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Abstract

One-way clutches are frequently used in the serpentine belt accessory drives of automobiles and heavy
vehicles. The clutch plays a role similar to a vibration absorber in order to reduce belt/pulley vibration and
noise and increase belt life. This paper analyzes a two-pulley system where the driven pulley has a one-way
clutch between the pulley and accessory shaft that engages only for positive relative displacement between
these components. The belt is modelled with linear springs that transmit torque from the driving pulley to
the accessory pulley. The one-way clutch is modelled as a piecewise linear spring with discontinuous
stiffness that separates the driven pulley into two degrees of freedom. The harmonic balance method
combined with arclength continuation is employed to illustrate the non-linear dynamic behavior of the one-
way clutch and determine the stable and unstable periodic solutions for given parameters. The results are
confirmed by numerical integration and the bifurcation software AUTO. At the first primary resonance,
most of the responses are aperiodic, including quasiperiodic and chaotic solutions. At the second primary
resonance, the peak bends to the left with classical softening non-linearity because clutch disengagement
decouples the pulley and the accessory over portions of the response period. The dependence on clutch
stiffness, excitation amplitude, and inertia ratio between the pulley and accessory is studied to characterize
the non-linear dynamics across a range of conditions.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Serpentine belts are widely used in automobiles and heavy vehicles to transmit crankshaft
power to all the accessories. Noise reduction and increased belt life are major industry
concerns that have their roots in system vibration. Periodic engine pulsations from cylinder
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ignition generate dynamic excitation for the belt drive. This excitation can, especially near
resonance, cause large pulley rotations that lead to ‘‘chirp’’ noise from belt–pulley friction, noise
from transverse span vibration, belt slip, and premature belt fatigue or bearing failure [1,2].
Serpentine drives typically have a tensioner arm to maintain belt tension as operating conditions
change. Several prior studies [3–8] address the dynamics of serpentine systems.
The evolution of modern vehicles has led to increased electrical needs resulting in increased

alternator inertias. The alternator is usually the accessory with the largest inertia and is commonly
at the heart of observed vibration problems. One-way clutches are effective devices to mitigate
these vibration problems, though they have proved useful on other accessories as well [1,2]. There
are several types of one-way clutches, and different names are sometimes used (e.g., one-way
decouplers, over-running pulleys). These devices are mounted in the load path between the pulley
and the accessory shaft that the pulley drives. In industry, fans in some mechanical systems are
equipped with one-way (or over-running) clutches that consist of a ring, hub, rollers and springs.
For helicopters, sprag-type over-running clutches are used on the main rotor. Wrap-spring
clutches are another design. Different types of one-way clutches perform essentially the same
function, namely that of decoupling pulley rotations in the non-driven direction caused by pulley
vibrations from rotations of the driven shaft. In essence, the pulley and driven shaft are allowed to
rotate relative to each other when the clutch disengages.
One one-way clutch design engages or disengages based on the relative angular speed between

the pulley and the accessory shaft. When the accessory pulley decelerates, the one-way clutch
disengages, and the accessory rotates freely from the pulley. Because of its greater inertia,
however, its deceleration is lower than that of the pulley. When the dynamics of the belt drive
system cause the pulley to accelerate, the pulley and accessory remain disengaged until the pulley
speed equals that of the accessory. At this point, the one-way clutch engages the accessory and the
two rotate together (presuming infinite clutch stiffness) until the pulley again decelerates [2]. This
decoupling of the accessory inertia during large vibrations limits belt slip on the pulley.
The clutch design studied in this paper is based on relative displacement between the pulley and

accessory. When pulley rotation exceeds accessory shaft rotation, the clutch is engaged with a
finite rotational stiffness between the elements. This is the normal driving case. In the opposite
case, the clutch disengages and there is no mechanical link between pulley and accessory. This
operation is achieved, as one example, with a wrap-spring clutch design. The wrap-spring ends are
connected to the pulley and accessory. For positive relative rotation, uncoiling of the spring
expands its diameter, creating dry friction on a mating cylinder that couples the pulley and
accessory. Negative relative rotation contracts the diameter, releasing the friction and the link
between elements.
Though applications of one-way clutches are extensive, literature on their dynamics is limited.

