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Abstract

The analytical formulas for determining optimum parameters of Maxwell model-defined fluid dampers
used to link two adjacent structures are derived in this paper using the principle of minimizing the averaged
vibration energy of either the primary structure or the two adjacent structures under a white-noise ground
excitation. Each structure is modelled as a single-degree-of-freedom system, which is connected to the other
structure through a Maxwell model-defined fluid damper. The derived formulas explicitly express the
optimum parameters of the fluid damper, i.e., the relaxation time and the damping coefficient at zero
frequency, as the functions of the frequency and mass ratios of two adjacent structures. The dynamic
analysis shows that the fluid damper of optimum parameters can significantly reduce the dynamic responses
of most adjacent structures under the white-noise ground excitation. The fluid damper of optimum
parameters is then applied to the adjacent structures subjected to either a filtered white-noise ground
excitation or the El Centro 1940 NS ground excitation. The results demonstrate that the fluid damper of
optimum parameters derived based on the white-noise ground excitation is also beneficial to reduce the
responses of the adjacent structures under the filtered white-noise ground excitation and the El Centro
ground excitation.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The possibility of using active or passive control devices to link adjacent structures has been
explored in recent decades. This approach takes advantage of the interaction between adjacent
structures, which is expected not only to overcome the problem of pounding between adjacent
structures but also to reduce the seismic or wind-induced responses of the adjacent structures if
the parameters of control devices are selected properly. Gurley et al. [1] considered two uniform

ARTICLE IN PRESS

*Corresponding author. Tel.: +852-27666050; fax: +852-23346389.

E-mail addresses: hpzhu@hust.edu.cn (H.P. Zhu), ceylxu@polyu.edu.hk (Y.L. Xu).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.10.035



shear beams, representing two adjacent tall buildings, linked by a Voigt model-defined damper
against wind excitation. The beneficial stiffness and damping ratio of the Voigt model-defined
viscoelastic damper were then found through extensive numerical parametric studies in terms of
the minimization of the peak amplitude of the response transfer function of the primary structure
under harmonic excitation. Luco and De Barros [2] used the same shear beam models and
optimum principle as used by Gurley et al. [1] to investigate the optimum distribution of the Voigt
model-defined viscoelastic dampers against earthquake excitation. The optimum damper ratios
were determined for a class of adjacent structures with different heights and floor masses.
Iwanami et al. [3] carried out an analytical study and found the optimum damping ratio and
stiffness of the Voigt model-defined damper linking two adjacent buildings for the particular case
m1k1 ¼ m2k2 by assuming each of the linked structures as a single-degree-of-freedom system.
Zhang and Xu [4] performed the numerical investigations of dynamic characteristics and seismic
responses of two adjacent structures linked by discrete viscoelastic dampers. They identified the
optimum parameters of the Voigt model-defined dampers by maximizing the modal damping
ratios through extensive numerical parametric studies.
All the above studies to find the optimum parameters of the Voigt model-defined dampers

linking two adjacent structures, however, were carried out for specific adjacent structures, and no
analytical formulas for the optimum parameters of dampers were provided. From a practical use
of viewpoint, it is better to provide general analytical formulas to facilitate the engineers’ selection
of the optimum parameters of dampers linking two adjacent structures as what has been done for
the tuned mass dampers by Warburton [5] and for mega-substructure systems by Feng and Mita
[6]. To this end, Zhu and Iemura [7] modelled two adjacent structures as two single-degree-of-
freedom (s.d.o.f.) systems and derived the general analytical formulas for the optimum stiffness
and damping ratio of the Voigt model-defined damper connecting two s.d.o.f. systems subjected
to a white-noise ground excitation.
In recent years, the Maxwell model-defined fluid dampers have found many applications, such

as those described by Constantinou and Symans [8] and Soong and Dargush [9], in mitigating
wind- or seismic-induced response of large civil structures. The Maxwell model-defined fluid
dampers have also been proposed to link adjacent buildings against earthquake excitation by
Zhang and Xu [10]. They obtained the beneficial damper relaxation time and damping coefficient
at zero frequency for achieving the maximum modal damping ratios and the maximum seismic
response reduction of two shear buildings through numerical parametric studies. However, no
general analytical formulas were given for the optimum parameters of fluid dampers connecting
two adjacent buildings.
This study thus aims to derive the analytical formulas for the optimum relaxation time and

damping coefficient at zero frequency of the Maxwell model-defined fluid dampers connecting two
adjacent structures. Each structure is modelled as a single-degree-of-freedom system, which is
connected to the other structure through the Maxwell model-defined fluid damper. The optimum
parameters of the fluid damper are determined by minimizing the averaged vibration energy of
either the primary structure or the two adjacent structures under a white-noise ground excitation.
The fluid damper of the optimum parameters determined based on the white-noise ground
excitation is then applied to link the adjacent structures subjected to either a filtered white-noise
ground excitation or the El Centro 1940 NS ground excitation to examine the applicability of the
analytical formulas to practical problems.
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2. Basic equations

