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Abstract

A semi-active optimal control method for non-linear multi-degree-of-freedom systems and its application
to a building structure for random response reduction are presented in this paper. A structural system with
semi-active control devices under random loading is modelled as a controlled, randomly excited and
dissipated Hamiltonian system of multi-degree of freedom. The control force produced by a semi-active
control device is split into semi-active part and passive part incorporated in the uncontrolled system.
Applying the statistical linearization method to the non-linear multi-degree-of-freedom system with passive
control force components yields quasi-linear equations of motion, which can tend to corresponding linear
ones with system response reduction. By applying the dynamical programming principle to the controlled
linearized system, a dynamical programming equation is established and in particular, for a non-filtering
white noise excitation, is solved as an optimal regulation problem to determine the quasi-linear quadratic
optimal control law and furthermore semi-active optimal control law according to the variational principle.
Then the semi-active optimal control of a tall building structure with magnetorheological-tuned liquid
column damper (MR-TLCD) under random wind excitation is performed by using the proposed method.
The non-linear model of the structural system with semi-active MR-TLCD is formulated in structural mode
space and uncoupled between structural and MR fluid accelerations. The quasi-linear equations for system
states are derived from the model and the dynamical programming equation for the system is obtained. In
the case that the random wind excitation with the Davenport power spectrum cannot be modelled as a
linear filtering white noise, the dynamical programming equation is solved as an optimal regulation
problem to obtain the semi-active optimal control force, on which the clipping treatment may be performed
to ensure the control force implementable actually. Eventually, the response statistics of the semi-actively
controlled structure under random wind excitation are evaluated by using the statistical linearization
method, and are compared with those of the passively controlled structure to determine the control efficacy.
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Numerical results illustrate the high control effectiveness of the proposed semi-active optimal control
method for building structures with MR-TLCDs.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Semi-active control of structural vibration induced by severe dynamic loading such as strong
wind or earthquake ground motion has been an active research subject recently [1,2]. With
attractive features such as simplicity, reliability and small power requirement, various semi-active
control devices were designed, especially using smart materials, for example, electrorheological
(ER) and magnetorheological (MR) dampers. Intensively theoretical and experimental researches
were made on the dynamic behavior and potential application of semi-active control devices [2].
The amplitude of semi-active control forces can be adjusted by external small power source and
then a number of control methods were presented [3–5]. The control effectiveness of structural
systems is highly dependent on the control method used for designing semi-active control law. In
general, the optimal control method based on the dynamical programming principle is more
reasonable and effective than the others. The optimal control of structural systems can be treated
as an optimal regulation problem or optimal track problem [6]. Dynamic loading such as wind or
earthquake acting on engineering structures is random in nature. In the case that the random
loading cannot be modelled as a filtering white noise, the structural optimal control should be
considered as an optimal regulation problem. With a classical explicit solution of control law to
the dynamical programming equation, the linear quadratic (LQ) control method [6] is frequently
used in structural control.

In dynamic analysis, engineering structures such as tall buildings are usually modelled as multi-
degree-of-freedom systems. Structural systems with multi-degree-of-freedom exhibit non-linearity
when subjected to strong dynamic loading. In particular, the controlled multi-degree-of-freedom
systems are non-linear due to semi-active control devices such as ER or MR dampers [2,3].
Although non-linear control methods, for example, the non-linear stochastic optimal control
method based on the stochastic dynamical programming principle and stochastic averaging
method [5,7–9] have been proposed, yet their application to non-linear systems with highly multi-
degree of freedom is challenging at present since applying the stochastic averaging method [10,11]
to the systems is difficult. An alternative method for non-linear multi-degree-of-freedom systems
is the statistical linearization method [12–14], by which a good result of random response
statistics can be obtained, especially for controlled non-linear systems with response reduction.
The linearized result can also converge on corresponding linear one as the non-linearity vanishes.
The active optimal control of a non-linear two-degree-of-freedom system under a filtering white
noise excitation has been studied based on the statistical linearization method and LQ control
method [15]. Therefore, the semi-active optimal control of non-linear multi-degree-of-freedom
systems based on the statistical linearization method and dynamical programming principle is a
significant research subject.

