the convenience in later expressions.
The system equation (14) can be written in matrix form

AyP ¼ BuP; ð15Þ

where the output parameter matrix A and the input parameter matrix B are written as

A ¼ ½a0 a1 ? ap�; B ¼ ½b0 b1 ? bp�: ð16Þ

Constructing the q step predictor at time t and partitioning into past and future parts, the
following matrix equation is obtained:

½F jG�
ypðtÞ

yf ðtÞ

" #
¼ ½H j J�

upðtÞ
uf ðtÞ

� �
; ð17Þ

where the matrices F and G are the coefficient matrices for the past and future output data, ypðtÞ
and yf ðtÞ; respectively, and written as

½F jG� ¼

ap ? a1 a0 0 0 ? 0 0

0 & & & & & ^ ^ ^

^ 0 ap ^ a1 a0 0 ? 0

^ ^ 0 ap ^ a1 a0 0 0

^ ^ ^ & & & & ^ ^

0 ? 0 0 0 ap ? a1 a0

2
6666666664

3
7777777775

ð18Þ
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and the matrices H and J are the coefficient matrices for the past and future control input data,
upðtÞ and uf ðtÞ; respectively, and written as

½H j J� ¼

bp ? b1 b0 0 0 ? 0 0

0 & & & & & ^ ^ ^

^ 0 bp ^ b1 b0 0 ? 0

^ ^ 0 bp ^ b1 b0 0 0

^ ^ ^ & & & & ^ ^

0 ? 0 0 0 bp ? b1 b0

2
6666666664

3
7777777775
: ð19Þ

It should be noted that the model parameters in Eqs. (18) and (19) are reordered from model
parameters given in Eq. (3). Defining the prediction horizon hp ¼ p þ q � 1; the size of each
coefficient matrix can be obtained as given in Table 1. Note that the matrix G is a square matrix.
The mp � 1 past output history vector, ypðtÞ; and the mðhp þ 1Þ � 1 future output vector, yf ðtÞ;

can be written as

ypðtÞ ¼

yðt � pÞ

^

yðt � 1Þ

2
64

3
75; yf ðtÞ ¼

yðtÞ

^

yðt þ hpÞ

2
64

3
75: ð20Þ

The np � 1 input past history vector, upðtÞ; and the nðhp þ 1Þ � 1 future input vector, uf ðtÞ; can
be written as

upðtÞ ¼

uðt � pÞ

^

uðt � 1Þ

2
64

3
75; uf ðtÞ ¼

uðtÞ

^

uðt þ hpÞ

2
64

3
75: ð21Þ

Solving Eq. (17) for the future outputs and normalizing the coefficients by multiplying the
inverse of the coefficient matrix of the future output, G; Eq. (17) can be written as

yf ðtÞ ¼ Tcuf ðtÞ þ BcupðtÞ þ AcypðtÞ; ð22Þ

where the normalized coefficient matrices are written as

Tc ¼ G�1J; Bc ¼ G�1H; Ac ¼ �G�1F: ð23Þ
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Table 1

Size of the coefficient matrix in Eq. (17)

Matrix Size

F mðhp þ 1Þ � mp block upper triangular matrix

G mðhp þ 1Þ � mðhp þ 1Þ block lower triangular matrix

H mðhp þ 1Þ � np block upper triangular matrix

J mðhp þ 1Þ � nðhp þ 1Þ block lower triangular matrix

M mðhp þ 1Þ � ndp block upper triangular matrix

N mðhp þ 1Þ � nd ðhp þ 1Þ block lower triangular matrix
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The cost function is defined as

JðtÞ ¼
Xhp

j¼0

feðt þ jÞTeðt þ jÞg þ l
Xhc

j¼0

fuTðt þ jÞuðt þ jÞg; ð24Þ

where eðtÞ ¼ yrðtÞ � yðtÞ and yrðtÞ is the reference output. Parameter l is the input weighting factor
or control penalty which is a positive scalar. Parameter hp is the prediction horizon and hc is the
control horizon which is less than the prediction horizon, i.e., hcphp [29,49].
The future input, uf ; that satisfies the equation, dJðkÞ=duf ¼ 0; is

uf ðtÞ ¼ �½TT
c Tc þ lI��1TT

c ðBcupðtÞ þ AcypðtÞ � yrðtÞÞ; ð25Þ

where yrðtÞ is the reference output vector or the set points.
The control input is then defined by the first n rows of the future input, i.e.,

uðtÞ ¼ the first n rows of f�½TT
c Tc þ lI��1TT

c gðBcupðtÞ þ AcypðtÞ � yrðtÞÞ: ð26Þ

The control input given in Eq. (26) occurs when the control horizon is equal to the prediction
horizon. When the control horizon is less than the prediction horizon, the solution that minimizes
the cost function, JðtÞ; in Eq. (24), can be achieved by reducing the size of the coefficient matrix J
in Eq. (19) to be Jð1 : mðhp þ 1Þ; 1 : nðhc þ 1ÞÞ:

4. Stability analysis

The control input, given in Eq. (26), can be written as

uðtÞ ¼ KyyðtÞ þ KuuðtÞ þ KrrðtÞ; ð27Þ

where Ky; Ku; and Kr are the polynomial matrices for output, input, and reference point,
respectively,

Ky ¼ ac
1z

�1 þ ac
2z

�2 þ?þ ac
pz�p; ð28Þ

Ku ¼ bc
1z

�1 þ bc
2z

�2 þ?þ bc
pz�p ð29Þ

and

Kr ¼ Zc
1z

1 þ Zc
2z

2 þ?þ Zc
hpzhp; ð30Þ

where the superscript c is used to distinguish the control parameters from the model
parameters. Recall that z is the shift variable, for example, z�1yðtÞ ¼ yðt � 1Þ: Note that the
polynomial Kr is written for the vector of set positions for the current instant. A block diagram
using the control input in Eq. (27) is illustrated in Fig. 1, where Gsys denotes a transfer function
matrix of the plant.
Using block-diagram algebra operations, the relationship between y and r is obtained as

Gyr ¼ Gsys½ðIn � KuÞ � KyGsys��1Kr ð31Þ

and the relationship between u and r is written as

Gur ¼ ½ðIn � KuÞ � KyGsys��1Kr: ð32Þ
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For a multiple-inputs and multiple-outputs system, consider the right-coprime factorization of
the system transfer function matrix

Gsys ¼ NsysD
�1
sys; ð33Þ

where Nsys and Dsys; are the numerator and denominator matrices, respectively.
With Eq. (33), the transfer function matrices in Eqs. (31) and (32) can be written as

Gyr ¼ Nsys½ðIn � KuÞDsys � KyNsys��1Kr ð34Þ

and

Gur ¼ Dsys½ðIn � KuÞDsys � KyNsys��1Kr: ð35Þ

Writing the following polynomial matrix:

O ¼ ðIn � KuÞDsys � KyNsys; ð36Þ

there may be pole-zero cancellations between (1) Kr and O in Eqs. (34) and (35); (2) Nsys and O in
Eq. (34); (3) Dsys and O in Eq. (35).
Poles and zeros of a transfer function matrix are defined as the roots of the pole polynomial and

zero polynomial of the transfer function matrix written in the Smith–McMillan form [50,51]. In
pole-zero cancellations, however, there are two kinds of pole-zero cancellations; one is the stable
pole-zero cancellation and the other is the unstable pole-zero cancellation. The stable pole-zero
cancellation, also referred to as ‘pole shifting’, is a very common and effective control design
strategy [15,52]. On the other hand, unstable pole-zero cancellation must not happen. When an
unstable pole is cancelled by a zero, it creates hidden modes within a system, which leads to a
system that is not internally stable.
As a result, the closed-loop system consisting of the system, Gsys; and the controller in Eq. (27)

is stable if and only if all the roots of the polynomial equation of

det½O� ¼ 0 ð37Þ

lie inside the unit circle.
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5. Control parameter

In order to discuss the effect of the prediction and control horizons, two new parameters are
defined—prediction horizon parameter, Lhp; and control horizon parameter, Lhc: The effective
ranges of the prediction horizon and control horizon can be observed by plotting each prediction
and control horizon as a function of the prediction horizon parameter, Lhp; and the control
horizon parameter, Lhc; respectively.

5.1. Prediction horizon parameter Lhp

In order to express the effect of a greater prediction horizon, the GPC algorithm is rederived in
the following manner. For a given set of system parameters, the coefficient matrices are given as
Eqs. (18) and (19). When one-step greater prediction horizon is added to the coefficient matrices,
the coefficient matrices with a greater prediction horizon can be written as

#F ¼
F

Fhp

" #
; #G ¼

G 0

Ghp a0

" #
; #H ¼

H

Hhp

" #
; #J ¼

J 0

Jhp b0

" #
; ð38Þ

where the coefficient matrix with caret accent ð4Þ denotes the coefficient matrices with a greater
prediction horizon, hp þ 1: Vectors Fhp and Ghp are generated from the system output parameters,
ai; and vectors Hhp and Jhp are generated from the system input parameters, bi: It is noted that
vectors Fhp and Hhp are zero vectors when the prediction horizon is larger than the number of
system parameters. In the later derivation, a0 ¼ 1 and b0 ¼ 0:
From Eq. (38), the normalized coefficient matrices with a greater prediction horizon are

obtained as

#Tc ¼ #G�1 #J ¼
Tc 0

�GhpTc þ Jhp 0

" #
; ð39Þ

#Ac ¼ #G�1 #F ¼
�Ac

GhpAc þ Fhp

" #
; ð40Þ

#Bc ¼ #G�1 #H ¼
Bc

�GhpBc þHhp

" #
; ð41Þ

where Tc; Ac and Bc; are the normalized coefficient matrices, given in Eq. (23). In these equations,
the following Matrix Inversion Lemma is used:

A 0

B C

" #�1

¼
A�1 0

�C�1BA�1 C�1

" #
: ð42Þ

Since #TT
c
#Tc þ lI is a block diagonal matrix, its inverse can be obtained easily:

ðTT
c Tc þ lIÞ�1 ¼

f�g�1 0

0 l�1

" #
; ð43Þ
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where

f�g ¼ TT
c Tc þ lIþ ð�GhpTc þ JhpÞ

Tð�GhpTc þ JhpÞ: ð44Þ

Hence, the GPC gains of the past output and input data are obtained as

ð #TT
c
#Tc þ lIÞ�1 #TT

c
#Ac ¼ the first n rows of

f�f�g�1TT
cAc þ f�g�1ð�GhpTc þ JhpÞ

TðGhpAc þ FhpÞg ð45Þ

and

ð #TT
c
#Tc þ lIÞ�1 #TT

c
#Bc ¼ the first n rows of

f�f�g�1TT
c Bc þ f�g�1ð�GhpTc þ JhpÞ

Tð�GhpBc þHhpÞg: ð46Þ

Eqs. (45) and (46) represent the GPC gain for a greater prediction horizon, hp þ 1; obtained
from those for the one-step short prediction horizon, hp: The term of ðTT

c Tc þ lIÞ�1TT
cAc in

Eq. (45) and the term of ðTT
c Tc þ lIÞ�1TT

c Bc in Eq. (46) are the control gains for the one-step short
prediction horizon, given in Eq. (26). All other terms in Eqs. (45) and (46) are additional resulting
from the one-step added prediction horizon.
There could be several ways to define the effect of an extra term. However, it can be seen that

the term of �GhpTc þ Jhp appears in each extra term (see Eq. (39)). In Eq. (39), the matrices Ghp

and Jhp represent the last row of the coefficient matrix for a greater prediction horizon, hp þ 1;
while Tc is defined for hp:
With the fact that the longer prediction horizon improves the response [11,16,32], the following

parameter is defined to represent the effect of an extra prediction horizon:

L ¼
1

traceðð�GhpTc þ JhpÞ
Tð�GhpTc þ JhpÞÞ

: ð47Þ

Since the parameter L is defined from the extra term by adding one-step prediction horizon, the
parameter L is considered as the magnitude difference in the controller gains. Now, let Lp be the
parameter value of L when the prediction horizon is same as the order of the system model, p; and
define the normalized parameter value, Lhp; as

Lhp ¼
L

Lp

¼
traceðð�GhpTc þ JhpÞ

Tð�GhpTc þ JhpÞÞjhp¼p

traceðð�GhpTc þ JhpÞ
Tð�GhpTc þ JhpÞÞ

; ð48Þ

where Lhp > 0: Hence, the normalized parameter Lhp represents the magnitude difference ratio of
the controller gains with respect to the gains when hp ¼ p:
Using the normalized parameter, Lhp; the effective range of the prediction horizon can be

chosen. For a given set of model parameters, the parameter value of Lhp is calculated by increasing
the prediction horizon. When the change of Lhp is small, it tells that the changes of the controller
gains are small with respect to that of the controller gains when the prediction horizon is the same
as the model order. Let #hp be the prediction horizon when the change of Lhp is small, then
prediction horizons near #hp provide the effective range of the prediction horizon. The ‘small’
variation of Lhp can be observed by plotting the value of Lhp as a function of hp:
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5.2. Control horizon parameter Lhc

As mentioned earlier, shorter control horizon than the prediction horizon can be defined.
Shorter control horizon assumes that the control input beyond the control horizon is constant,
and the control gains can be obtained by reducing the size of the coefficient matrix J: As the
control horizon decreases, the number of columns of matrix J decreases while the number of rows
of the matrix remains the same. Other coefficient matrices, F; G; and H; remain the same.
Let the matrices #Fhp; #Ghp; #Hhp; and #Jhp be the coefficient matrices when the prediction horizon is

#hp: In order to express the effect of a shorter control horizon, the coefficient matrix #Jhp is
partitioned by the last column,

#Jhp ¼ ½Jhc Jhc�1�; ð49Þ

where the matrix Jhc is an mð #hp þ 1Þ � m #hp matrix.
Using the coefficient matrix #Jhp in Eq. (49), the GPC gains are obtained. The normalized

coefficient matrix of the future output is written as

#Tc ¼ #G�1
hp

#Jhp ¼ ½ #Tc1
#Tc2�; ð50Þ

where #Tc1 ¼ #G�1
hp Jhc and #Tc2 ¼ #G�1

hp Jhc�1:
The GPC gains of the past output and input data are obtained as

ð #TT
c
#Tc þ lIÞ�1 #TT

c
#Ac ¼ the first n rows of fð #Tc11

#TT
c1 þ #Tc12

#TT
c2Þ #Acg ð51Þ

and

ð #TT
c
#Tc þ lIÞ�1 #TT

c
#Bc ¼ the first n rows of fð #Tc11

#TT
c1 þ #Tc12

#TT
c2Þ #Bcg; ð52Þ

where #Ac ¼ � #G�1
hp

#Fhp and #Bc ¼ #G�1
hp

#Hhp: The matrices #Tc11 and #Tc12 are the elements of the matrix
ð #TT

c
#Tc þ lIÞ�1; which is written as

ð #TT
c
#Tc þ lIÞ�1 ¼

#Tc11
#Tc12

#Tc21
#Tc22

" #
; ð53Þ

where

#Tc11 ¼M;