Let us consider two adjacent structures modeled as two s.d.o.f. systems as shown in Fig. 1. One
s.d.o.f. system is called the primary structure or the P-structure and the other is the auxiliary
structure or the A-structure. The natural frequencies and the damping ratios of the P-structure
and the A-structure are oP;oA and xP; xA; respectively. Both structures are subjected to the same
base acceleration. The effects due to spatial variations of the ground motion or due to
soil–structure interactions are neglected. The studies carried out by Constantinou and Symans [8]
show that the fluid damper applicable to civil structures can be described by the first order
Maxwell model proposed by Bird et al. [11]:

fGðtÞ þ l
dfGðtÞ
dt

¼ C0 ’xðtÞ; ð1aÞ

’xðtÞ ¼ ’XAðtÞ � ’XPðtÞ; ð1bÞ

where fGðtÞ is the damper force, l is the relaxation time, C0 is the damping coefficient at zero
frequency, ’xðtÞ is the damper velocity, and ’XPðtÞ and ’XAðtÞ are the horizontal relative velocities of
the P- and A-structures, respectively, with respect to the ground. The relaxation time l can be
approximately equal to C0=k; that is, the ratio of the damping coefficient at zero frequency C0 to
the spring stiffness coefficient k of the damper system, in which one spring and one dashpot are
connected in series (see Fig. 1).
The equations of motion of the structure–damper system can be written as

MP
.XPðtÞ þ CP

’XPðtÞ þ KPXPðtÞ � fGðtÞ ¼ �MP
.XgðtÞ; ð2aÞ

MA
.XAðtÞ þ CA

’XAðtÞ þ KAXAðtÞ þ fGðtÞ ¼ �MA
.XgðtÞ; ð2bÞ

where MP;KP and CP denote the mass, stiffness and damping coefficient of the P-structure,
respectively; XPðtÞ is the horizontal relative displacement of the P-structure with respect to the
ground; MA;KA and CA denote the mass, stiffness and damping coefficient of the A-structure,
respectively; XAðtÞ is the horizontal relative displacement of the A-structure with respect to the
ground; and .XgðtÞ is the horizontal ground acceleration, which is assumed as a white-noise
random process with a constant spectral density of Sgg:
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The displacement responses of the P-structure and the A-structure in the frequency domain can
be obtained from Eqs. (1) and (2) as

XPðjoÞ ¼
aPðjoÞ
DðjoÞ

.XgðjoÞ; XAðjoÞ ¼
aAðjoÞ
DðjoÞ

.XgðjoÞ; ð3a;bÞ

where

DðjoÞ ¼ a6ðjoÞ
6 þ a5ðjoÞ

5 þ a4ðjoÞ
4 þ a3ðjoÞ

3 þ a2ðjoÞ
2 þ a1ðjoÞ þ a0;

aPðjoÞ ¼ �½ð1� ðjolÞ2Þðo2A þ 2xAoAðjoÞ þ ðjoÞ2 þ ð1þ mÞD0ðjo� ðjoÞ2lÞÞ�;

aAðjoÞ ¼ �½ð1� ðjolÞ2Þðo2P þ 2xPoPðjoÞ þ ðjoÞ2 þ ð1þ mÞD0ðjo� ðjoÞ2lÞÞ�; ð4Þ

in which

a0 ¼ o2Po
2
A; a1 ¼ 2xPo

2
AoP þ 2xAo

2
PoA þ o2AD0 þ o2PmD0;

a2 ¼ o2A þ o2P þ 4xPxAoPoA þ 2xAoAD0 þ 2xPoPmD0 � lD0o2A � mlD0o2P � l2o2Ao
2
P;

a3 ¼ 2xAoA þ 2xPoP þ ð1þ mÞD0 � 2lD0xAoA � 2mlD0xPAoP � 2l2xPoPo2A � 2l2xAo
2
PoA;

a4 ¼ 1� lD0ð1þ mÞ � l2ðo2P þ o2A þ 4xPxAoPoAÞ;

a5 ¼ �2l2ðxPoP þ xAoAÞ; a6 ¼ �l2; m ¼
MP

MA

; D0 ¼
C0

MP

and j ¼ imaginary unit:

ð5Þ

It can be shown that the time-averaged total relative energy of the P-structure under the white-
noise ground excitation is [12]

%EP ¼ 1
2

MP/ ’X2
PðtÞSþ 1

2
KP/X 2

PðtÞS ¼ MP/ ’X2
PðtÞS ¼

1

2p
MP

Z
N

�N

S ’XP
’XP
ðjoÞ do; ð6Þ

where S ’XP
’XP
ðjoÞ is the power spectral density of the velocity response of the P-structure.