On the other hand, in structural engineering field, installing supplemental control devices in
high-rise building structures is a practical and effective approach to mitigating structural wind or

ARTICLE IN PRESS

Z.G. Ying et al. / Journal of Sound and Vibration 279 (2005) 373–388374



seismic response. The passive control of tall building structures with supplemental control devices
such as the tuned mass damper and tuned liquid damper has been researched extensively [16], and
the active and semi-active controls of tall building structures under random wind or seismic
excitation have been evolved [17–19]. Several semi-active control devices [20,21], especially the
magnetorheological-tuned liquid column damper (MR-TLCD) [22] have been designed recently
and studied on their dynamic behavior. MR fluids as smart materials possess better essential
characteristics such as reversible change between liquid and semi-solid with controllable
yield strength in milliseconds when exposed to a magnetic field. TLCDs are a type of U-shape
liquid dampers with favorable characteristics such as structural simplicity, convenience
of installation and low costs. With the benefits of smart MR fluids and TLCDs, the semi-active
MR-TLCD incorporates MR fluids as TLCD-contained liquid to be controlled by applied
magnetic field, and has been used as a passive control device for reducing wind response of
tall building structures [22]. Consequently, applying the semi-active optimal control method for
non-linear multi-degree-of-freedom systems to building structures with MR-TLCDs under
random wind excitation is more interesting and would be more effective for wind response
mitigation.

The present study is focused firstly on the semi-active optimal control method for a non-linear
multi-degree-of-freedom system under random excitation. The control force of a semi-active
control device is separated into passive part combined with the uncontrolled system and semi-
active part to be determined by an optimal control strategy. The quasi-linear equations of
motion for generalized displacements and momenta of the system with passive control force
components are derived by using the statistical linearization method. The dynamical
programming equation for the linearized system is established based on the stochastic dynamical
programming principle. In the case that the random excitation cannot be modelled as a filtering
white noise, the optimal control of the system is treated as an optimal regulation problem and the
semi-active optimal control law is determined by LQ control. Then the developed control method
is applied to a tall building structure for wind response reduction. A multi-degree-of-freedom
model of the building structure with an arbitrary number of stories and with a semi-active
MR-TLCD at the top floor is formulated and converted into another one by using the modal
transformation technique. Since the random wind excitation with the Davenport power spectrum
cannot be modelled as a linear filtering white noise, the optimal control of the structure with
non-linear MR-TLCD is considered as an optimal regulation problem. The semi-active optimal
control force is obtained based on the statistical linearization method and LQ control method,
on which the clipping treatment may be performed to ensure the control force implementable
actually. Finally, the random wind response of the semi-actively controlled building structure
is predicted by using the statistical linearization method and compared with that of the
passively controlled structure to evaluate the control efficacy which is illustrated by the numerical
results.

2. Linearization and optimal control of multi-degree-of-freedom systems

A non-linear structure with semi-active control devices under random loading can be modelled
as a controlled, randomly excited and dissipated Hamiltonian system of multi-degree of freedom,
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which is governed by n pairs of equations of motion as follows:

’Qi ¼
@H 0

@Pi

; ð1aÞ

’Pi ¼ �
@H 0

@Qi

� c0ij
@H 0

@Pj

� birur þ fikxkðtÞ; ð1bÞ

i; j ¼ 1; 2;y; n; r ¼ 1; 2;y; l; k ¼ 1; 2;y;m;

where H 0 ¼ H 0ðQi;PiÞ is the Hamiltonian generally representing total energy of the system; Qi and
Pi are generalized displacement and momentum, respectively; c0ij ¼ c0ijðQi;PiÞ denotes damping
coefficient; fik is the amplitude of random excitation and xkðtÞ is random process with zero mean
and power spectral density Skk0 ðoÞ; ur represents the control force produced by semi-active control
devices and bir is the control-device placement coefficient.