#Tc12 ¼ �M #TT
c1
#Tc2ð #TT

c2
#Tc2 þ lIÞ�1;

#Tc12 ¼ �ð #TT
c2
#Tc2 þ lIÞ�1 #TT

c2
#Tc1M;

#Tc22 ¼ ð #TT
c2
#Tc2 þ lIÞ�1ðIþ #TT

c2
#Tc1M #TT

c1
#Tc2ð #TT

c2
#Tc2 þ lIÞ�1Þ

and

M ¼ ðð #TT
c1
#Tc1 þ lIÞ � #TT

c1
#Tc2ð #TT

c2
#Tc2 þ lIÞ�1 #TT

c2
#Tc1Þ

�1: ð54Þ

In Eq. (53), the following Matrix Inversion Lemma is used:

A BT

B C

" #�1

¼
K �KBTC�1

�C�1BK C�1 þ C�1BKBTC�1

" #
; ð55Þ

where K ¼ ðA� BTC�1BÞ�1:
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In Eqs. (51) and (52), all terms except ð #TT
c1
#Tc1 þ lIÞ�1 #Tc1

#Bc and ð #TT
c1
#Tc1 þ lIÞ�1 #Tc1

#Ac are
generated by the one-step control horizon. Among all extra terms, the term of #Tc2ð #TT

c2
#Tc2 þ

lIÞ�1 #TT
c2 exists in every term (see Eq. (54)).

Based on the fact that the shorter control horizon improves the system response [11,16,32], the
following parameter is defined to represent the effect of a shorter control horizon:

Lhc ¼
1

traceðSTSÞ
; ð56Þ

where

S ¼ #Tc2ð #TT
c2
#Tc2 þ eI4Þ

�1 #TT
c2 ð57Þ

and l is replaced by e: With a very small positive number, e; the parameter Lhc; can be defined for
hc ¼ #hp and #hp � 1: When hc ¼ #hp; the matrix #Tc2 is zero matrix, and LhcEN: When hc ¼ #hp � 1;

#Tc2 ¼

0 0

^ ^

b1 0

2
64

3
75; ð58Þ

and LhcE1:

6. Examples

In this section, the prediction horizon parameter, Lhp; and the control horizon parameter, Lhc;
are numerically computed for given model parameters. The model parameters are obtained from
experimental data. The numerical examples illustrated in this section will provide better
understanding for those parameters.

6.1. Identified beam model

The prediction horizon parameters, Lhp; and the control horizon parameter, Lhc; are computed
for the identified model parameters of a cantilevered beam. A detailed testbed setup is described in
Section 8.1. A band-limited random signal is applied to a cantilevered beam using piezoelectric
devices and an accelerometer sensor signal is used for output measurement. Using sampled input
and output data at 250 Hz; the system model with order p ¼ 16 is identified using the non-
recursive method described in Section 2. The identified model is obtained as

Að1ÞyðtÞ þ?þ Aðp þ 1Þyðt � pÞ ¼ Bð1ÞuðtÞ þ?þ Bðp þ 1Þuðt � pÞ; ð59Þ

where the output parameter vector, A; and the input parameter vector, B; are

A ¼ ½1;�0:044;�0:023;�0:086; 0:190;�0:022;�0:150;�0:016;�0:273;

� 0:102; 0:125;�0:061; 0:165; 0:038;�0:229;�0:047;�0:176�;

B ¼ ½0;�0:005;�0:016; 0:026;�0:008; 0:007; 0:021;�0:039; 0:003; 0:002;

� 0:015; 0:027;�0:0004;�0:004; 0:007;�0:014; 0:002�:
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The identified model, given in Eq. (59), is simplified to a second order model,

yðtÞ þ 1:2967yðt � 1Þ þ 0:9928yðt � 2Þ ¼ 0:9964uðt � 2Þ; ð60Þ

which is obtained from the complex conjugate set of the dominant poles [15,50,53]. The model
given in Eq. (60) describes the dominant system response. The prediction horizon parameter Lhp is
obtained using the parameters given in Eq. (60) and illustrated by the solid line in Fig. 2. The
prediction horizon is varied from hp ¼ 2 to 7p: As seen in the figure, the value of prediction
horizon parameter, Lhp; becomes smaller as the prediction horizon, hp; becomes greater.
In order to observe the changes of the prediction horizon parameter, let LhpðkÞ be the value of

the prediction horizon parameter at hp ¼ k; and write the difference of the prediction horizon
parameter, dLhpðkÞ; as

dLhpðkÞ ¼ jLhpðkÞ � Lhpðk � 1Þj; ð61Þ

where kX2: The difference dLhpðkÞ can be normalized by dLhP(2). The normalized difference,
DLhp; is illustrated by the dashed line in Fig. 2. As seen in the figure, the normalized difference
DLhp becomes smaller as the prediction horizon becomes greater. The normalized difference
DLhpE 1% is a reasonable choice for the selection of the prediction horizon. The corresponding
prediction horizon to DLhpE 1% is hpE18: The control horizon parameter Lhc is plotted as a
function of a control horizon in Fig. 3. The smaller value of the control horizon parameter gives
the shorter control horizon.
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Fig. 2. The prediction horizon parameter, Lhp ð�3�Þ; and the normalized difference, DLhp (
 