In consideration of Eq. (3) and ’XPðjoÞ ¼ joXPðjoÞ; the time-averaged energy of the P-structure
can be obtained as [13]

%EP ¼
MPSgg

2pj

Z
N

�N

ðjoaPðjoÞÞðjoaPðjoÞÞ
�

DðjoÞD�ðjoÞ
dðjoÞ ¼

WPMPSgg

2a6D
; ð7Þ

where

ðjoaPðjoÞÞðjoaPðjoÞÞ
� ¼ b0ðjoÞ

10 þ b1ðjoÞ
8 þ b2ðjoÞ

6 þ b3ðjoÞ
4 þ b4ðjoÞ

2 þ b5;

D ¼ a26a
3
1 þ 3a6a5a3a1a0 � 2a6a5a2a

2
1 � a6a4a3a

2
1 � a6a

3
3a0 þ a6a

2
3a2a1 þ a35a

2
0 � 2a25a4a1a0

� a25a3a2a0 þ a25a
2
2a1 þ a5a

2
4a
2
1 þ a5a4a

2
3a0 � a5a4a3a2a1;

WP ¼ b0l0 þ a6b1l1 þ a6b2l2 þ a6b3l3 þ a6b4l4 þ ða6b5=a0Þl5; ð8Þ
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in which

b0 ¼ �l4; b1 ¼ 2l2 � 2D0l
3 � 2l4o2A þ 4l4x2Ao

2
A � 2mD0l

3;

b2 ¼ � 1þ 2lD0 þ 4l
2o2A � 8l2x2Ao

2
A � 4l2D0xAoA � l2D20 � 2l

3D0o2A � ðloAÞ
4 þ 2mDl0

� 4ml2D0xAoA � 2ml2D20 � 2ml
3o2AD0 � m2l2D20;

b3 ¼ �2o2A þ 4x2Ao
2
A þ 4xAoAD0 þ D20 þ 2lD0o

2
A þ 2l2o4A þ 4mxAoAD0 þ 2mD20 þ 2mlo

2
AD0 þ m2D20;

b4 ¼ �o4A; b5 ¼ 0;

l0 ¼ �a6a3a1a0 þ a6a2a
2
1 � a25a

2
0 þ 2a5a4a1a0 þ a5a3a2a0 � a5a

2
2a1 � a24a

2
1 � a4a

2
3a0 þ a4a3a2a1;

l1 ¼ �a5a1a0 þ a4a
2
1 þ a23a0 � a3a2a1; l2 ¼ �a6a

2
1 � a5a3a0 þ a5a2a1;

l3 ¼ a6a3a1 þ a25a0 � a5a4a1; l4 ¼ a6a5a1 � a6a
2
3 � a25a2 þ a5a4a3;

l5 ¼ a26a
2
1 þ a6a5a3a0 � 2a6a5a2a1 � a6a4a3a1 þ a6a

2
3a2 � a25a4a0 þ a25a

2
2 þ a5a

2
4a1 � a5a4a3a2;

In a similar way, the time-averaged energy of the A-structure can be obtained as

%EA ¼
MASgg

2pj

Z
N

�N

ðjoaAðjoÞÞðjoaAðjoÞÞ
�

DðjoÞD�ðjoÞ
dðjoÞ ¼

WAMASgg

2a6D
; ð9Þ

where

WA ¼ d0l0 þ a6d1l1 þ a6d2l2 þ a6d3l3 þ a6d4l4 þ ða6d5=a0Þl5; ð10Þ

in which

d0 ¼ �l4; d1 ¼ 2l2 � 2D0l
3 � 2l4o2P þ 4l4x2Po

2
P � 2mD0l

3;

d2 ¼ � 1þ 2lD0 þ 4l
2o2P � 8l2x2Po

2
P � 4l2D0xPoP � l2D20 � 2l

3D0o2P � ðloPÞ
4 þ 2mDl0

� 4ml2D0xPoP � 2ml2D20 � 2ml
3o2PD0 � m2l2D20;

d3 ¼ �2o2P þ 4x2Po
2
P þ 4xPoPD0 þ D20 þ 2lD0o

2
P þ 2l2o4P þ 4mxPoPD0 þ 2mD20 þ 2mlo

2
PD0 þ m2D20;

d4 ¼ �o4P; d5 ¼ 0:

The total time-averaged energy of the two adjacent structures linked by a fluid damper
subjected to the white-noise ground excitation can be obtained by adding Eqs. (7) and (9)
together, that is,

%E ¼ %EP þ %EA ¼
ðWPMP þ WAMAÞSgg

2a6D
: ð11Þ

3. Formulas for optimum parameters

The structural optimization criteria depend on the dynamic forces acting on the structure and
the structural response quantities of interest. Minimizing the story drift or the absolute
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acceleration of a controlled structure subjected to a ground motion has been considered as an
optimization objective [5]. The study of Hayen and Iwan [14] further shows that it is the relative
vibration energy of the structure to the ground that provides an upper bound for the absolute
value of the story drift. Thus, the relative vibration energy of the structure is selected as the
structural response quantity of interest in this study. Furthermore, to derive the explicit formulas
for the optimum parameters of the fluid damper as the function of the main structure parameters,
the white-noise ground motion is assumed.