Vernay et al. [9] presented an experimental study of sprag-type clutches used in the air turbine
starters of jet engines. The clutch is composed of sprags, mounted between two races, and springs
that connect the sprags and ensure contact between the sprags and races. The goal is to identify
sliding during engagement. King and Monahan [1] discuss a wrap-spring type clutch and
elaborate on its functional details. Solfrank and Kelm [2] describe a model for a whole automobile
accessory drive system. As an element of their system, a model for an ‘‘overrunning alternator
pulley’’ is introduced. The model consists of a speed-dependent damping and a parallel stiffness
element. Leamy and Wasfy [10] studied belt creep on the pulley by considering the friction contact
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between the pulleys and the belt using finite element method. Their one-way clutch model is a
torque proportional to relative pulley/accessory speed that is active only for torque transmission
in a single direction.
This paper concentrates on building and analyzing a mathematical model of a two-pulley belt

system equipped with a one-way clutch. To focus on the one-way clutch dynamics, no tensioner is
included. The belt is modelled as a linear spring transmitting specified motion of the driving
pulley (crankshaft) to the driven (accessory) pulley. The one-way clutch is modelled as a
non-linear spring with discontinuous stiffness, that is, zero stiffness for the disengaged clutch
and finite, linear stiffness for the engaged clutch. A multi-term harmonic balance method
(HBM) is developed based on Fourier expansion of the response and discretization of the
fundamental period into time increments. Stability of the calculated periodic solutions is
assessed by Floquet analysis. Arclength continuation follows the solution branches to determine
the stable and unstable solutions as a parameter changes. The results are confirmed by
numerical integration and the bifurcation software AUTO [11]. Numerical integration results
showing quasiperiodic and chaotic response are calculated for regions of aperiodic response. The
system is analyzed for a range of different parameters (magnitude of the non-linear stiffness,
excitation amplitude, ratio of the inertia of the pulley to that of the accessory) to characterize
where the one-way clutch works most effectively and when the system operates periodically or
aperiodically.

2. Mathematical model of one-way clutch

Based on the physical system of the wrap-spring one-way clutch, the model can be described as
follows. When the rotations of the wrap-spring ends (that is, the pulley and the accessory shaft)
are such that the pulley rotation exceeds the accessory shaft rotation (positive relative
displacement) then the clutch is engaged and the clutch torque satisfies g ¼ Kdðyp � yaÞ: Power
transmission occurs from driving to driven pulley. For the alternate case where accessory rotation
is less than pulley rotation, the wrap-spring diameter decreases and the clutch disengages; no
torque is transmitted. In this work, we examine the impact of this one-way clutch on a two-pulley
system (Fig. 1(a)). The driving pulley represents the crankshaft, and its motion is specified as
yc=s ¼ Am cosoT : In vehicle applications, engine firing pulsations induce periodic fluctuations in
crankshaft speed at the firing frequency o: The driven pulley connected to the accessory has
inertia Jp: The one-way clutch is integrated between the accessory pulley with rotation yp and the
accessory shaft with rotation ya: Mathematically, the torque transmitted between the accessory
pulley and shaft is (Fig. 1(b))

gðdyÞ ¼
Kddy; dy > 0;

0; dyp0;

(
ð1Þ

where dy ¼ yp � ya: The stiffness of the spring is Kd : The belt is modelled as a discrete spring with
stiffness Kb: Steady belt tension and belt speed do not affect the system for this belt model. Energy
dissipation is modelled as viscous damping using a modal damping model.
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The equations of motion for the pulley and accessory shaft are

Jp
.yp þ C11

’yp þ C12
’ya þ 2Kbr2

pyp þ gðdyÞ ¼ M0 þ 2Kbrprc=sAm cosoT ;

Ja
.ya þ C21

’yp þ C22
’ya � gðdyÞ ¼ �M0; ð2Þ

where rp; rc=s are the radii of the pulley and the crankshaft. Subscripts p and a refer to the pulley
and the accessory, respectively. M0 is pre-load.
Letting t ¼ o0T ; one obtains the dimensionless equations of motion

y00p þ %C11y
0
p þ %C12y

0
a þ %Kbyp þ %gðdyÞ ¼ %M þ b %KbAm cosOt;

ay00a þ %C21y
0
p þ %C22y

0
a � %gðdyÞ ¼ � %M; ð3Þ

%gðdyÞ ¼
%Kddy; dy > 0;

0; dyp0;

(
ð4Þ
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Fig. 1. (a) Two-d.o.f. one-way clutch system; (b) clutch torque gðdyÞ in Eq. (1) and the dimensional smoothed function
gsðdyÞ according to Eq. (6) for different smoothing parameters e:
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where the dimensionless parameters are

O ¼ o
o0

; a ¼ Ja

Jp

; b ¼
rc=s

rp

; %Kb ¼
2Kbr2

p

Jpo2
0

; %Kd ¼ Kd

Jpo2
0

; %M ¼ M0

Jpo2
0

: ð5Þ

The frequency o0 is chosen as the natural frequency for the linear system in which the accessory is
not equipped with a one-way clutch. In this case it is a single degree of freedom (s.d.o.f.) system

and the natural frequency is o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kbr2

p=ðJp þ JaÞ
q

:

The damping matrix %C ¼ V�T diagð2zOiÞV�1 is obtained by transforming the modal damping
matrix diagð2zOiÞ where z is a specified modal damping ratio and vi; Oi are the eigensolutions for
the two-d.o.f. linear system with the clutch engaged. Corresponding to this linear system, the
dimensionless natural frequencies are O1 ¼ 0:982 and O2 ¼ 6:811 for the values in Table 1. Fig. 2
shows the mode shapes for the linear system. The pulley and accessory rotate in-phase in the first
mode and out-of-phase in the second mode.
Fig. 3 shows the root mean square (r.m.s.) of dy� dymean versus excitation frequency for the

values z ¼ 3; 5; 8% obtained by numerical integration for parameter values in Table 1. Increasing
and decreasing frequency sweeps are shown. For z ¼ 8%, the branches calculated for increasing
and decreasing frequencies overlay each other; the behavior is linear. For z ¼ 3% and 5%, non-
linear jump phenomena occur. These results are sensitive to the excitation amplitude. For the
nominal excitation amplitude used in this work (Table 1), we specify 3% modal damping to
capture the relatively light damping internal to a one-way clutch and induce the non-linear
response exhibited by these systems in practice.
In this paper, multiple methods are employed to address the discontinuous stiffness non-

linearity shown in Fig. 1(b). Among these are harmonic balance (HBM) and the bifurcation
software AUTO, which requires continuous functions. To approximate %gðdyÞ in Eq. (4) by a
smooth function, the hyperbolic tangent function is used according to

%gsðdyÞ ¼ 1
2
%Kd ½1 þ tanhðedyÞ�dy: ð6Þ

Fig. 1(b) compares the dimensional clutch torque gðdyÞ in Eq. (1) and the smoothed function
gsðdyÞ corresponding to Eq. (6). The difference is indistinguishable for large e > 100: By numerical
investigation, Fig. 4 shows the effect of approximating the step function by Eq. (6) with given e:

ARTICLE IN PRESS

Table 1

Parameters for the nominal case

rp ¼ 0:028575 (m) Radius of pulley

rc=s ¼ 0:040625 (m) Radius of crankshaft

Jp ¼ 0:001607 ðkg m2Þ Pulley inertia

a ¼ Ja=Jp ¼ 1:620 Inertia ratio

z ¼ 3% Modal damping ratio

Kb ¼ 2:5 	 105 (N/m) Belt stiffness

Kd ¼ 5000 (N/rad) Clutch spring stiffness

Am ¼ 0:001 (rad) Excitation amplitude

M0 ¼ 2:3 ðN mÞ Preload
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e > 2000 produces an acceptable approximation to the step function for this system. The value
e ¼ 10 000 yields a better approximation and causes no numerical trouble for HBM and AUTO,
so this value is used throughout. %gsðdyÞ replaces %gðdyÞ in subsequent results except where indicated
otherwise.
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Fig. 2. Vibration modes for the parameters in Table 1: (a) Mode 1, O1 ¼ 0:982; (b) Mode 2, O2 ¼ 6:81:
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3. HBM with arclength continuation and stability

The harmonic balance method is widely used to seek periodic solutions of non-linear systems,
especially those having clearance non-linearity. With the assumption of periodic motion, the
variables are expanded by Fourier series so as to map the system from the time domain into
the frequency domain to get periodic solutions. By taking a gear pair as an example and applying
the standard HBM, Blankenship and Kahraman [12] studied the behavior of a mechanical system
exhibiting combined parametric excitation and clearance type non-linearity. Leamy and Perkins
[13] utilized the harmonic balance method to investigate the non-linear periodic response of
engine accessory drives with dry friction tensioners. Padmanabhan and Singh [14] analyzed
periodically excited non-linear systems with an example of a gear pair with discontinuous mesh
stiffness by using a parametric continuation technique. Continuation techniques have been used
by many researchers for non-linear systems. It is a path following procedure using arclength
continuation to trace the bifurcation diagram. By this method, Raghothama and Narayanan [15]
studied the bifurcation and chaos in a geared rotor bearing system. Von Groll and Ewins [16]
examined rotor/stator interaction dynamics for varying shaft rotation speeds.
Combined with arclength continuation, HBM is effective to examine how the system behavior

varies with the system parameters, and this method is adopted in this paper. A brief description of
HBM with arclength continuation applied to Eq. (3) with smoothing function (6) is given below.

ARTICLE IN PRESS

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

x 10
-3

Frequency   Ω

R
M

S
 o

f (
δθ

-
δθ

   
   

   
)

m
ea

n

0.9 1 1.1

1

2

3
x 10

-3

ε=2e3 

ε=5e3 

ε=10e3 

Step function 

Step function 

ε=10e3 

Fig. 4. Dynamic response, r.m.s. of dy� dymean; by numerical integration using the step function %gðdyÞ in Eq. (4) and
different e in the approximation %gsðdyÞ in Eq. (6).

