Available online at www.sciencedirect.com

. JOURNAL OF
scnsucs@nmscr SOUND AND
L S VIBRATION
LSEVIER Journal of Sound and Vibration 279 (2005) 201-215

www.elsevier.com/locate/jsvi

Effect of spring non-linearity on dynamic stability of a
controlled maglev vehicle and its guideway system

Xiao Jing Zheng, Jian Jun Wu*, You-He Zhou

Department of Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
Received 1 April 2003; accepted 31 October 2003

Abstract

The non-linear effect of a spring on the dynamic characteristics of a magnetically levitated (or maglev)
vehicle and its guideway system is numerically studied in this paper. A simplified theoretical model of a
maglev vehicle with heavy and forward motions on flexible guideways is suggested to study the coupling
among the motions of vehicle, the vibration of guideways, and the control system of the electromagnetic
suspension. The stable regions and/or the attracting regions of the attractor of the controlled system either
with a non-linear spring or with a linear spring are obtained. It is found that the stable region is strongly
dependent upon the non-linear terms of the spring, the forward velocity of the vehicle, and the control
parameters. Finally, the chaotic response of the system with a non-linear spring is presented.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

As a new kind of transportation means, the magnetically levitated (maglev) vehicles moving on
guideways are found to have better behavior than conventional ground transports, including
higher speed, less friction, and lower noise. It is the high speed with potential safety problems that
has attracted much attention of researchers. At present, there are mainly two types of maglev
vehicles. One is referred to as the electromagnetic system (EMS) whose maglev force is an
attraction and is generated by normal electromagnets, while the other is called as the
electrodynamic system (EDS) whose maglev force is a repellent one and is induced by
superconductors. The equilibrium position(s) of an EMS maglev vehicle is inherently unstable if
no force from a feedback control system is applied to the suspended vehicle [1]. Even though we
apply the feedback control to the EMS maglev vehicle/guideway coupling system, it can still be
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unstable when the control parameters are given improperly. Thus, research on the dynamic
behavior and stability of the EMS maglev vehicle-guideway-control system with high-speed
motion becomes one of the key problems in the safe design of the system.

By using a simplified first order model of the suspended body on a guideway, Chu and Moon [2]
conducted an experiment and theoretical analysis to show the instability of the maglev control
system. Zhou and Zheng [3] discussed the stable regions of control parameters for a linear maglev
system of Moon’s model [1]. Takashi and Yoshihisa [4] observed chaotical phenomenon of the
magnetic suspension system with linear induction motors.

Moon [1] is the first one to study the control behavior of the vehicle modelled by a lumped mass
with a fixed linear spring. Cai et al. [5,6] simulated the dynamic responses of a second order
suspended vehicle/guideway system under a concentrated load and a distributed load moving on
an elastic beam simply supported at the ends. Cai and Chen [7] numerically studied the dynamic
behavior of the moving vehicle and vibration of the guideways with three-degree-of-freedoms
(d.o.f’s) and 5 d.o.f.’s models. Recently, Zheng et al. [8] discussed the stable and dynamic
properties of the system coupled with the vehicle movements, guideway vibration, and control
sub-system on the basis of a second order suspension body with 5 d.o.f.’s. It should be noted that
the springs in the models mentioned above were all considered as linear ones. In practice,
however, the spring is non-linear such as the air spring which is usually used in maglev vehicle
system. Therefore, it is necessary to investigate the effects of the non-linear spring on the dynamic
behavior of such systems.

In this paper, a simplified second order model of a maglev vehicle with a control system moving
on a flexible guideway is suggested to investigate the dynamic stability of a maglev system. The
coupling among the vehicle movements, guideway vibrations, and control system is taken into
account in the theoretical analysis. The control system consists of an electric circuit to generate an
electromagnetic force applied to the primary body, and an air spring, either linear or non-linear,
connecting the primary and the second suspension bodies. The guideway is simplified as an elastic
beam with simply supported ends. The theoretical model suggested here is presented in Section 2.
Section 3 exhibits the governing equations in state space when the method of modal expansion is
used to obtain the dynamic response of guideway vibration. The Runge-Kutta—Merson method
[9] is used to search for the attraction region of stable control, and chaotic response in Section 4.
Numerical results to show the effect of a non-linear spring on the dynamic characteristics are
shown in Section 5. Finally, Section 6 concludes the paper.