3.1. The first optimization criterion

The first optimization criterion is to minimize the relative vibration energy of the primary
structure (the P-structure) only. Correspondingly, the following two conditions should be
satisfied:

@ %EP

@x
¼ 0;

@ %EP

@w
¼ 0; ð12Þ

where x ¼ C0=2MPoP and w ¼ loP are the damping ratio at zero frequency and the non-
dimensional relaxation time, respectively.
Since the structural damping ratio in the original adjacent structures is small compared with

that generated by the fluid damper, the structural damping of the adjacent structures is assumed
to be zero in the derivation of the formulas. This simplification ensures that the formulas can be
explicitly expressed as functions of the mass and frequency ratios of the two structures only. This
simplification also implies that the structural damping has no significant effect on the optimum
parameters of the fluid damper. The rationality and two expectations of this simplification will be
examined in the numerical examples in which the structural damping ratios of adjacent structures
will be included. As a result, substituting xP ¼ xA ¼ 0 into Eq. (7) and then solving Eq. (12) give
the optimum parameters of the Maxwell model-defined damper linking two adjacent structures as
(1) when bo1:

xopt ¼
ð1� b2Þ

ffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mb4 þ mð3þ 4mÞ þ ð4þ 6mÞb2

q ;

wopt ¼
ð1þ 2mþ b2Þ

ffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mb4 þ mð3þ 4mÞ þ ð4þ 6mÞb2

q ; ð13a;bÞ

(2) when b ¼ 1:

xopt ¼ 0; wopt ¼ 0; ð13c;dÞ

(3) when b > 1:

xopt ¼
ðb2 � 1Þ

ffiffiffi
m

p
2ð1þ mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ b2

q ; wopt ¼ 0; ð13e; fÞ

where b ¼ oA=oP:
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It is seen from Eqs. (13c,d) that when the natural frequency of the P-structure is equal to the
A-structure, the optimum damping ratio and relaxation time of the damper are zero, which
indicates that the fluid damper does not function at all. Another special case is that the natural
frequency of the A-structure is equal to zero, that is, the A-structure becomes only a mass block
connected to the P-structure through a fluid damper. The optimum parameters of the fluid
damper used for this special case, where the frequency ratio b is equal to zero, can be found from
Eqs. (13a,b) as

xopt-TMD ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4m

p ; wopt-TMD ¼
1þ 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4m

p : ð14a;bÞ

Clearly, these formulas are different from those for a tuned mass damper connected to a
building through a spring and a viscous damper arranged in parallel [9]. The general
understanding of Eq. (13) based on the first optimization criterion for the optimum parameters
of the fluid damper linking the adjacent structures is given as follows.
First of all, Eq. (13) demonstrates that the optimal parameters x and w depend on the mass and

frequency ratios of the two adjacent structures only. The variations of the optimum parameters x
and w of the fluid damper with the mass and frequency ratios of the two structures are plotted in
Fig. 2. Only the value w when bo1 is shown in Fig. 2b because the optimum value w is equal to
zero when bX1: It is seen that when the natural frequency of the A-structure is larger than that of
the P-structure (i.e., b > 1), the optimum damping ratio increases with increasing frequency ratio b
while the optimum relaxation time is equal to zero. This implies that when the A-structure is
stiffer than the P-structure, the stiffness of the fluid damper should be infinitely large and the fluid
damper actually becomes a viscous damper that dissipates the vibration energy of the P-structure.
When the natural frequency of the A-structure is smaller than that of the P-structure (i.e., bo1),
the optimum damping ratio increases moderately with decreasing frequency ratio b while the
optimum relaxation time remains almost unchanged with the frequency ratio. It can also be
observed from Fig. 2 that the optimum damping ratio and relaxation time of the damper depend
on the mass ratio m of the two structures. The optimum damping ratio achieves its maximum
value when m ¼ 1 for a given frequency ratio, and it decreases as m is away from unit. The
optimum relaxation time, however, always increases as m increases, which implies that the smaller
is the mass of the A-structure, the less the stiffness of the damper.
To examine the control effectiveness of the fluid damper, the root mean square (r.m.s.) values of

relative displacement response of the P-structure and the A-structure linked by the fluid damper of
optimum parameters x and w under the white-noise ground motion are compared with those of the
two adjacent structures subjected to the same ground motion but without control. The control
effectiveness indexes are accordingly defined as

RP ¼
/XPSControlled

/XPSUncontrolled

; RA ¼
/XASControlled

/XASUncontrolled

; ð15Þ

where /XPSControlled and /XASControlled denote the r.m.s. values of relative displacement response
of the P-structure and the A-structure, respectively, linked by the fluid damper of optimum
parameters and under the white-noise ground motion. /XPSUncontrolled and /XASUncontrolled

denote the r.m.s. values of relative displacement response of the P-structure and the A-structure,
respectively, subjected to the same ground motion but without any control. In the computation of
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the effectiveness indexes, the structural damping ratios xP and xA of the two structures are
included and taken as 0.02 to confirm the rationality and two expectations of the simplification
used in the derivation of formulas for the optimum parameters of the damper and to consider real
situation as well.
The variations of the control effectiveness indexes RP and RA with the mass ratio m and the

frequency ratio b are deployed in Fig. 3 in a three-dimensional form and in Fig. 4 in a two-
dimensional form. It is seen that the optimal control effectiveness significantly depends on
the frequency ratio b: When the frequency ratio b approaches unit, the damper has no effect on
the P-structure and actually enlarges the response of the A-structure when the mass ratio is
over 5. When the frequency ratio increases from unit or decreases from unit, the response
of the P-structure becomes smaller and smaller. The control effectiveness also increases with
decreasing mass ratio to certain level. For instance, at a frequency ratio of 2 and a mass ratio
of 2, the response of the P-structure can be reduced by about 60%. For the A-structure,
if the frequency ratio is larger than 1.5, its response is also reduced significantly although
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Fig. 2. Variations of optimum parameters with mass and frequency ratios (Criterion 1): (a) the optimum damping