F. Zhu, R.G. Parker / Journal of Sound and Vibration 279 (2005) 285–308 291



First, consider the response to be periodic and expand the solution using Fourier series truncated
to R harmonics:

ypðtÞ ¼ up;1 þ
XR

r¼1

ðup;2r cos rOt þ up;2rþ1 sin rOtÞ;

yaðtÞ ¼ ua;1 þ
XR

r¼1

ðua;2r cos rOt þ ua;2rþ1 sin rOtÞ: ð7Þ

Then, discretize the time domain into N intervals as t0;y; tn;y; tN�1 and introduce the operator
L0 such that the time-discretized response vector is

xðtÞ ¼ fypðt0Þ ? ypðtN�1Þ yaðt0Þ ? yaðtN�1ÞgT ¼
L0 0

0 L0

" #
u ¼ Lu; ð8Þ

where u ¼ fup;1 ? up;2Rþ1 ua;1 ? ua;2Rþ1gT: Introducing a ð2R þ 1Þ 	 ð2R þ 1Þ operator A0 ¼
diagð0; 12; 12; 22; 22;y; r2; r2;yÞ and a similar operator B0 and defining

A ¼ ð�O2Þ
A0 0

0 A0

" #
; B ¼ O

B0 0

0 B0

" #
;

one can express ’xðtÞ and .xðtÞ as
’x ¼ LBu; .x ¼ LAu: ð9Þ

The non-linear function h ¼ f %gsðdyÞ;� %gsðdyÞgT and the forcing function f ¼ f %M þ
b %KbAm cosOt;� %MgT are similarly expanded in Fourier series as

h ¼ Ld; %f ¼ LF: ð10Þ

By defining

*m ¼
I 0

0 aI

" #
; *c ¼

%C11I %C12I

%C21I %C22I

" #
and %k ¼

%KbI 0

0 0

" #
;

where I is a ð2R þ 1Þ 	 ð2R þ 1Þ identity matrix, substitution of Eqs. (8)–(10) into Eq. (3) yields
L½ð *mAþ *cBþ *kÞu� Fþ d� ¼ LE ¼ 0;

E ¼ %Ku� Fþ d; %K ¼ *mAþ *cBþ *k: ð11Þ

The vector u that determines x is found from

E ¼ 0: ð12Þ

We seek to follow periodic solution branches as a parameter p of the system changes (such as
frequency, where p ¼ O). In particular, it is desirable to trace stable and unstable branches in the
space of ui and p; and these branches generally involve curves that reverse direction. Baker and
Overman [17] describe a continuation method approach. In this spirit, we introduce the solution
branch arclength parameter s as an independent variable and consider the system parameter
p as an unknown as well. The residue E in Eq. (11) then has 2ð2R þ 1Þ þ 1 unknowns
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%uðsÞ ¼ fuðsÞT pðsÞgT and the infinitesimal arclength ds satisfies

ds2 ¼
X2Rþ1

i¼1

du2
i þ dp2 ) 1 ¼

X2Rþ1

i¼1

dui

ds

� �2

þ dp

ds

� �2

: ð13Þ

According to Newton–Raphson iteration,

%unew ¼ %uold � Jj�1
%uold

Eð%uoldÞ; ð14Þ

where the Jacobian matrix is

J ¼ @E

@u

@E

@p

	 

;

@E

@u
¼ %Kþ @d

@u
¼ %Kþ C

@h

@x
L ð15Þ

and J�1 denotes the pseudo-inverse. We have used

d ¼ Ch ¼
C0 0

0 C0

" #
h; ð16Þ

where C0 represents the discrete Fourier transformation operator with G01;n
¼ 1=N; G02r;n

¼
ð2=NÞ cos ð2prðn � 1Þ=NÞ and G02rþ1;n

¼ ð2=NÞ sin ð2prðn � 1Þ=NÞ for r ¼ 1; 2;y;R and n ¼
1;y;N: iteration continues until e ¼ jj%unew � %uold jj is within a specified tolerance.
To improve convergence, it is important to provide an appropriate initial guess for iteration of

Eq. (14). For the two-dimensional case, the tangent line of the solution branch at the current
solution %ukðsÞ defines the axis along which the initial guess for the next solution %ukþ1ðsÞ lies [17].
Generalizing to higher dimensions, Eq. (12) describes 2ð2R þ 1Þ hypersurfaces and the solutions
%uðsÞ lie on the intersection of these hypersurfaces. The desired initial guess lies along the axis that
is the intersection of the tangent planes of these hypersurfaces at the current solution.
Differentiating Eq. (12) at %ukðsÞ;