2. Theoretical model

For the simplicity, here, we will focus our attention on the control stability of vertical/or heavy
motion of a maglev vehicle with one lump and one carriage which are forwardly moving on a
guideway with transverse vibration in vertical direction.

Fig. 1 shows a schematic drawing of the maglev/guideway system. The ‘““magnetic wheel”, called
the primary suspension body, is suspended by an electromagnetic force generated by a magnetic
induction system between the suspended body and the guideway. The bogie with a carriage body,
called the secondary suspension body, is supported by one linear or non-linear spring and one
damper connected to the primary suspension body.
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Fig. 1. The schematic drawing of a simplified model to a two order suspension maglev vehicle/guideway system with a
control of electromagnetic force F(z).

In the following, we denote F)(f) the electromagnetic force; m") and m® the mass of the
primary and secondary bodies, respectively; b the effective length and A4y the cross-sectional area
of the “magnetic wheel”, respectively; »!) and y® the vertical displacements of the primary and
the secondary suspension bodies, respectively. The reaction force in the air spring and the damper,
dependent on the vertical displacements y(V and y®, is represented by F»(f). The flexible guideway
is treated as an elastic beam of the span length /, the mass density p, the damping coefficient C,
and the flexural rigidity EJ. Let w(x, ) be the transverse deflection in vertical direction, where x is
a position co-ordinate along the direction of forward motion and ¢ is a time variable. The
electromagnetic circuit has N-turns of coil with electric resistance R. The magnetic gap (¢) =
yO(#) — w*(£), where w*(r) = w(x*, f) is the deflection of the guideway at the position of vehicle
x = x*(1).

2.1. Equations for electromagnetic circuit of control system

Assume that the effective magnetic reluctance in the circuit between the ‘“magnetic wheel” and
the guideway be R*(7). Denote the total control current as I(f) applied on the electromagnetic
circuit and Jy a control goal which is the desired gap between the primary suspension body and
the deflected guideway. We can write [3]

I(0)= 1o+ i(1), R*(t) =Ry +r*s(0), (D)

where I is a bias current related to the control goal ¢y, and i(¢) represents the dynamic part of the
control current, R} is the effective reluctance when 6 = dy, r* =2/(uyAo), Ky is magnetic
permeability of vacuum (47 x 10~7 H/m), and s(¢) is a suspension disturbance from the control
goal, i.e.,

s(t) = 8(1) — S = V(1) — w* (1) — do. 2)
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For the dynamic part of the control voltage, V.(¢), applied to the electromagnetic system, we take
the following control law:

Ve= Gis(t) + G23(2), (3)

where G| and G, are the control gains. From the theory of electromagnetic circuits, we can
write [1]

N2%[ R’.it()l)} = —RIO+Vo+ V.

= — Ri(t) + G,V — w* — 8¢) + G (3D — W), 4)

where Vy = IyR is the bias control voltage when 0 = dy. Then the control electromagnetic force
Fi(?) is given by [1]

2 12

Fiy = L0 )

todo [R*(1)]

2.2. Equations for suspended bodies
The static equilibrium of the suspended bodies leads to
N* I}

Q)] @y, — 20 6
(m'Y + m)g iodo R (6)

where ¢ is the acceleration of gravity. Consider a non-linear relation of an air spring [10]
FV(0) = Ky(o? — YK =y = N0 - 0) - K, ()

in which K, K; and K, are the constants of non-linear part of the spring, and K}, represents the
coefficient of rigidity of linear part of the spring. When K, =0, K, =0 and K. = 1, we get the
linear relation of the spring,

F(1) = Ky(® = ). ®)
For the damper, we take the linear relation of the form
(0 = G =3, ©)

where Cj, is the damping coefficient of the damper. Adding Eqgs. (7) or (8) and Eq. (9), we get
Fy(1) = FP(t) + FP(0). (10)

By the second Newton’s law, we can write the equations of motion in the vertical direction for
the primary and secondary suspension bodies

mOY = m Vg — Fi(0) + F(1), (11)

mP§? = mPg — F>(0). (12)
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2.3. Dynamic equation for guideway deflection

According to the theory of Bernoulli-Euler beams, the dynamic equation for the deflection of
guideways in y direction can be expressed as

otw ow Pw  N? (P

E]—+Cj—+p—5= 13
ot T o T oo " (2
where
1 vt—é<x<vl+é
nx)y=< "’ 257 12 (14)

0 else
and v denotes the speed of vehicle of forward movement in x direction.
Egs. (4) and (11)—(13) constitute the basic governing equations of the simplified model of the
maglev vehicle/guideway system shown in Fig. 1. These equations are coupled non-linearly.