The random response of the Hamiltonian system in functional form depends on its integrability
and resonance which are determined by the structure of its Hamiltonian H 0 [11,23]. For example,
in the case of integrable Hamiltonian system as many engineering structures are modelled
generally, there exist n independent integrals of motion, which are in involution and the energy
distribution among various degrees of freedom as well as the total system energy is adjustable.
The stationary probability density of the system is a functional of independent integrals of motion
and thus, the total energy and energy distribution can be controlled by control forces as well as
changed by dampings and excitations. The system vibration can be mitigated by the system
state control.

In general, the control force ur produced by semi-active control devices such as ER and MR
dampers can be separated into passive part urp and semi-active part urs [4,5], that is

urðQi;PiÞ ¼ urpðQi;PiÞ þ ursðQi;PiÞ; ð2Þ

where urp is the passive control force component of the control devices independent of external
voltage and urs is the semi-active control force component of the control devices dependent on
external voltage, which can be adjusted by small power source according to an optimal control
strategy. By combining the passive control force component urp with the uncontrolled system to
form a new Hamiltonian H; Eq. (1) is rewritten as

’Qi ¼
@H

@Pi

; ð3aÞ

’Pi ¼ �
@H

@Qi

� cij
@H

@Pj

� birurs þ fikxkðtÞ; ð3bÞ

i; j ¼ 1; 2;y; n; r ¼ 1; 2;y; l; k ¼ 1; 2;y;m:

For non-linear multi-degree-of-freedom system (3) subjected to random excitation, it is difficult
to directly use the dynamical programming principle for determining an optimal control law. The
statistical linearization method [12–14] can be first applied to system (3) to yield quasi-linear
random processes which can converge on corresponding linear ones with non-linearity vanishing,
especially for the controlled system with response reduction. The linearized equations for
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generalized displacements and momenta as state process vector are represented by

’Z ¼ AZþ FðtÞ þU; ð4Þ

where the generalized state vector Z; random excitation vector F; semi-active control force vector
U and coefficient matrix A are, respectively,

Z ¼
½Qi�n	1

½Pi�n	1

( )
; F ¼

0n	1

½fikxkðtÞ�n	1

( )
; U ¼

0n	1

�½birurs�n	1

( )
; ð5aÞ

A ¼

E
@2H

@Qi@Pi

� �
n	n

E
@2H

@P2
i

� �
n	n

�E
@2H

@Q2
i

þ
@

@Qi

cij
@H

@Pj

� �� �
n	n

�E
@2H

@Qi@Pi

þ
@

@Pi

cij
@H

@Pj

� �� �
n	n

2
6664

3
7775; ð5bÞ

in which E½
� denotes the expectation operator. Matrix A can be expressed generally as a function
of response statistics of the system so that Eq. (4) is quasi-linear. Such equation is convenient to
apply the dynamical programming principle for designing an optimal control law.

The optimal control of random process (4) can be performed based on the stochastic dynamical
programming principle. The optimal control law depends on the objective of system control,
which is expressed in terms of performance index. For Z control, the performance index in finite
time interval is

J ¼ E

Z tf

0

LðZðtÞ; usðtÞÞ dtþCðZðtf ÞÞ
� �

; ð6Þ

where tf is the terminal time; LðZ; usÞ represents a continuous differential convex function;
us ¼ ½u1s; u2s;y; uns�T and cðtf Þ represents a terminal cost. In infinite time-interval ergodic
control, the performance index (6) becomes

J ¼ lim
tf -N

1

tf

Z tf

0

LðZðtÞ; usðtÞÞ dt: ð7Þ

Obviously, the performance index J depends on the used function L of Z and us: For a convex
function L as used in the conventional linear-quadratic-Gaussian control, the random process Z
in entire dynamic process decreases in correspondence with function L and performance index J:
Thus the random response can be reduced by minimizing the performance index. In the case of
Gaussian white noise excitation FðtÞ with intensity 2D; applying the stochastic dynamical
programming principle [6] yields a dynamical programming equation, for example, to the
controlled process (4) with performance index (6) as follows:

@V

@t
¼ �min

us

LðZ; usÞ þ ðAZþUÞT
@V

@Z
þ tr D

@2V

@Z2

� �� �
ð8Þ

or to the controlled process (4) with performance index (7) as

l ¼ min
us

LðZ; usÞ þ ðAZþUÞT
@V

@Z
þ tr D

@2V

@Z2

� �� �
; ð9Þ
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where tr½
� denotes the trace operator of square matrix; V ¼ V ðZ; tÞ is called value function
and l is a constant. If the random excitation FðtÞ is modelled as linear-filtering white noises,
then Eq. (4) can be rewritten in the augmented form by incorporating the filtering system into
the linearized system so that the stochastic dynamical programming principle can be applied
similarly.