@E

@u

����
%uk

@u

@s
þ @E

@p

����
%uk

@p

@s
¼ Jj%uk

s ¼ 0; ð17Þ

where s ¼ ½@u=@s @p=@s�T: Jj%uk
represents the gradients of the surfaces at %ukðsÞ; and s is on the

intersection of the tangent planes. s is a basis of the nullspace of Jj%uk
where Jj%uk

has rank
2ð2R þ 1Þ except at bifurcation points. Alternatively, s is a basis of the left nullspace of JjT%uk

from
sTJjT%uk

¼ 0T: From QR decomposition of JjT%uk
; QTJjT%uk

¼ R; where Q is an orthonormal square
matrix and R is an upper triangular matrix with zero elements in the last row,

qT1

^

qT2ð2Rþ1Þþ1

2
64

3
75JjT%uk

¼

	 ? 	
0 ^ ^

^ 0 	
0 ? 0

2
6664

3
7775: ð18Þ

Consequently, qT2ð2Rþ1Þþ1Jj
T
%uk
¼ 0T; and s ¼ q2ð2Rþ1Þþ1: Orthonormality of Q implies jjsjj ¼ 1 in

accordance with Eq. (13). The sign of s must be chosen to ensure the solution path is traced
‘‘forward’’ in the arclength direction. If the inner product sTk�1so0; let sk ¼ �s; otherwise sk ¼ s
(subscript k denotes the current solution). Dsk is determined by step size control [17] and then

%u0
kþ1 ¼ %uk þ Dsksk establishes the initial guess.

ARTICLE IN PRESS

F. Zhu, R.G. Parker / Journal of Sound and Vibration 279 (2005) 285–308 293



To establish the stability of periodic solutions from harmonic balance, much of the literature
employs Floquet multipliers [12,14,15,18,19]. Von Groll and Ewins [16] apply Hill’s method. Both
methods were used here, and we found Floquet multipliers to produce more reliable results for
known example problems. When applying Floquet multipliers, Friedmann et al. [20] compared
two numerical schemes to obtain the monodromy matrix. One is developed by Hsu [21,22], which
has been widely used for stability analysis [12,14,15,18,19]. That idea is to discretize a period into
a number of intervals and consider the periodic coefficient matrices to be constant over each
interval. The second approach is a numerical integration scheme improved in [20]. It is based on
the fourth order Runge–Kutta method and requires less computer time to converge than Hsu’s
method. Here, numerical integration is employed to find the monodromy matrix, whose
eigenvalues li; i ¼ 1;y; 4 are the Floquet multipliers. The solution stability is classified as
follows: if there exists any jjlijj > 1; that eigenvalue (and the solution) is unstable; if all the
eigenvalues satisfy jjlijjo1; the solution is stable.
The values R ¼ 18 and N ¼ 512 in Eqs. (7) and (8) are used in results to follow. While the shape

of the solutions branches is not highly sensitive to R; this number of terms was found to give
better stability conclusions than lower values.
In addition to harmonic balance, subsequent results compare findings from numerical

integration and the bifurcation software AUTO. AUTO performs bifurcation analysis of systems
of the form

y0ðtÞ ¼ fðyðtÞ; pÞ; fð�; �Þ; yð�ÞARn; ð19Þ

where p denotes one or more free parameters. AUTO is employed to compute branches of stable
and unstable periodic solutions as well as locate bifurcations along these branches.