coefficient at zero frequency x; (b) the optimum relaxation time w:
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the first optimization criterion does not considers the minimization of the A-structure response.
However, if the frequency ratio is between 0.8 and 1.0 and the mass ratio is over 5, the response
of the A-structure will be larger than that of the same structure without control. It is also
seen from Figs. 4(c,d) that there is a optimum mass ratio, by which the response of the structure
is the smallest. Furthermore, the optimum mass ratio is quite small and different for the two
structures.

3.2. The second optimization criterion

The second optimization criterion is to minimize the total vibration energy of the two adjacent
structures with the following two conditions being satisfied:

@ %E

@x
¼ 0;

@ %E

@w
¼ 0: ð16Þ
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Fig. 3. Variations of control effectiveness indexes with mass and frequency ratios (Criterion 1): (a) P-structure,

(b) A-structure.
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Fig. 4. Effects of mass and frequency ratios on control performance (Criterion 1): (a) RP vs. b; (b) RA vs. b; (c) RP vs. m;
(d) RA vs. m:
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Compared with the first optimization criterion that focuses on the vibration reduction of the
P-structure only, the second criterion treats the two structures of the same importance. Thus, the
name of which structure is P-structure or A-structure is not essential. To facilitate the following
discussion, the frequency ratio is then restricted to bp1; that is, the P-structure is stiffer than the
A-structure. However, the obtained results are also applicable to the case of bg1 only if the
names of the two structures are swapped.
Again, the structural damping ratios of the two structures are assumed to be zero when deriving

the optimization formulas based on the second criterion. By assuming the structural damping
ratios xP ¼ xA ¼ 0 in Eq. (11) and then substituting Eq. (11) to Eq. (16), the optimum parameters
of the fluid damper can be obtained as
(1) when mX1:

xopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ m2Þðm2 þ b2Þð1� b2Þ2

q
ð1þ mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðð8� mÞb4 þ mð8m� 1Þ þ 18mb2Þ

q ;

wopt ¼
ððm� 2Þb2 þ mð2m� 1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm2 þ b2Þðð8� mÞb4 þ mð8m� 1Þ þ 18mb2Þ

q ; ð17a;bÞ

(2) when mo1 and b2omð2m� 1Þ=ð2� mÞ:

xopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ m2Þðm2 þ b2Þð1� b2Þ2

q
ð1þ mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðð8� mÞb4 þ mð8m� 1Þ þ 18mb2Þ

q ;

wopt ¼
ððm� 2Þb2 þ mð2m� 1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm2 þ b2Þðð8� mÞb4 þ mð8m� 1Þ þ 18mb2Þ

q ; ð17c;dÞ

(3) when mo1 and b2Xmð2m� 1Þ=ð2� mÞ:

xopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ m2Þð1� b2Þ2

q
2ð1þ mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ mÞðmþ b2Þ

q ; wopt ¼ 0: ð17e; fÞ

Eq. (17) also shows that the optimum parameters x and w of the fluid damper depend on the
mass and frequency ratios of the two structures only. The variations of the optimum damping
ratio at zero frequency x and the optimum relaxation time w with the mass and frequency ratios of
the two structures, m and b; are shown in Fig. 5. It is seen that the value of the optimum parameter
x decreases as the frequency ratio and the mass ratio increase. The value of the optimum
parameter w decreases with increasing frequency ratio but it increases with increasing mass ratio.
The variations of control effectiveness indexes RP and RA with the mass and frequency ratios m
and b obtained from the second optimization criterion are shown in Fig. 6 in a three-dimensional
form and in Fig. 7 in a two-dimensional form. It is seen that the response of the P-structure is
always smaller than unit except when the mass of the P-structure is further less than the mass of
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A-structure or the frequency ratio is equal to 1. The response of the P-structure decreases with
decreasing frequency ratio and mass ratio when the mass ratio is greater than a value around 0.5.
The response of the P-structure increases with decreasing mass ratio when the mass ratio is less
than a value around 0.5. To be effective in reducing the response of the A-structure, the mass ratio
of the two structures should not be too large and the frequency ratio should not approach the
unit. In general the response of the A-structure decreases with decreasing frequency ratio and
mass ratio if the mass ratio is greater than a value around 0.5.
In summary, the two optimization criteria proposed in this study can explicitly express the

optimum parameters of the Maxwell model-defined fluid damper linking two adjacent structures
as the function of the mass and frequency ratios of the two structures if the structural damping
ratios of the structures are assumed to be zero and the ground motion is assumed to be a white
noise excitation. The results show that with either the optimization criterion, the control
effectiveness of the damper increases as the difference of the natural frequencies of the two
structures increases. There is an optimum mass ratio, by which the response of the structure is
minimized. However, when the natural frequencies of the two structures are very close to each
other, the damper has no function at all.
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Fig. 5. Variations of optimum parameters with mass and frequency ratios (Criterion 2): (a) the optimum damping

coefficient at zero frequency x; (b) the optimum relaxation time w:
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4. Applications