The optimal control law can be determined by minimizing the right-hand side of Eq. (8) or (9).
Its governing equation is

@

@us

LðZ; usÞ � BT
N

@V

@PN

� �
¼ 0; ð10Þ

where the generalized momentum vector PN ¼ fP1;P2;y;Png
T and control-device placement

matrix BN ¼ ½bir�n	l : In general, let function L be quadratic in control force vector us; that is

LðZ; usÞ ¼ gðZÞ þ uTs Rus; ð11Þ

where gðZÞX0 and R is a positive-definite symmetric matrix. Then the optimal control force is
obtained as follows:

us ¼ 1
2
R�1BT

N

@V

@PN

; ð12Þ

which depends on value function V : By substituting the expression of us obtained from Eq. (10) or
(12) into Eqs. (8) and (9), the dynamical programming equations become other ones for the value
function. If there exists a value function solution quadratic in generalized momenta or velocities,
then Eq. (12) implies that the optimal control force us is a quasi-linear damping force due to the
coefficients related to the system response statistics.

In the case that the random excitation cannot be modelled as a filtering white noise, the optimal
control of system (4) with performance index (6) or (7) is treated as an optimal regulation
problem. The optimal control force can be similarly determined by Eq. (10) or obtained as
Eq. (12), but the dynamical programming equation for value function is

LðZ; usÞ þ ðAZþUÞT
@V

@Z
¼ 0: ð13Þ

Based on the LQ control method [6] possessing better characteristics such as simplicity,
effectiveness and classical explicit solution of control law, the quasi-linear optimal control can be
determined with the following functions:

L ¼ ZTSZþ uTs Rus; V ¼ ZTPZ; ð14Þ

where S is a positive semi-definite symmetric constant matrix and P is a symmetric matrix. The
matrix P can be obtained by solving the following equation in the Riccati form:

Sþ ATPþ PA� PBR�1BTP ¼ 0; B ¼ ½0l	n B
T
N �

T: ð15Þ

In fact, the control force produced by semi-active control devices such as ER and MR dampers
[3–5] does not meet Eq. (12) always and thus the required control force (12) needs to be adapted
for semi-active control device implementation. The implemented semi-active optimal control force
u�rs can be determined by minimizing the difference between implemented control force and
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required control force, that is

u�rs ¼ urs þ Dum
rs sgnðu

�
rs � ursÞ; Dum

rs ¼ min
u�rs

ju�rs � ursj; ð16Þ

r ¼ 1; 2;y; l;

where sgnð
Þ is the sign operator and sgnð0Þ ¼ 0: For semi-active ER and MR dampers, the
commanded control force (16) is just the clipped optimal control force [3–5] as

u�rs ¼
F�

r sgnðbir
’QiÞ; F�

r X0;

0; F�
r p0;

(
ð17aÞ

F�
r ¼ ½R�1BTPZ�r sgnðbir

’QiÞ: ð17bÞ

According to the variational principle, the commanded semi-active control force (16) satisfies the
dynamical programming equation with the constraint of semi-active control devices and therefore
is a semi-active optimal control force implementable actually. The response statistics of the
randomly excited controlled system can be first evaluated by using the linearized equation (4).
Then the coefficient matrix A is calculated as a function of the response statistics and the
coefficient matrix P of value function is solved by Eq. (15) so that the required control force (12)
with (14) can be determined. At last, the semi-active optimal control force u�s is obtained from
Eq. (16) by iteration.