3. Modal expansion method and dynamic equations in state space

We introduce the following dimensionless quantities:

(1) @) 5
_(l)zy _(2):);— _:i Z:E _:{ 5 :—0
y l b y l 9 l IO’ l’ 'x Z’ 0 l b
j:i = EP -~ Gyl _ pl _ gl
A8 myp?’ I my m(D’ g 2
m? = @’ j— é’ R - R8<m2(1)v2, o r*m(;)vzl’ ' RII? ’
m / I I mDyp3
- Gl o KPP L GEPL L Gl s
/‘l - m(l)va h - m(l)vz’ 1 — m(l)v39 2 = m(l)vz ( )
Assume that
HEHED PR AGLACE (16)
n=1

where Y,(7) is the nth modal co-ordinate to be determined; &,(X) is the pre-chosen modal function
of nth order free vibration of the guideway. For a simply supported guideway, the modal
functions are

d,(X) = sin nnXx. (17)

Substituting Eq. (16) into Eq. (13), and applying the Galenkin method, we obtain the dynamic
equations for the modal co-ordinates. All the governing equations of the system are now reduced
to a set of ordinary differential equations with the unknowns 3V, %, i and Y, (n =1,2,3, ...).

In the following discussion, for simplicity, we will drop the bar over dimensionless quantities
whenever there is no misunderstanding.
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Introducing the following state variables:

(1)’ '(1)’

X2 =Y (2)7 '(2)3

X3 =Yy X4 =Y
X540 = Yn (l’l = 152,37 )7

Xy =y X5 =1,

Xsy@n—1) = Yu,
we can rewrite the dynamic governing equations of the system in the matrix form

X = AX + B + C = F(x).

Here,
X:[x19x2)x37x4:x5)"'7x5+(2n—1))x5+2n9"']T (n: 192)37"')7
where
0 1 0 0 0 0 0 0 0
-KyK, —-C, KK, Ch 0 0 0 0 0
0 0 0 1 0 0 0 0
KhKc Ch KhKc Ch
m® @ @ p® 0 0 0 0 0
A=| NG TI'G 0 0 -IR Ay A2 A2y A2
0 0 0 0 0 0 1 0 0
—F3F2V1 0 0 0 2F2V1 U] — (1)% —251(/\)1 U2 0
0 0 0 0 0 0 0 0 1
—F3F2V2 0 0 0 2F2V2 U1 0 Uy — (1)% —262602

4r* A
C: |:0,g,0,g,_F1G150,0,F2( R*0+2>V1’0’F2<

T
2

B = |:05y2 _ylaoa_ y(z)ay3a050, i| 5
m

0

4r*

A T
TO+2>V2,...:| .

0

(18)

(19)

(20)

| (_21)

(22)

(23)
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Here

1+ xs)*
yi=(1+m)yg () o

[u%(xlw*éo)

y2 = KK Kp(x3 — x1)° — Ky(KoKe + Kp)(x3 — x1)°,
V3 _]’;]_ﬂ; (x1 — w* = 30)[Gi(x1 — w* — 8p) + Ga(xx2 — ™) — Ruxs]
r*(x2 — w*)(1 + xs5)
RG + r*(x1 — w* — dp)’
Ay = — I'i/(Gy sinint + inG, cos int),
A = — ' Gysinint, w; = i*n*\/EJ]p,
R¥ 2(1 + m(z))g, Iy — 2(1 + m(z))gb’ : C,

+

I =N I = bp - ' 2wy

1 min(r+1/2,1)
vi:/ n(x) sinimdt:/ sin int d¢,
0

max(t—1/2,0)
4r* o ,
v; zﬁfzvi sinint, (i=1,2,3,...). (24)
0
When K, =0, K, =0 and K. = 1, the dynamic equation (19) describes the system with linear
springs.