The optimum parameters of the fluid damper derived above are based on the stationary white-
noise ground motion. To examine their applicability to the adjacent structures subjected to either
a filtered white-noise ground motion or a field-recorded seismic ground motion, three pairs of
adjacent structures are selected as examples for application. The structural parameters of each
pair of adjacent structures are listed below:

Example 1: MP ¼ 2:58� 107 kg; oP ¼ 4:27 rad=s; xP ¼ 0:01; m ¼ 1; b ¼ 0:70726; g ¼ 1;
Example 2: MP ¼ 1:5� 105 kg; oP ¼ 10:55 rad=s; xP ¼ 0:02; m ¼ 2; b ¼ 0:5; g ¼ 2;
Example 3: MP ¼ 1:5� 105 kg; oP ¼ 10:55 rad=s; xP ¼ 0:02; m ¼ 5=3; b ¼ 1:428; g ¼ 1:

The natural frequencies of the two adjacent structures in the first example are relatively close
and small, representing the two tall buildings of similar dynamic properties. The second and

ARTICLE IN PRESS

Fig. 6. Variations of control effectiveness indexes with mass and frequency ratios (Criterion 2): (a) P-structure,

(b) A-structure.
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Fig. 7. Effects of mass and frequency ratios on control performance (Criterion 2): (a) RP vs. b; (b) RA vs. b; (c) RP vs. m;
(d) RA vs. m:

H.P. Zhu, Y.L. Xu / Journal of Sound and Vibration 279 (2005) 253–274266



third examples represent the two low-rise buildings, of which the natural frequencies depart from
each other, but the A-structure in the second example is softer than the P-structure while the
A-structure in the third example is stiffer than the P-structure.

4.1. Optimum parameters of damper

The optimum parameters of the fluid damper for each pair of the adjacent structures using the
derived analytical formulas are first found for the case of the white-noise ground motion and
without considering the structural damping ratios of two adjacent structures. Table 1 lists the
non-dimensional optimum values of damping coefficient at zero frequency x and the relaxation
time w of the fluid damper for each pair of the adjacent structures, obtained from Eqs. (13) and
(17), respectively, based on either the first optimization criterion or the second optimization
criterion. Then, these optimum parameters are used to compute the control effectiveness indexes
RP and RA for each pair of the adjacent structures based on Eq. (15), and the results are tabulated
in Table 2. It is observed that the responses of the two adjacent structures can be reduced
significantly after the Maxwell model-defined fluid damper of the optimum parameters is used to
link the two structures no matter which the optimization criterion is used. In general, the first
optimization criterion leads to slightly larger response reduction of the P-structure compared with
the second optimization criterion. On the contrary, the second optimization criterion results in
larger response reduction of the A-structure compared with the first optimization criterion.

4.2. Modal frequencies and damping ratios

To understand why the fluid damper of optimum parameters can effectively reduce the dynamic
responses of the two structures in the above three examples, the natural frequencies and modal
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Table 1

The optimum parameter values of the fluid damper in the three examples

Non-dimensional damping coefficient at zero frequency x Non-dimensional relaxation time w

Criterion 1 Criterion 2 Criterion 1 Criterion 2

Example 1 0.146 0.103 1.021 0.137

Example 2 0.209 0.130 1.460 0.733

Example 3 0.131 0.120 0 0

Table 2

Control effectiveness indexes (stationary white-noise excitation)

Criterion 1 Criterion 2

P-structure ðRPÞ (%) A-structure ðRAÞ (%) P-structure ðRPÞ (%) A-structure ðRAÞ (%)

Example 1 35.3 45.8 40.1 36.8

Example 2 41.1 62.3 43.8 52.9

Example 3 50.1 53.7 50.3 53.4
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damping ratios of the adjacent structures linked by the fluid damper are computed through a
complex eigenvalue analysis, and the results are listed in Table 3 and compared with those of the
adjacent structures without control. It is seen that with the installation of the fluid damper of
optimum parameters, the damping ratios of the system are increased significantly. This is the main
reason why the responses of both structures are reduced considerably. In addition, the change of
the natural frequencies of the adjacent structures in Examples 1 and 3 are not over 10% compared
with the adjacent structures without control. However, for the adjacent structures in Example 2,
the change of the natural frequencies are over 40% because of the larger l and x of the damper
and the small frequency ratio.