 � 
 
), for an identified

beam model
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6.2. Identified acoustic enclosure model

The prediction horizon parameters, Lhp; and the control horizon parameter, Lhc; are computed
for the identified model parameters of an acoustic enclosure. A detailed testbed setup is described
in Section 8.2. A random signal is applied to an acoustic speaker and an acoustic microphone is
used for output measurement. Using sampled input and output data at 500 Hz; the system model
with order p ¼ 16 is identified using the nonrecursive method. The identified model has the same
form as given in Eq. (59) and the output parameter vector, A; and the input parameter vector, B;
are obtained as

A ¼ ½1;�0:061;�0:155;�0:245; 0:084;�0:069; 0:031;�0:062;�0:047;

� 0:124;�0:300; 0:370; 0:023;�0:015;�0:137; 0:049;�0:084�;

B ¼ ½0; 0:018; 0:131;�0:044;�0:139;�0:101;�0:995;�0:777; 1:839; 1:499;

� 0:107;�0:689;�0:318;�0:251;�0:113; 0:070;�0:047�:

In order to observe the changes of the prediction horizon parameter, the identified model is
simplified to a second order model,

yðtÞ þ 0:7230yðt � 1Þ þ 0:9146yðt � 2Þ ¼ 0:9563uðt � 2Þ; ð62Þ

which describes the dominant system response. The prediction horizon parameter Lhp is obtained
using the parameters given in Eq. (62) and illustrated by the solid line in Fig. 4. The prediction
horizon is varied from hp ¼ 2 to 7p: The normalized difference DLhp is also illustrated by the
dashed line in Fig. 4. The corresponding prediction horizon to DLhpE 1% is hpE24:
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Fig. 3. The control horizon parameter, Lhc; for an identified beam model.
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The control horizon parameter Lhc is plotted as a function of a control horizon in Fig. 5.
The smaller value of the control horizon parameter gives the shorter control horizon and the
difference of the control horizon parameter becomes smaller as the control horizon becomes
shorter.
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Fig. 4. The prediction horizon parameter, Lhp ð�3�Þ; and the normalized difference, DLhp (
 
 � 
 
), for an identified

acoustic enclosure model.

Fig. 5. The control horizon parameter, Lhc; for an identified acoustic enclosure model.
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The longer prediction horizon and the shorter control horizon, which improve the system
performance, can be assigned for a fixed-gain (non-adaptive) controller which is not restricted in
time spent for the controller design. The computation time, however, is an important factor in the
development of an adaptive algorithm because a controller must be designed in each sample
period. A longer prediction horizon increases the size of the coefficient matrices (see Eq. (38)),
resulting in a longer computational time. In such a case, the prediction horizon should be reduced
and the prediction horizon parameter can be used for a reasonable selection of the prediction
horizon in the discrete-time GPC design. The shorter control horizon reduces the size of the
coefficient matrix (see Eq. (49)) and results in shorter computational time.

7. Recursive generalized predictive control

The block diagram of the overall RGPC algorithm is shown in Fig. 6. The RGPC algorithm
starts with system identification using known control inputs and measured sensor outputs. A
model is identified using the RLS algorithm. The controller is designed using the updated model.
The control input is then calculated using the controller gains and measured data.
In the following sections, a multi-sampling-rate algorithm and a time-varying input weighting

factor algorithm are introduced to design higher order controllers and aggressive controllers. A
stability test algorithm is added to avoid implementation of unstable controllers.
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Fig. 6. The RGPC design process with multi-sampling-rate algorithm (solid line for faster sampling rate and dashed

line for slower sampling rate) and time-varying input weighting factor algorithm.
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7.1. Multi-sampling-rate algorithm

When RGPC is implemented in real-time, a multi-sampling-rate algorithm can be applied to
design a higher order controller or a controller with greater prediction horizon. First, the RLS
system identification is applied with the same sampling rate at the data acquisition rate since it
updates the system parameters using matrix summations and multiplications without any time-
consuming process such as matrix inversion. Second, assuming that the system parameters do not
change significantly, a slower sampling rate than the data acquisition sampling rate is used for
controller design because matrix inversion must be performed during control design (see Eq. (26)).
The controller is fixed until a new controller is computed and updated. Third, the control input is
calculated with the measured and stored data using the same sampling rate as that used for the
data acquisition. Graphical implementation for multi-sampling-rate algorithm is shown in Fig. 6.