4. Numerical analysis

In this section, we present numerical algorithms for searching the attraction region in the state
space, and the chaotic responses.

4.1. The region of attraction of control goal

The notation X(X{,?) is designated a solution of Eq.(19) starting from a pre-given initial
condition X(7)|,—y = Xg. Let Q be the region of attraction of a pre-specified control goal for the
system described by X, and L be a set of all points on its boundary. Then we can say X €, if
and only if lim,_, ., X(X{', 1) = X, i.e., lim,_, o, d(X(X;;1),X.,) = 0, in which d(-, ) represents the
distance with the Euler’s norm. Assume that a point X{ be in the set L, we can express L as

L= {xg| lim d(X(X5 — em 1), X)) = 0, lim d(X(X] + en; t),Xoo)aéO} (25)

in which ¢ is arbitrary small quantity, and n is the normal vector of L, pointing away from Q. A
search algorithm for L is presented next.

Step 1: Choose two initial points a and b, in the state space. Then we numerically integrate
Eq. (19) with a and b as initial conditions. Observe whether or not the solutions converge to the
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control goal. When both are in or not in Q, we change one of them until one is in  and another
one is not in Q. Without losing generality, assume a in Q and b not in Q. In order to find a point on
the boundary L, we take

x; = Ja+ (1 — A)b, (26)

where 0 <A< 1 and the value of 4 is pre-specified. Next, check whether x; is in Q or not. If x; is in
Q, then we take a; = x; and by = b. Otherwise, a; = a and b; = x;. Replace a and b in Eq. (26) by
a; and by, respectively, and repeat the process. We obtain a set of points with (a;,b;) (j =
2,3, ...,m) until the following condition:

by — anll = 6”b — al|<e (27)

is satisfied. Here, 0 = 1 — 4 or 4, and ¢ is a pre-given precision. Then,
Xf)k = Xp = Ay + (1 - i)bm (28)
is on the boundary L. In the numerical calculations, we take 4 = %
Step 2: After the first point on the boundary L is found, we continue to find its neighboring
point on L. Since © in general has a high dimension, searching for the boundary L can be
computationally intensive. In the following, we focus on the initial conditions of the gap of vehicle
motion. In other words, we look at a two-dimensional projection of 2, which has a one-
dimensional boundary. The attraction region and its boundary are dependent upon the

parameters of the dynamic system, especially, the control parameters G| and Go».
Let x;' = (x%,x%)" be the point found on L. The search for the next point starts from

where d; is the given step. We then identify if (X, x3)) is in Q or not. Next, we add or subtract 6,
to the coordinate x3, until (X}, x3,+>) is opposite to (£}, x3;). At this time, we apply step 1 to
find another point on L.

It should be noted that maximum or minimum of xj;, can appear in the curve L. When this
happens, we change the operation from ‘+’ to ‘—’, or from ‘-’ to ‘+’ in Eq. (29).

4.2. Chaotic responses

Due to the non-linear factors in the dynamic system, chaotic motions can occur. From the
theory of chaos [10], we know that a chaotic motion can be determined by its characteristics
including Poincaré-mapping pattern, phase portrait, continuous density of power spectrum,
fractal dimension of the chaotic attractor, and positive Lyapunov exponent. We shall consider the
power spectrum density and Lyapunov exponents.

4.2.1. Density of power spectrum
Denote a time-response by x(¢). Then, its density of power spectrum can be formulated by [11]

2

1 /T .
Clw,) = |&(w)]? = Tlii‘éo = /0 x(He ' di| . (30)
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Here, o, indicates the frequency variable. A chaotic motion display the characteristic of
continuous broadband function of density of power spectrum with respect to w,. Here, we use the
fast Fourior transform (FFT) to calculate the density of power spectrum of x(¢).