4.3. Seismic response under filtered white-noise ground motion

The fluid damper of the optimum parameters determined based on the white-noise ground
excitation is now applied to link the adjacent structures subjected to a filtered white-noise ground
excitation to examine the applicability of the analytical formulas to practical problems. The
Kanai–Tajimi filtered white-noise ground motion model, which has been widely used in
earthquake engineering [15], can be represented by the following spectrum:

SðoÞ ¼ S0
o4g þ 4o

2
gB
2
go

2

ðo2 � o2gÞ
2 þ 4o2gB2go2

" #
; ð18Þ

where Bg; og and S0 are the characteristic parameters of the soil surrounding the adjacent
structures. Three groups of the characteristic parameters, which represent firm, mid-firm and soft
soil, respectively [16], are used in this study:

Group I: Bg ¼ 0:60; og ¼ 15:60 rad=s; S0 ¼ 4:8� 10�3 m2=s3;
Group II: Bg ¼ 0:50; og ¼ 10:55 rad=s; S0 ¼ 4:8� 10�3 m2=s3;
Group III: Bg ¼ 0:30; og ¼ 3:14 rad=s; S0 ¼ 4:8� 10�3 m2=s3;

The intensity of ground motion S0 ¼ 4:8� 10�3 m2=s3 is chosen to represent the intensity of the
NS component of the 1940 El Centro earthquake [17]. Table 4 lists the r.m.s. relative displacement
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Table 3

The comparison of natural frequencies and modal damping ratios of adjacent structures with and without the fluid

damper

Without damper With damper (Criterion 1) With damper (Criterion 2)

Frequency

(rad/s)

Damping

ratio (%)

Frequency

(rad/s)

Damping

ratio (%)

Frequency

(rad/s)

Damping

ratio (%)

Example 1 3.02 1 3.37 7.36 3.19 15.49

4.27 1 4.66 11.55 4.08 12.20

Example 2 5.275 4 8.05 15.33 8.05 34.42

10.55 2 12.26 13.86 10.72 21.29

Example 3 10.55 2 11.19 14.68 11.06 13.83

15.07 2 13.82 18.41 14.04 16.89
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responses of the two structures to the ground before and after control under the filtered white-
noise ground motions selected. It is seen that in most cases, the use of the fluid damper of the
optimum parameters determined based on the white-noise ground motion can reduce the
responses of both structures more than 50%. Except for the adjacent structures in Example 2
under the excitation II, the response of the P-structure determined using the first optimization
criterion is slightly smaller than that determined using the second optimization criterion. On the
other hand, except for the adjacent structures in Example 2 under the excitation III, the response
of the A-structure determined using the second optimization criterion is smaller than that
determined using the first optimization criterion. These results are very similar to those in the case
of the white-noise ground motion, indicating the applicability of the analytical formulas for
optimum parameters derived based on the white-noise ground motion. However, it should be
noticed that there are some cases in which the response reduction of either the P-structure or the
A-structure is very small. This is because either the dominant excitation frequency is far away
from the natural frequency of the structure (e.g., Example 3 under the excitation III) or the
installation of the fluid damper makes the frequency of the structure more close to the dominant
excitation frequency (e.g., Example 3 under the excitation II).

4.4. Seismic response under El Centro 1940 NS excitation

The fluid damper of the optimum parameters determined based on the white-noise ground
excitation is now applied to link the adjacent structures subjected to the El Centro 1940 NS
earthquake to examine the applicability of the analytical formulas to practical problems. The peak
acceleration of the El Centro 1940 NS earthquake is scaled to 0:14g: The dynamic analysis of the
adjacent structures linked by the Maxwell model-defined fluid damper in the time domain can be
performed by merging Eq. (1) with Eq. (2) and by assuming that ’fGðtÞ is constant within a time

ARTICLE IN PRESS

Table 4

The root mean square relative displacement responses of P-structure and A-structure under filtered white-noise

excitation

Earthquake

excitation

Example P-structure (cm) A-structure (cm)

Non-control Criterion

1

Criterion

2

Non-control Criterion

1

Criterion

2

I 1 10.55 4.00 4.52 17.15 7.13 5.81

2 2.35 0.99 1.05 3.96 1.84 1.63

3 2.35 1.08 1.09 1.37 0.83 0.82

II 1 11.42 4.27 4.83 17.89 7.50 6.10

2 2.51 1.08 1.14 4.42 2.08 1.82

3 2.51 1.09 1.10 0.77 0.77 0.75

III 1 10.92 5.72 6.16 32.40 11.62 9.29

2 0.50 0.44 0.43 2.86 1.10 1.23

3 0.50 0.35 0.36 0.21 0.19 0.18
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interval [18]:

fGðtnÞ ¼ fGðtn�1Þ þ
Dt

2
ð ’fGðtnÞ þ ’fGðtn�1ÞÞ; ð19Þ

where Dt is the time interval between tn and tn�1: Eq. (1) can be then expressed as

fGðtnÞ ¼
C0Dt

2lþ Dt
ð ’xðtnÞ þ ’xðtn�1ÞÞ þ

2l� Dt

2lþ Dt
fGðtn�1Þ: ð20Þ

The substitution of Eq. (20) into Eq. (2) yields the system equation in a discrete time form as