7.2. Time-varying input weighting factor

A time-varying input weighting factor algorithm is applied to solve the following problems.
When a small positive constant value of the input weighting factor is chosen in the controller
design, the controller can create an instability since the matrix Tc in Eq. (23) is close to singular.
Even if the closed-loop system model is stable, when applied to a real experimental setup, it may
result in a large magnitude of initial control input, which may cause an overload in the
experimental hardware. A large constant value of the input weighting factor, however, may reduce
the magnitude of the initial control input, but limits performance.
To avoid those problems, a time-varying input weighting factor is added to the controller

design,

lnew ¼ lold7t; ð63Þ

where lnew is the updated input weighting factor from the previous input weighting factor, lold :
The value of t is added or subtracted, depending on the stability of the closed-loop system model.
The negative sign is applied for stable controllers and the positive sign is applied for unstable
controllers. The different values, t; for stable controllers and unstable controllers can be assigned:

lnew ¼
lold � t1 for stable controller;

lold þ t2 for unstable controller;

(
ð64Þ

where t1 > 0 is the decrement of the input weighting factor when controllers are stable and t2 > 0
is the increment of the input weighting factor when controllers are unstable.
By assigning a large initial value of the input weighting factor, a large magnitude of the initial

control input can be avoided. Once the controller is designed and applied to the system, the input
weighting factor will be updated based on the stability of the closed-loop system model. The value
will be reduced for a stable controller and increased for an unstable controller until a stable
controller is obtained. Graphical implementation for time-varying input weighting factor
algorithm is shown in Fig. 6.
The value of t in Eq. (63) or t1 and t2 in Eq. (64) can be scaled with respect to the input

weighting factor. For example, when the input weighting factor is 0.01, the proper size of t is
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0.001, an order of magnitude less. When controllers are to be updated faster in case of instability,
a larger value of t2 than t1 can be assigned.
To apply the time-varying input weighting factor to the system, the followings process must be

added in the controller design. When the value of l approaches a very small number, lmin; the
decrement should be zero because the input weighting factor is a positive real number. By adding
this process, a zero or negative value of the input weighting factor can be avoided. Second, since
the weighting factor is updated after the stability test, application of unstable controllers must be
avoided. If unstable controller results upon checking for stability, the previous stable controller is
implemented instead. By adding this process in the controller design, only stable controllers are
applied to the system.

8. Experimental results

The RGPC algorithm is applied to three different testbeds: a cantilevered beam, a sound
enclosure, and an optical jitter suppression testbed. The algorithm was implemented using a
National Instrument PCI-6024E data acquisition board. The interface between the computer and
the board are performed using MATLAB, Simulink, and xPC target.

8.1. Cantilevered beam

The first experimental system is a cantilevered beam (see Fig. 7). The cantilevered beam is
configured with two piezoelectric devices and PCB Model 352C67 accelerometers mounted on the
beam. One of the piezoelectric patches is used to disturb the beam and the other patch is used as a
control source. In addition, Ithaco 24 dB/octave low-pass filters, set at a cutoff frequency of
125 Hz; and Krohn-Hite Model 7600 wideband amplifiers, set at a signal gain of 14 dB; are
connected to the piezoelectric device. Another Ithaco 24 dB/octave low-pass filter, also set at
125 Hz; and a PCB model 480E09 signal conditioner are used for each accelerometer sensor. The
sampling rate of the overall process is set at 250 Hz to reduce the vibration of the first two natural
modes.
In this experiment, in addition to the error sensor output for control design, an extra sensor,

whose signal is not used in the controller design, is mounted on the beam. The purpose of an extra
sensor is to observe the performance at other than the location of the error sensor. For
convenience, the extra sensor will be called the performance sensor. While the control algorithm is
running, the signal from the performance sensor is measured with a Siglab spectrum analyzer and
the frequency response function (FRF), the frequency domain representation of a process, is
obtained by the discrete Fourier transforms (DFT) of input and output time responses [52].
Using the measured sensor signal and stored disturbance signal, the FRF is computed for the

open-loop case (controller off) and the closed-loop case (controller on). When there is a
magnitude reduction at a certain frequency, the control algorithm achieves the disturbance
rejection at the sensor location.
Keeping a single control source and a single disturbance source configuration, two different

output configurations are selected. The first setup is a single error sensor output and a single
performance sensor output. The system related to the control design is a SISO system. The other
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output setup is based upon two error sensor outputs and a performance sensor output. In this
case, the system becomes a single-input and two-output system. All the output sensors are placed
in order to observe the first two natural modes of the beam.
The RGPC feedback algorithm is applied to each output configuration. During each

experiment, the unfiltered error sensor signal and the unfiltered performance sensor signal are
measured using Siglab spectrum analyzer, and the FRF is obtained between a band-limited
random disturbance applied to the voltages of the disturbance piezoelectric device and the voltage
signal from each accelerometer sensor. The unfiltered signal is measured to observe the
performance in the higher frequency range. Figs. 8–12 illustrate the open- and closed-loop FRF of
each signal.
Figs. 8 and 9 show the computed open- and closed-loop FRFs of the first output configuration:

a single error sensor output and a single performance sensor output. In each figure, the dashed
line represents the open-loop process and the solid line represents the closed-loop process. Fig. 8
provides the vibration reduction at the location of the error sensor. The vibration at the first and
the second modes, 32.5 and 90:0 Hz; is reduced 28.4 and 17:1 dB; respectively. It is also noted that
no increase in response is observed in the higher frequency range ð> 125 HzÞ: Fig. 9 exhibits the
open- and closed-loop FRFs at the location of the performance sensor. The reduction of 28.3 and
17:3 dB at the first and second natural modes is achieved using the RGPC algorithm.
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Fig. 7. Schematic diagram and picture of a cantilevered beam: (a) schematic diagram of beam testbed, (b) picture of

beam testbed.
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Fig. 8. Open-loop (dashed line) and closed-loop (solid line) FRF magnitude plot of the error sensor output of a

cantilevered beam (single error sensor output case and ts ¼ 250 Hz).