4.2.2. Lyapunuv exponents
Let X(£%) = (x1(r*), x2(¢*), x3(¢%), ..., x2(t%))" be a solution of the dynamic differential equation
(19) at instant time ¢*. Denote

A o)
ox1 0x3 0x,,
% % %
DF(X(r*)) = | dx1 0Ox; 0x , (31)
fn n fn
L Ox1  0x3 . 0xy | X=X(r*)

which is called the fundamental matrix of the differential equations (19). Assume w(¢) be a tangent
vector in the solution space of Eq. (19) at point X(¢*). That is, the tangent vector satisfies the
following linear homogenous differential equation:

w(f) = DE(X(*))w(t), t>t*. (32)
Denote ®(z,1*) being a matrix composed of fundamental solutions of Eq. (32) with initial
condition @(¢*,r*) = I where I is a unit square matrix of order n x n. If w(¢*)/|lw(¢*)|| is a unit

vector to Eq. (32) at 7= r*, then, the solution of Eq. (32) with this initial condition can be
formulated by

w(t, 1) = ®(t, *)w(e™) /IIw( )l (33)
where w(0) be an initial disturbance to Eq. (32) at t* = 0. Dividing the time interval [0, #*] by the
nodes 0 = tg<t; <t3<---<t, = t*, by means of the transition matrix of the solution

@, = O(t), 1), (34)
and Eq. (33) at each time step, we can get
W(tn, tn1) = @, Wty 1,y 2)/IIW(tn—1, 1)l

n—1
= =®,0, @, D, wWO0) / ( 11 v, z,-l)n), (35)
j=0

in which w(0,7_;) = w(0). Hence, we have
n—1

W13, W(0) = @, @, @, - D, W(0) = W(ta t1) [ | W10 1)l (36)
=0
The largest Lyapunov exponent [11] is given by
L NG, w(O))]

37
TN 37
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In practical calculations, the maximum index n of time step is a finite integer, e.g., N. For this
case, we have an approximate value of oy, denote it by oy

1 [[W(zy, w(0))]|
N
o) =—In————, (38)
Py Iw(0)|
Substituting Eq. (36) into Eq. (38), we get
1 N
on =— Y In|w(, ). (39)
v 5=
When a{v is convergent as N increases, i.e., the condition
6" — oVl <és (40)

is satisfied, we get an approximate value of o; of Eq. (37). Here, &, is a pre-given precision.

5. Numerical results and discussions

This section presents numerical results. Table 1 lists geometric and physical parameters used in
the numerical simulations.

Fig. 2 exhibits a comparison of dynamic responses of vertical displacement x; of the primary
suspension body, i.e., “magnetic wheel” in the maglev vehicle system, with linear springs
(K, =0, K, =0, K. =1)and non-linear spring (K, = 1, K, = 1, K. = 3) when the vehicle has a
forward velocity v = 100 m/s, the dynamic control parameters are G; = 0.22 and G, = 1.84, and
the same initial conditions. For the case of the linear spring, Fig. 2(a) shows a convergent response
to the primary suspension body under the control parameters. However, it is found in Fig. 2(b)
that the dynamic system becomes unstable when some non-linear terms of the spring are
considered. This tells us that there is notable effect of the non-linear terms of spring on the
stability of the dynamic control system for some cases of the control parameters.

Fig. 3 shows the change of attraction region of the control goal. In Fig. 3(a), the attraction
region of the system with non-linear spring is included in the region of the system with linear
spring when the control parameters G; = 0.26 and G, = 6.22, that is, the attraction region for the
non-linear case is smaller than that for the linear case. When the control parameters G; = 0.26
and G, = 155.56, however, the effect of non-linear parts of the spring on the dynamic system is
quite different from the former case, which is shown in Fig. 3(b). It is found that there are
three subregions denoted by “A”, “B” and “C”’. When an initial state is located in the subregion

Table 1

Geometrical and physical parameters of the maglev vehicle system

o 112.5 m® 2.5 R} 3.2 x 10°
EJ 18.7 Ay 4.5x% 107 r* 2.9 x 10°
C, 2.1 x107° b 0.2 R 1.5 x 1076
do 4.0 %104 K 55.6 N 320

Cy 20.8
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(b) t
Fig. 2. A comparison of dynamical responses of vertical displacement to the primary suspension of the maglev system
with (a) the linear spring and (b) the non-linear spring.

“A”, the system under control is stable for the case either linear spring or non-linear spring
(K, =1, K, =1, K, =3). In this region, the non-linear part of the spring does not influence the
stability of the system. When an initial state is taken in the subregion “B”, however, the dynamic
control system with the non-linear spring displays stable motion, but the system with linear spring
is unstable to the same control goal. In the subregion “C”, the system with linear spring is stable
but with non-linear spring is unstable. This fact shows that the non-linear part of the spring
notably influences the attraction region of the maglev vehicle system.