MP
.XPðtnÞ þ CP

’XPðtnÞ þ KPXPðtnÞ �
C0Dt

2lþ Dt
ð ’xðtnÞ þ ’xðtn�1ÞÞ �

2l� Dt

2lþ Dt
fGðtn�1Þ

¼ �MP
.XgðtnÞ; ð21aÞ

MA
.XAðtnÞ þ CA

’XAðtnÞ þ KAXAðtnÞ þ
C0Dt

2lþ Dt
ð ’xðtnÞ þ ’xðtn�1ÞÞ þ

2l� Dt

2lþ Dt
fGðtn�1Þ

¼ �MA
.XgðtnÞ: ð21bÞ

Eq. (21) can be solved using the conventional numerical integration scheme. In this study the
Wilson y method is adopted.
The peak and r.m.s. relative displacement and absolute acceleration responses of the two

structures in the three examples are computed and listed in Table 5 and compared with those of
the structures without control. It is observed that the fluid damper of the optimum parameters
determined based on the white-noise ground motion can also reduce the responses of both the
structures under the real earthquake excitation. In most cases, the responses of both the structures
are reduced by more than 30%, moderately smaller than that in the case of either the white-noise
ground excitation or the filtered white-noise ground excitation. In general, the peak response
reduction is less than the r.m.s. response reduction. Fig. 8 displays the time histories of the relative
displacement response and the absolute acceleration response of the two structures in Example 2
using the first optimization criterion while Fig. 9 shows the time histories of the same quantities
but using the second optimization criterion. The time histories of the same quantities of the two
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Table 5

Peak and root mean square responses of the adjacent structures linked by optimized fluid damper subjected to El

Centro 1940 NS earthquake excitation

Example 1 Example 2 Example 3

Uncontrol Criterion 1 Criterion 2 Uncontrol Criterion 1 Criterion 2 Uncontrol Criterion 1 Criterion 2

P Peak Dis. (cm) 16.16 11.17 12.17 3.04 2.28 2.30 3.04 1.70 1.73

Acc.(gal) 294.59 216.73 206.02 339.41 227.32 225.20 339.41 226.34 229.04

RMS Dis.(cm) 5.14 3.51 3.70 0.90 0.50 0.49 0.90 0.39 0.39

Acc.(gal) 93.69 55.61 57.98 100.60 46.21 46.18 100.60 47.38 48.04

A Peak Dis.(cm) 30.39 20.06 16.48 12.99 3.93 4.57 1.56 1.16 1.18

Acc.(gal) 277.24 234.92 188.34 362.83 262.41 224.44 355.10 223.01 225.89

RMS Dis.(cm) 10.20 6.42 4.61 3.18 1.07 1.00 0.42 0.24 0.24

Acc.(gal) 93.02 74.48 52.47 88.84 62.36 51.09 96.20 45.36 45.74
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Fig. 8. Time histories of absolute acceleration and relative displacement response of the two structures under El Centro

1940 NS excitation (Example 2 and Criterion 1): (a) acceleration response of P-structure, (b) acceleration response of

A-structure, (c) relative displacement response of P-structure, (d) relative displacement response of A-structure.
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Fig. 9. Time histories of absolute acceleration and relative displacement response of the two structures under El Centro

1940 NS excitation (Example 2 and Criterion 2): (a) acceleration response of P-structure, (b) acceleration response of

A-structure, (c) relative displacement response of P-structure, (d) relative displacement response of A-structure.
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structures without control are also plotted in these two figures for comparison. The significant
reductions of the relative displacement response and the absolute acceleration response of the two
structures can be observed from the two figures, which demonstrate that the use of the fluid
damper of optimum parameters to link the two adjacent structures is beneficial to reduce the
seismic responses of both the structures and to prevent from the problem of pounding between
the two structures. For the limit of space, the time-histories of the relative displacements and
absolute accelerations of both the adjacent structures in Examples 1 and 3 under the two criteria
for the uncontrolled and controlled systems are not given here.

5. Conclusions

The two optimization criteria have been proposed and the analytical formulas have been
derived for determining optimum parameters of Maxwell model-defined fluid dampers used to
link two adjacent structures under a white-noise ground excitation. The optimum parameters of
the fluid damper can be explicitly expressed as the functions of the frequency and mass ratios of
two adjacent structures if the structural damping ratios are neglected. The dynamic analysis of the
adjacent structures linked by the optimized fluid damper under the white-noise ground excitation
demonstrates that the modal damping ratios of the adjacent structures with the optimized fluid
damper are considerably increased and the relative displacement responses of both the structures
to the ground are significantly reduced. With either the optimization criterion, the control
effectiveness of the damper increases as the difference of the natural frequencies of the two
structures increases. There is an optimum mass ratio, by which the response of the structure is
minimized. However, when the natural frequencies of the two structures are very close to each
other, the damper has no function.
The fluid damper of the optimum parameters determined from the analytical formulas have

also been applied to link the adjacent structures subjected to either the filtered white-noise ground
excitation or the El Centro 1940 NS earthquake to examine the applicability of the analytical
formulas to practical problems. The results from three pairs of example adjacent structures
manifest that the optimum parameters determined from the analytical formulas are also beneficial
to reduce the responses of the adjacent structures under either the filtered white-noise ground
excitation or the real earthquake excitation. However, it is noticed that there are some cases in
which the response reduction of the adjacent structures is small because either the dominant
excitation frequency is far away from the natural frequency of the structure or the installation of
the fluid damper makes the frequency of the structure more close to the dominant excitation
frequency. Also in some cases, the response reduction of the adjacent structures under the El
Centro ground excitation is moderately smaller than that under the white-noise ground excitation
or the filtered white-noise ground excitation.
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