Fig. 9. Open-loop (dashed line) and closed-loop (solid line) FRF magnitude plot of the performance sensor output of a

cantilevered beam (single error sensor output case and ts ¼ 250 Hz).
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Figs. 10–12 show results for the second output configuration: two error sensor outputs and a
single performance sensor output. Fig. 10 is the open- and closed-loop FRFs of the first error
sensor output signal and Fig. 11 is that of the second error sensor output. The vibration at the first
natural mode, 32:5 Hz; is reduced 32.3 and 28:8 dB at each location of the first and second errors
sensor, respectively. The second mode, 90:0 Hz; is also reduced 18.3 and 16:9 dB by the feedback
of two error sensor output signals. Fig. 12 shows the FRF of the performance sensor output. The
mode at 32:5 Hz is reduced 30:0 dB and the mode at 90:0 Hz is reduced 17:1 dB:
In the control algorithm, the RGPC parameters are set the same for each output configuration.

The order of the identified system and the controller is chosen to be 16 which is large enough to
characterize the process. While the overall process including system identification and data
acquisition is performed at a sampling rate of 250 Hz; the controller is updated at 1/2 the speed of
the system identification, i.e., 125 Hz:

8.2. Sound enclosure

The application of the RGPC algorithm is used for acoustic noise control. The algorithm is
tested on a rigid-walled acoustic enclosure with a square cross-section, shown in Fig. 13. The
enclosure is configured with two DY-NAUDIO 15 W-75 acoustic loudspeakers placed at each
end. In the experiments, one loudspeaker is used for the acoustic disturbance source and the other
is used for the control source. Amplifiers are used to amplify both the band-limited ð500 HzÞ
random disturbance noise and the control signal. A Br .uel & Kjær type 4190 microphone sensor is
used as a feedback error sensor. An Ithaco 24 dB/octave low-pass filter, set to a cutoff frequency
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Fig. 10. Open-loop (dashed line) and closed-loop (solid line) FRF magnitude plot of the first feedback sensor output of

a cantilevered beam (two error sensor output case and ts ¼ 250 Hz).
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Fig. 11. Open-loop (dashed line) and closed-loop (solid line) FRF magnitude plot of the second feedback sensor output

of a cantilevered beam (two error sensor output case and ts ¼ 250 Hz).

Fig. 12. Open-loop (dashed line) and closed-loop (solid line) FRF magnitude plot of the performance sensor output of

a cantilevered beam (two error sensor output case and ts ¼ 250 Hz).
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of 250 Hz; and a Br .uel & Kjær type 2635 amplifier are connected to the microphone sensor. The
feedback sensor microphone is placed above the control speaker diaphragm and fixed at the
center of the square cross-section to minimize the acoustic reflection by the wall. The control
objective is to minimize the sound pressure level around the acoustic microphone sensor.
The RGPC algorithm is applied while both endcaps are covered, which yields a closed–closed

acoustic enclosure. A band-limited random signal is applied to the disturbance loudspeaker and
the unfiltered microphone signal is measured in voltage using a Siglab spectrum analyzer. With
the stored disturbance signal and the measured microphone signal, the averaged open- and closed-
loop FRFs are computed. The FRF shows the frequency domain response between the
disturbance signal and the error sensor signal [13,52]. The magnitude response of the FRF is
presented in Fig. 14. The dashed line is when the controller is open-loop and the solid line is closed
loop. The system model is identified from the data acquired at the sampling rate of 500 Hz and the
controller is updated at 1 /4 the speed of the system identification process, i.e., 125 Hz: The order
of model and controller is set to be 16.
The modes at frequencies of 54, 106, 155, and 205 Hz are reduced 9.0, 5.8, 6.3, and 13:2 dB;

respectively. The integrated response of the enclosure is attenuated by approximately 2:1 dB at
resonant frequencies between 50 and 250 Hz; without observed increase in response outside of the
bandwidth ð> 250 HzÞ:
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Fig. 13. Schematic diagram and picture of closed-closed sound enclosure configured with acoustic loudspeakers and

microphone: (a) schematic diagram of acoustic testbed, (b) picture of acoustic testbed.
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While the feedback controller for the closed–closed acoustic enclosure is running, the endcap on
the control loudspeaker side is opened manually to yield a open–closed acoustic enclosure
configuration. The endcap is removed slowly ðB2 sÞ to prevent the overload that may happen to
the experimental hardware. As soon as the cover is removed, the microphone sensor signal is
measured using Siglab spectrum analyzer and the FRF with the disturbance signal is computed.
The magnitude responses of the open- and closed-loop FRFs are shown in Fig. 15. The acoustic
modes at 78, 128, 177, and 227 Hz are reduced 4.7, 7.4, 7.5, and 5:9 dB; respectively. The
integrated response of the open–closed acoustic enclosure is attenuated by 2:2 dB at resonant
frequencies between 50 and 250 Hz:

8.3. Optical jitter suppression testbed

The application of the RGPC algorithm is performed on the optical jitter testbed. The testbed,
illustrated in Fig. 16, is in an anechoic chamber at Duke University. The purpose of an anechoic
chamber is to minimize the jitter effect by extraneous, ambient, acoustic disturbance. Two
Newport optical benches are used to isolate metrology components from vibrating optical
elements. An Edmund Scientific 5 mW uniphase helium–neon cylindrical laser and an on-track
photonics 10 mm dual axis position sensing detector (PSD) are mounted on one optical bench and
a 2 in turning, flat mirror and a three-axis, fast steering mirror (FSM) are on the other optical
bench to maximize the beam length. The path of the laser beam is drawn in Fig. 16. A laser shines
a beam on the turning flat mirror, reflects off of the FSM, and shines on the PSD, which provides
a measure of the acoustically induced jitter.
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Fig. 14. Open-loop (dashed line) and closed-loop (solid line) FRF magnitude plot of the control error microphone

signal for closed–closed acoustic enclosure (ts ¼ 500 Hz).
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An acoustic band-limited random disturbance applied to the loudspeaker(s)—part (f) in
Fig. 16—is used to generate vibration in the optical components. The experiments are performed
using a single disturbance loudspeaker or three disturbance loudspeakers to generate acoustic
disturbance around the optical components in all directions. For multiple disturbance sources,
each loudspeaker is generated by different random source and placed facing directly at the optical
components—a turning flat mirror and a FSM—in order to observe maximum jitter effect.
In order to isolate the laser source and the PSD from the acoustic disturbance, these

components are kept in a wood structure enclosure—part (i) in Fig. 16. Acoustic treatment is
applied inside the enclosure and a small glass window is added for the laser beam.
Other required hardware such as a DSP system, amplifiers and filters are placed outside of the

anechoic chamber. An Ithaco 24 dB/octave filter sets the cutoff frequency to 250 Hz; is used for
anti-aliasing as well as a 10� amplification of the PSD signal. An additional Ithaco high-pass
filter, set at 10 Hz; is used to remove the DC offset in the PSD signal to prevent the static position
of the laser from saturating the710 V A/D channels on the DSP board. The sampling rate of the
experiments are set to be 600 Hz because the jitter effect occurs below 300 Hz [54,55].
In the RGPC algorithm, the order of the identified model and controller is chosen to be 16. The

prediction horizon and the control horizon are chosen to be 32 and 4, respectively. The controller
is updated at 1/4 the speed of the system identification process, i.e., 150 Hz:
Figs. 17 and 18 present the computed open- and closed-loop auto-spectrum of the vertical

position signal from the PSD. Although the PSD provides the horizonal position of the beam as
well, the acoustically induced jitter is hardly observed in the horizonal direction.
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Fig. 15. Open-loop (dashed line) and closed-loop (solid line) FRF magnitude plot of the control error microphone

signal for open-closed acoustic enclosure (ts ¼ 500 Hz).
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Fig. 16. Experimental system setup of an optical jitter suppression testbed: (a) schematic diagram of jitter testbed,

(b) top view of schematic diagram, (c) picture of laser source and PSD, (d) picture of turning mirror and FSM.

Experimental parts: (A) HeNe laser, (B) turning flat mirror, (c) fast steering mirror, (D) position sensing detector,

(E) mounting rods, (F) disturbance speakers, (G) anechoic chamber, (H) optics benches, (I) enclosure, (J) laser beam.
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Fig. 17 shows auto-spectrum of vertical position when a band-limited random disturbance is
applied to a single disturbance loudspeaker, which is placed behind the optical bench. The dashed
line is the open-loop response and the solid line is the closed-loop response. A reduction of
15:6 dB is obtained between 30 and 300 Hz:

ARTICLE IN PRESS

Fig. 18. Open-loop (dashed line) and closed-loop (solid line) auto-spectrum estimation with three disturbance sources.

Fig. 17. Open-loop (dashed line) and closed-loop (solid line) auto-spectrum estimation with a single disturbance source.
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Fig. 18 shows the auto-spectrum when three different random disturbances are applied to all
three loudspeakers. In this case, a reduction of 11:9 dB is obtained between 30 and 300 Hz:

9. Conclusion

An adaptive control algorithm is widely used when there are variations in process dynamics and
in the disturbances. In the viewpoint of using an adaptive control, the RGPC algorithm satisfies
the requirements. The dynamics of the process is estimated in the process of the RLS system
identification and a controller based on the GPC concepts is designed from the most up-to-date
system model.
The RGPC algorithm combines the processes of system identification and controller design in a

single process. As a result, the algorithm is efficient when it is implemented to a system because the
application of the RGPC algorithm is much less time consuming than the alternative path of
modelling, design, and implementation of a conventional control system.
The advantages of the algorithm are that no prior system information is required since models

are estimated from real-time data, and that the controller is updated adaptively in the presence of
a changing operating environment.
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