3. Tall building structures with MR-TLCDs under random wind excitation

To illustrate the application and effectiveness of the proposed semi-active optimal control
method for multi-degree-of-freedom systems, consider a high-rise building structure with n-storey
and a semi-active MR-TLCD (Fig. 1) installed at the top floor. It is assumed that the building
structure is subjected to a lateral horizontal wind excitation and the structural response is
primarily in the along-wind horizontal direction. In the case of linear elastic shear-type structure,
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the equations of motion of the structural system are expressed as [22]

M .X þ C ’X þ KX ¼ FW ðtÞ þ E1fD; ð18aÞ

mD .y þ uð ’yÞ þ kDy ¼ �lmDET
1
.X; ð18bÞ

where X denotes the n-dimensional horizontal displacement vector of the structure; M; C and K
are the n 	 n-dimensional symmetric positive-definite mass, damping and stiffness matrices,
respectively; FW ðtÞ is the n-dimensional wind excitation vector; y denotes the relative displacement
of liquid to U-shape container of the MR-TLCD; mD ¼ rADL is the liquid mass and, r;AD;L are,
respectively, the liquid mass density, cross-sectional area and total length; kD ¼ 2rgAD is the
equivalent stiffness and g is the gravity acceleration; l ¼ BD=L ðo1Þ is the ratio of horizontal and
total liquid lengths and BD is the horizontal liquid length; E1 ¼ f1; 0;y; 0gT is an n-dimensional
identity vector and fD is the interaction force between the MR-TLCD and top floor of the
structure, which is represented by

fD ¼
1

l
½ð1� l2ÞmD .y þ uð ’yÞ þ kDy�: ð19Þ

For convenience, matrix and vector symbols are not in boldface here and hereafter. In
Eq. (18b), the damping force uð ’yÞ produced by the MR fluids can be separated into two parts as
follows:

uð ’yÞ ¼ upð ’yÞ þ usð ’yÞ ð20Þ

with

upð ’yÞ ¼ 1
2
rdAD ’y2 sgnð ’yÞ; usð ’yÞ ¼ ty

cADLp

h

� �
sgnð ’yÞ; ð21Þ

where d is the overall head loss coefficient; c is a constant; ty denotes the yield stress of the MR
fluids controlled by applied external voltage; Lp and h are, respectively, the length and depth of
the MR fluids; up independent of ty denotes the uncontrollable part by applied external voltage
and is a non-linear passive control damping force which can be incorporated into the uncontrolled
system; us dependent on ty denotes the controllable part by applied external voltage with small
power source and then is a semi-active control damping force which can be determined according
to an optimal control strategy. It is seen from Eq. (21) that the controllable damping force us is
positive or negative always corresponding to the relative velocity ’y so that the damping force is in
the opposite direction of the relative motion.

The wind excitation FW can be modelled as a random process vector with the Davenport power
spectrum [24]. According to this model, the cross power spectral density of wind forces is

SWijðoÞ ¼ r2
aC2

DV2
10AiAj

hihj

100

� �a

cohðhi; hj;oÞ
S0ðoÞ
2p

; ð22Þ

i; j ¼ 1; 2;y; n;

where SWijðoÞ denotes the cross spectrum of wind forces at the ith floor and jth floor; ra is the air
mass density; CD is the drag coefficient; V10 is the mean wind velocity at 10 m height; Ai and Aj

are the equivalent projection areas about the ith and jth floors, respectively; hi and hj are heights
of the ith and jth floors; and a is a constant. cohðhi; hj;oÞ is the coherence function of wind forces,
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describing the spanwise correlation features of fluctuating wind forces; and S0ðoÞ is the power
spectral density of wind velocity. They are

cohðhi; hj;oÞ ¼ exp �
Chjojjhi � hj j

2pV10

� �
; ð23Þ

S0ðoÞ ¼ 8pKDV2
10

Z2
0

jojð1þ Z2
0Þ

4=3
; Z0 ¼

600o
pV10

; ð24Þ

where Ch is a decay constant and KD is the ground coarse coefficient. The random wind excitation
cannot be modelled as a filtering white noise.