4. Results

4.1. Excitation frequency sweep

In this section, the nominal case solutions are examined over a range of excitation frequency. In
automotive belt drives, the excitation frequency is the engine firing frequency, which varies across
a wide range. Fig. 5 shows the steady state (r.m.s.) dynamic amplitude of the relative
pulley–accessory rotation ðyp � yaÞ � ðyp � yaÞmean as the excitation frequency varies. Results for
increasing and decreasing frequency are shown. The parameters considered are those in Table 1.
For the results from numerical integration, the increasing and decreasing frequency branches
coincide except for the resonant regimes near the natural frequencies O1;2 ¼ 0:982; 6:81 of the
linear system corresponding to a clutch of stiffness %Kd ¼ 27:66:Hysteretic behavior corresponding
to a softening non-linearity is evident for OEO2: The softening behavior is a result of clutch
disengagement where the spring between the pulley and accessory shaft is inactive. A slight kink
occurs at the transition from clutch engagement at all times (linear system) to frequencies where
the clutch disengages during some portion of the periodic solution. Non-linear disengagement
occurs outside the range where multiple steady state periodic solutions are possible. The waterfall
plots of Fig. 6 show the numerical integration spectra as excitation frequency increases and
decreases. The higher harmonics of excitation frequency for OEO2 indicate periodic, but not
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sinusoidal, response due to the presence of non-linearity. The presence of these higher harmonics
demonstrates the non-linear clutch disengagement outside the region of multiple solutions.
Fig. 7(a) shows the time history and clutch torque for O ¼ 4:455; which lies at the point of local
maximum response for decreasing frequency. Clutch disengagement (once per cycle) is apparent
from the zero clutch torque.
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Results in the range O ¼ 0:89–1:07 are more complicated as shown in the exploded figure in
Fig. 5(b). In this range, only a few small sections are periodic. In the hysteretic range for O just
above 0.89 (point M), however, solutions are periodic for both increasing and decreasing
frequency, though clutch disengagement occurs only along the upper branch achieved for
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decreasing frequency. Fig. 7(b) shows time response for O ¼ 0:915 (point F) on the periodic upper
branch at the right boundary of the region where multiple steady state solutions exist. Notice
multiple clutch disengagements occur in a single period. Throughout the range from E to A
ð0:94oOo1:07Þ; solutions are primarily quasiperiodic or chaotic with a few periodic exceptions
indicated by the solid lines (discussed later). Chaotic response is evident in the rich response
spectrum in this range for both increasing and decreasing frequency (Fig. 6). Fig. 8 shows time
histories and clutch torque for the excitation frequencies O ¼ 0:945 (quasiperiodic) and O ¼ 1

(chaotic). For O ¼ 0:945; the spectrum consists of discrete components, the phase portrait is a
banded attractor, and the Poincar!e map is a closed curve; for O ¼ 1; the distributed spectrum,
phase portrait, and Poincar!e map indicate chaos.
Application of HBM with arclength continuation and AUTO provides a more complete picture

of the dynamics for varying frequency. The model is Eq. (3) with the smoothing function (6). The
unknown vector %u and elements of J in Eq. (15) are given by

%u ¼ fuT OgT; ð20Þ

%K ¼
Aþ %C11Bþ %KbI %C12B

%C21B aAþ %C22B

" #
;

@d

@u
¼ C

@ %gs

@hp

�@ %gs

@hp

�@ %gs

@hp

@ %gs

@hp

2
6664

3
7775L; ð21Þ

@ %gs

@hp

¼ diagð1
2
%Kd ½e sech2ðedhÞ � dh þ 1 þ tanhðedhÞ�Þ; ð22Þ

@E

@O
¼

�2OA0 þ %C11B0 %C12B0

%C21B0 �a2OA0 þ %C22B0

" #
u: ð23Þ

Excellent agreement between HBM and numerical integration is apparent from Fig. 5. No
differences appear in the second resonant region. Harmonic balance gives a more complete picture
of the periodic solutions for OEO1; however. Three lobes of periodic solutions occur on the left of
the exploded view in Fig. 5(b). Each of these has a small region of stability at their top, but are
otherwise unstable. One can trace the jump-up and jump-down sequence observed in numerical
integration as indicated by the arrows. On frequency increase, a dramatic jump up occurs from L
to F near OE0:91: For decreasing frequency, solutions jump from the maximum lobe to the
intermediate one and finally to the single solution that exists for Op0:89: Across the range E–A
ð0:94oOo1:07Þ; a single unstable periodic solution exists, with the exception of a small interval
C–B of stability. That interval can be construed as a fourth lobe. These findings are consistent
with numerical integration, where quasiperiodic and chaotic solutions occur along interval E–A
(with the exception of the small stable periodic solution interval C–B). While the shape of the first
mode resonance in Fig. 5(b) suggests near linear response, that is not the case in shape (discussed
above) nor amplitude as shown by the linear system response curve in Fig. 5(b). Similar comments
apply to the second mode resonance.
To compare results with AUTO, it is most convenient to use the maximum values of yp and ya:

We choose the maximum of yp within a period to make the comparison in Fig. 9 between HBM,
AUTO, and numerical integration. Fig. 9(a) shows excellent agreement of the three methods.
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More detail is apparent in the zoomed regions of Fig. 9(b) and (c). (The letters A–M highlighting
points in Fig. 9 correspond to the same points on Fig. 5(b).) Comparison between HBM and
AUTO solutions is indistinguishable even in the details of Fig. 9(b) and (c) with the exception that
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HBM incorrectly predicts part of the branch F–G to be unstable. Increasing the number of
harmonic terms and the temporal discretization resolution improves the results. In the region
A–E, no stable periodic solutions exist, except for the small region B–C noted previously in
Fig. 5(b). The numerical integration results confirm this conclusion. The pattern of jumps in the
numerical integration results is consistent with the rich pattern of stable and unstable solution
branches shown in Fig. 9(c) (with slight differences resulting from limited frequency resolution).
The impact of non-linearity is much different in the two resonant regimes OEO1;O2: This stems