The attraction region and stability of the maglev control system as a function of the control
parameters G; and G, are plotted in Fig. 4. In Fig. 4(a), (b), the control parameter G; = 0.26,
while G, varies. While, Fig. 4(c), (d) shows the attraction regions for the case that G, = 38.88
when G varies.

It is found that when G, increases, the attraction regions for both linear and non-linear spring
are shrinking towards the control goal of the system. The numerical simulation shows, however,
the suppressing ability to an initial disturbance decreases with increment of G;. From Fig. 4, we
can find the attraction regions of the dynamic system under same control parameters are
distinctively different when the connect spring is considered non-linear part from that when it is a
linear one. In practice, it is unavoidable that there are some non-linear factors in the spring. In
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1

Fig. 3. Comparison of the attraction regions of the asymptotically stable control for the maglev system with the linear
and the non-linear springs under two sets of the controlling parameters: (a) G; = 0.26, G, = 6.22; (b) G| = 0.26,
G, = 155.56.

this case, we have to use the theoretic analysis of the model with the non-linear spring to deal with
the safety design of high-speed vehicle.

When the control parameters are pre-chosen, e.g., G; = 26.0 and G, = 217.8, the attraction
region of the system is also related to the forward moving velocity v. Fig. 5 shows the variation of
the attraction region to the maglev control system with forward velocity v = 50, 100 and 150 m/s.
With the increment of the forward speed, the attraction region becomes less generally under a
given control. At the same time, there are exceptions when the maglev vehicle system with low
speed is unstable but is stable when the maglev control system has high-forward speed.

Finally, we give an example for a non-linear system to show that the maglev control system with
the non-linear spring exhibits the chaotic motion. For this purpose, we consider a periodic
excitation f sin wt exerted on the maglev vehicle. Fig. 6 shows the time-response of the vertical
displacement, x;(7), its phase portrait in the state space, the Poincaré-mapping pattern, the power
spectrum density, and the largest Lyapunov exponent. Here, /' = 0.20, o = 5.87 x 1073, G| =
3.74 x 1072, G = 10.16. It is found from Fig. 6 that the responses all display the characteristic of
chaotic motion, i.c., a chaotic attractor because it has a continuous decreasing power spectrum,
and a positive Lyapunov exponent. This phenomenon of chaotic motion cannot be found in the
maglev vehicle system with a linear spring.
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Fig. 4. Dependence of attraction regions of the dynamic control system on the control parameters G; and G,: (a) with
the linear springs (G, = 0.26); (b) with the non-linear springs (G; = 0.26); (c) with the linear springs (G, = 38.88);
(d) with the non-linear springs (G, = 38.88).
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Fig. 5. The influence of the vehicle speed on the attraction region of the maglev vehicle system with non-linear spring
under the control parameter G; = 26.0 and G, = 217.8.

6. Conclusions

Based on the simplified model of a maglev vehicle/guideway system with a non-linear spring,
the numerical simulations are performed on the dynamical stability and the attraction regions.
The main conclusions are as follows.
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Fig. 6. A chaotic motion of the non-linear spring maglev vehicle system under an external excitation f = 0.2, w =
587 x 1073, G| = 3.74 x 1072, G, = 10.16: (a) time-response of vertical displacement; (b) phase portrait; (c) Poincaré
map; (d) density of power spectrum; (e) the largest Lyapunov exponent.

(1) The non-linear spring has significant effects on the attraction regions of the dynamic control
system as well as the stability of the system.

(2) The attraction regions of the system with a non-linear spring are different from those with a
linear spring, and they are affected by the control parameters profoundly. At certain control
parameters G| and G, the attraction region of the system attains to the largest one, no matter for
linear or non-linear spring. But with the increment of vehicle speed, the attraction region becomes
less and less for the given control parameters.
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(3) When the maglev vehicle system under a certain control is subjected to a periodic excitation,
the chaotic phenomenon has been found in the system with a non-linear spring. However, no
chaos appears in the system with a linear spring.

In reality, the non-linear effect of the spring is unavoidable in the maglev vehicle/guideway
control system. Therefore, more researches on the system should be paid on the non-linearity of
spring such that the safety design is ensured.
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