The random wind response of the building structure can be expressed accurately using first
several structural modes [22]. For the structural response, the first m ðpnÞ modes are aimed at
and taken to assemble into an n 	 m-dimensional mode matrix F normalized with respect to the
mass matrix M: By using the modal transformation technique, the equations of motion of the
structural system (18) are converted into

.Y þ X ’Y þ OY ¼ FTFW ðtÞ þ FTE1fD; ð25aÞ

.y þ
1

mD

uð ’yÞ þ
kD

mD

y ¼ �lET
1 F .Y; ð25bÞ

where Y ¼ fy1; y2;y; ymg
T denotes the m-dimensional modal displacement vector; the m 	 m-

dimensional diagonal matrices O ¼ FTKF ¼ ½o2
i � and X ¼ FTCF ¼ ½2zioi� under the assumption

of damping matrix C diagonalizable by the mode matrix F; in which oi and zi are, respectively,
structural natural frequency and damping ratio of the ith mode. Combining Eqs. (25a) and (25b)
yields the following augmented matrix equation for the structural system with MR-TLCD:

MA
.%Y þ CA

’%Y þ KA %Y þ FApð %YÞ ¼ FAW ðtÞ þ FAs; ð26Þ

where the ðm þ 1Þ-dimensional generalized displacement vector %Y; the ðm þ 1Þ 	 ðm þ 1Þ-
dimensional generalized mass matrix MA; damping matrix CA and stiffness matrix KA; the
ðm þ 1Þ-dimensional generalized external force vector FAW ; passive control force vector FAp and
semi-active control force vector FAs are, respectively,

%Y ¼
Y

y

( )
; MA ¼

Im �ð1 � l2ÞmDFTE1=l

lET
1 F 1

" #
; ð27aÞ

CA ¼
X 0m

0m 0m

" #
; KA ¼

O �kDFTE1=l

0 kD=mD

" #
; ð27bÞ

FAW ¼
FTFW

0

( )
; FAp ¼ Bpupð ’yÞ; ð27cÞ

FAs ¼ �Bpusð ’yÞ; Bp ¼
�FTE1=l

1=mD

( )
ð27dÞ
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and Im is the m 	 m-dimensional identity matrix. The passive control force component up of the
MR-TLCD is incorporated into the uncontrolled system. The generalized mass matrix MA is non-
singular since the determinant jMAj ¼ 1þ ð1 � l2ÞmD

Pm
i¼1f

2
i1 > 0; in which fi1 is the first element

of the ith mode vector in matrix F: Pre-multiplying Eq. (26) by the inverse matrix M�1
A and

rewriting it in the form of state equation yield

’Z ¼ ALZ þ FNðZÞ þ F ðtÞ þ U ; ð28Þ

where the ð2m þ 2Þ-dimensional generalized state vector Z; the ð2m þ 2Þ 	 ð2m þ 2Þ-dimensional
coefficient matrix AL; the ð2m þ 2Þ-dimensional non-linear force vector FN ; external force vector
F and control force vector U are

Z ¼
%Y

’%Y

( )
; AL ¼

0mþ1 Imþ1

�M�1
A KA �M�1

A CA

" #
; ð29aÞ

FN ¼
0ðmþ1Þ	1

�M�1
A Bp

( )
upð ’yÞ; F ¼

0ðmþ1Þ	1

M�1
A FAW

( )
; ð29bÞ

U ¼
0ðmþ1Þ	1

�M�1
A Bp

( )
usð ’yÞ: ð29cÞ

By applying the statistical linearization method [12–14] to non-linear state equation (28), the
linearized equation is obtained as follows:

’Z ¼ AZ þ F ðtÞ þ U ; ð30Þ

where the coefficient matrix A ¼ AL þ AN and

AN ¼
0ðmþ1Þ	ð2mþ1Þ 0ðmþ1Þ	1

0ðmþ1Þ	ð2mþ1Þ �M�1
A Bpceq

" #
; ceq ¼ rdAD

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E½ ’y2�

p

s
; ð31aÞ

U ¼ �Busð ’yÞ; B ¼
0ðmþ1Þ	1

M�1
A Bp

( )
; ð31bÞ

in which ceq is an equivalent damping coefficient of the passive control force component up of the
MR-TLCD. The semi-active control damping force component us of the MR-TLCD is expressed
in the form of separation such that it is convenient to applying an optimal control strategy.