from the difference in linear system vibration modes (Fig. 2). The second mode involves out-of-
phase motion between the pulley and accessory shaft and is more prone to clutch disengagement.
This non-linear softening spreads the resonance curve (and associated clutch disengagement)
across a broad frequency range. The first mode generates less relative motion between pulley and
accessory because these components move in-phase, so there is less softening non-linearity from
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clutch disengagement. The frequency range over which disengagement occurs is markedly more
limited. The amplitude is higher in the first mode resonant regime because the excitation from
crankshaft fluctuations more directly excites this mode. At these high amplitudes, the system
exhibits a rich range of bifurcations of periodic solutions not evident at the lower amplitudes near
the second mode resonance.

4.2. Dependence on the clutch spring stiffness

In practice, the stiffness of the clutch spring can be designed across a wide range, and selected
values are illustrated in Fig. 10. For finite stiffness, the term one-way decoupler is sometimes used.
The change in linear system natural frequencies with %Kd is shown in Fig. 11. Only the second
mode natural frequency changes meaningfully because this mode is the only one with significant
relative pulley/accessory motion (Fig. 2). The frequency response for various %Kd is shown in
Fig. 12 as computed by numerical integration. From the exploded inset, the amplitude of non-
linear response for OEO1 is relatively insensitive to %Kd except for very low values, as one would
expect from Fig. 11. Most solutions in this range are aperiodic, as discussed previously. An
additional curve is shown in Fig. 12 for the s.d.o.f. system with a locked clutch (typical belt drive
pulley). For OEO1; the resonant response decreases significantly because of the one-way clutch
non-linearity. The penalty balancing this benefit is the additional resonance region for OEO2;
much like a vibration absorber. The amplitude of response for OEO2 is generally much lower
than that for OEO1; however. This amplitude decreases monotonically with increasing %Kd ; and is
negligible for %Kd ¼ 276:6: In contrast, the amplitude for OEO1 increases with increasing
%Kd ; though the changes are minimal compared to amplitude reductions for OEO2: For the
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infinite stiffness limit as approximated by %Kd ¼ 2766; the amplitude for OEO1 is higher and
noticeably smoother than for lower %Kd ; solutions in this range are periodic. These results
suggest use of large but not rigid clutch spring stiffness, although the optimal solution depends on
the anticipated excitation frequency range. Both options are superior to the s.d.o.f. (no clutch) case.
To apply HBM, the unknown in Eq. (14) is %u ¼ fuT %KdgT: Under the assumption that the

damping matrix %C is the same as for the nominal case, determination of the Jacobian matrix in
Eq. (15) requires

@E

@ %Kd

¼ @d

@ %Kd

¼ C

@ %gs

@ %Kd

� @ %gs

@ %Kd

8>><
>>:

9>>=
>>;; ð24Þ

where ð@ %gs=@ %KdÞ ¼ 1
2
½1 þ tanhðedhÞ� � dh: This procedure yields results that agree with Fig. 12 to

the same degree as the comparison in Fig. 9.

4.3. Dependence on excitation amplitude

Now consider the influence of excitation amplitude Am; which in a belt drive represents the
magnitude of the crankshaft pulley fluctuations due to engine firing. The above results are for
Am ¼ 0:001:When varying amplitude Am for given excitation frequency O; the unknown in (14) is
%u ¼ fuT AmgT: Eqs. (21) and (22) are again used to determine the Jacobian matrix (15) with the
modification that Eq. (23) is replaced by

@E

@Am

¼ � @F

@Am

¼ �f0 b %Kb 0 ? 0gT2ð2Rþ1Þ: ð25Þ

Fig. 13(a) and (b) show the maximum of yp for varying Am and other parameters as in Table 1
for three excitation frequencies O ¼ 0:92; 1; 2 determined by HBM and AUTO (the two results are
indistinguishable). O ¼ 0:92 and O ¼ 1 are near resonant excitation frequencies for the first mode;
O ¼ 2 is off-resonant. For Am > 0:007; all periodic solutions are unstable except for a branch
from 0:01oAmo0:022 for O ¼ 1: Note that for large excitation amplitudes the off-resonant
periodic solution, while unstable, is higher amplitude than those for O ¼ 0:92; 1: Fig. 13(b) zooms
the low excitation amplitude region of Fig. 13(a). Here the stable and unstable resonant
amplitudes exceed the off-resonant one at O ¼ 2: A linear region is apparent for small Am: With
Am ¼ 0:001; the single periodic solution for O ¼ 1 is unstable, but there is a stable periodic
solution for O ¼ 0:92; which is in agreement with Fig. 9(b). The cases for O ¼ 6 and 6.8 (Fig.
13(c)) exhibit the classical non-linear behavior. For Am ¼ 0:001; there are three solutions for
O ¼ 6: Two are stable and the intermediate one is unstable. For O ¼ 6:8 only one solution is
generated at all amplitudes. For large amplitudes, the single periodic solution branches for each of
O ¼ 6; 6:8 are unstable and no stable periodic solutions exist.