4. Semi-active optimal control law and response prediction

The response control of the structural system (18a) with the semi-active MR-TLCD (18b) under
random wind excitation (22) can be achieved by the response control of the linearized system (30).
Since the random wind excitation cannot be modelled as a filtering white noise, the optimal
control of system (30) is treated as an optimal regulation problem. It is assumed that the system
states such as displacements and velocities can be determined exactly by measurement. Then the
optimal control problem is independent of the state observation problem and the optimal control
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law can be determined directly based on the dynamical programming principle [6]. For the system
response control, performance indexes can be expressed as Eqs. (6) and (7). The performance
index in infinite time interval is of the form

J ¼ lim
T-N

1

T

Z T

0

LðZðtÞ; usðtÞÞ dt: ð32Þ

Based on the dynamical programming principle [6], the dynamical programming equation for
system (30) with performance index (32) as an optimal regulation problem is established as
follows:

min
us

L þ ðAZ þ UÞT
@V

@Z

� �
¼ 0: ð33Þ

With the similarity to Eqs. (10)–(15), the quasi-linear optimal control law can be determined by
minimizing the left side of Eq. (33) and using Eq. (31b). For function L and value function V (14)
quadratic in control force and system state, the optimal control force is

us ¼ R�1BTPZ; ð34Þ

where R is a positive constant and the coefficient matrix P can be obtained by solving algebraic
matrix equation (15). Since matrix P is related to the system response statistics due to matrix A
(31a), the control force us (34) is quasi-linear. Note that the control force required by (34) is a
function of the state vector Z (29a) and the damping force produced by the MR-TLCD (21) is just
a function of the state variable ’y (27a), so that they are not in agreement always. When the
required control force is positive (or negative) while the producible damping force is negative
(or positive), the clipping treatment to the required control force needs to be performed. The
clipped optimal control force is

u�s ¼
F� sgnð ’yÞ; F�

X0;

0; F�p0;

(
ð35aÞ

F� ¼ R�1BTPZ sgnð ’yÞ; ð35bÞ

which satisfies the dynamical programming equation (33) with the damping force constraint (21)
according to the variational principle. The optimal control force (35) is implementable by the
semi-active MR-TLCD in terms of Eq. (21) and then is the semi-active optimal control force. By
denoting matrices

S ¼
S1 S2

ST
2 S3

" #
; P ¼

P1 P2

PT
2 P3

" #
; A ¼

A1 A2

A3 A4

" #
; ð36Þ

where Si; Pi and Ai are the ðm þ 1Þ 	 ðm þ 1Þ-dimensional sub-matrices, and by letting S1 ¼ 0;
Eqs. (35b) and (15) are further expressed as

F� ¼ R�1BT
p QT

3
’%Y sgnð ’yÞ; ð37Þ

S3 � %CT
AQT

3 � Q3 %CA � R�1Q3BpBT
p QT

3 ¼ 0; ð38Þ

where Q3 ¼ P3M�1
A ; %CA ¼ CA þ C0

A and C0
A ¼ ½0ðmþ1Þ	m;Bpceq�:
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To evaluate the control efficacy of the proposed non-linear stochastic optimal control method,
the random response of the semi-actively controlled structure under wind excitation is then
predicted and compared with that of the passively controlled structure in terms of performance
criteria. By substituting the optimal control force (35) into Eq. (26) and applying the statistical
linearization method to it, the following matrix equation for the semi-actively controlled
structural system with MR-TLCD is obtained:

MA
.%Y þ *CA

’%Y þ KA %Y ¼ FAW ðtÞ; ð39Þ

where *CA ¼ %CA þ C00
A; C00

A ¼ BpCT
seq and the equivalent coefficient vector

Cseq ¼
1

2R
Q3Bp þ E

@

@ ’%Y
jBT

p QT
3
’%Yj sgnð ’yÞ

� �� �
: ð40Þ

The cross-power spectrum matrix of random responses of system (39) is represented by