4.4. Dependence on the ratio of pulley and accessory inertias

The parameter a ¼ Ja=Jp governs the ratio of the inertia of the pulley to that of the
accessory. Fig. 14 shows the sensitivity of the linear system natural frequencies to a: Fig. 15
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illustrates two excitation frequency sweep examples for a ¼ 5 and 0.3; a ¼ 1:62 is in Fig. 9.
The results from HBM and AUTO are identical. For a ¼ 5; the inertia of the pulley is
much smaller than that of the accessory, and the natural frequencies of the linear system
are O1 ¼ 0:640 and O2 ¼ 5:950: At the second resonant peak, there is only one stable
periodic solution branch at the bottom, and the two upper branches all consist of
unstable periodic solutions except a small section close to the tip of the peak. This contrasts
with a ¼ 1:62 in Fig. 9, where the upper branch at the second resonant region is always stable.
Complex behavior near O1 ¼ 0:640 is shown in the inset to Fig. 15. For a ¼ 0:3; the natural
frequencies are O ¼ 1:42 and 11. The peak in the first mode is much more pronounced than the
barely evident peak at O ¼ 11: All periodic solutions are stable except in a narrow region at the tip
of the first peak.
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Physically, imagine the case of a big pulley driving a small accessory, i.e., a is small. In this case,
the non-linear clutch and accessory attached to the pulley have little impact on the belt–pulley
system, and the behavior is largely that of a linear s.d.o.f. system. For larger a (a ¼ 1:62 in Fig. 9,
a ¼ 5), considerably more pulley/accessory coupling occurs. Significant clutch disengagement
occurs in the second, out-of-phase mode. The large amplitude response in the first mode creates a
complicated periodic solution picture for OEO1 even though this in-phase mode is less prone to
disengagement.

5. Summary and conclusions

The non-linear dynamics of a two-pulley belt system with a one-way clutch are examined
using a two-degree of freedom model. The non-linear one-way clutch is modelled as a spring
with discontinuous stiffness, where clutch torque acts only for positive relative motion
between the pulley and the accessory shaft. The problem is studied with three methods:
multi-term harmonic balance, numerical integration, and the bifurcation software AUTO.
All yield results with excellent agreement. Harmonic balance and AUTO yield the stable
and unstable periodic solutions. Numerical integration gives details of the quasiperiodic
and chaotic solutions that occur in the absence of stable periodic solutions. The main conclusions
are

* The non-linear spring changes the s.d.o.f. system (no clutch) into a two-d.o.f. system, much like
a vibration absorber. The frequency response is concentrated at two resonant regions near the
natural frequencies of the two-d.o.f. linear model (clutch engaged). Significant softening non-
linearity occurs due to clutch disengagement at the second natural frequency where the mode
involves out-of-phase pulley–accessory motion. The clutch markedly decreases resonant
amplitude near the first mode natural frequency, as it is designed to do. Near this region, a
complicated pattern of periodic solution bifurcations occurs. Across a range of speeds,
aperiodic, quasiperiodic and chaotic responses occur. Multiple disengagements per cycle occur
in some periodic solutions.

* The stiffness of the clutch spring impacts the response considerably. Smaller values tend to
minimize the response in the first (in-phase) mode. Larger values tend to minimize response in
the second (out-of-phase) mode and simultaneously push this resonance to frequencies that
may lie outside the range of practical importance. Large values reduce or eliminate the range in
which chaotic or aperiodic solutions occur.

* Steady state solutions for large and small excitation amplitudes Am at frequencies near the first
mode resonance show a complex assortment of multiple stable/unstable periodic and aperiodic
solutions. Calculation of closed-form approximations to these solution curves appears very
difficult. Behavior near the second (out-of-phase) mode follows the classical softening non-
linearity pattern similar to Duffing’s equation, for example.

* The dynamics are sensitive to the inertia ratio a ¼ Ja=Jp largely because this changes the nature
of the vibration modes. For small a; or a large driven pulley attached to a small accessory,
linear behavior dominates the system dynamics at the first resonance and the second mode
resonance is hardly excited. With increasing accessory inertia, the modal force applied to the
second mode increases, causing more disengagement in this out-of-phase mode and therefore
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softening non-linearity; the dynamics of the first mode also show much more non-linear
behavior.
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