S %Y %YðoÞ ¼ HðjoÞSF ðoÞHTð�joÞ; ð41Þ

where the frequency-response function matrix HðjoÞ and the power spectrum matrix of random
excitation SF ðoÞ are

HðjoÞ ¼ ðKA � o2MA þ jo *CAÞ
�1; j ¼

ffiffiffiffiffiffiffi
�1

p
; ð42aÞ

SF ðoÞ ¼
FTSW ðoÞF 0m	1

01	m 0

" #
; ð42bÞ

in which SW ðoÞ is the wind power spectrum matrix with elements given by Eq. (22). The mean
square response of system (30) can be evaluated by using the cross-power spectrum (41) as
follows:

E½ %Y2
i � ¼

Z þN

�N

S %Yi
%Yi
ðoÞ do; E½ ’%Y2

i � ¼
Z þN

�N

o2S %Yi
%Yi
ðoÞ do: ð43Þ

Then the mean square displacement, acceleration and optimal control force of the semi-actively
controlled structure (18a) are represented based on the modal transformation technique by

E½X 2
i � ¼

Z þN

�N

SXiXi
ðoÞ do; E½ .X2

i � ¼
Z þN

�N

o4SXiXi
ðoÞ do; ð44aÞ

E½u�2
s � ¼ CT

seqE½ ’%Y ’%YT�Cseq; ð44bÞ

where SXX ðoÞ ¼ FSYY ðoÞFT is the cross-power spectrum matrix of the structural displacements
and SYY ðoÞ is the cross-power spectrum matrix of the modal displacements, which is a sub-matrix
of the power spectrum matrix S %Y %YðoÞ:

The mean square response of the passively controlled structure corresponding to (18a) under
random wind excitation can be obtained in the same way by eliminating the semi-active
optimal control force. At last, the following performance criteria [7–9] are used for evaluating the
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control efficacy:

Kresponse ¼
RMSðresponsepÞ � RMSðresponsesÞ

RMSðresponsepÞ
	 100%; ð45aÞ

Kus
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E½u�2

s �
p
tr½M�g

	 100%; ð45bÞ

where RMSð
Þ denotes the root-mean-square operator; and subscripts p and s denote the passive
and semi-active control, respectively. The ratio Kresponse measures the percentage response
reduction of the semi-actively and passively controlled structures or the control effectiveness. The
ratio Kus

measures the percentage value of the semi-active optimal control force relative to the
total structural weight. The higher Kresponse and smaller Kus

indicate the control method with more
response reduction capabilities.

5. Numerical results

A numerical study is conducted on the semi-active optimal control of a 51-storey building
structure [22] subjected to wind loading and with an MR-TLCD at the top floor. The height of the
building structure is 161:65 m; the total structural mass is 2:774 	 107 kg and the modal damping
ratio is 0.03. The first five natural frequencies are 0.216, 0.940, 2.278, 3.941 and 5:932 Hz obtained
from the three-dimensional finite element model of the structure. The parameter values are ra ¼
1:28 kg=m3; CD ¼ 1:2; V10 ¼ 45:3 m=s; Ai ¼ 1 (that is, the following numerical results for unit
equivalent projection area of the wind loading), a ¼ 0:19; Ch ¼ 10; KD ¼ 0:02 for the wind
loading; and mD ¼ 2:774	 105 kg; oD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD=mD

p
¼ 1:2195 rad=s; l ¼ 0:8; d ¼ 30 for the MR-

TLCD. The wind power spectral density (22) for different floor height is given in Fig. 2. The
weighting coefficients of control force and system state are R ¼ 106=tr2½M� and S3 ¼
diagf0:7; 0:8; 1:2; 1:5; 1:5; 0:3g: Some numerical results are displayed in Figs. 3–5.

Figs. 3 and 4 show, respectively, the displacement and acceleration responses of the semi-
actively controlled structure by using the proposed method and the passively controlled structure
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for various floor heights. It is seen that the random response reduction increases with the floor
height. Fig. 5 illustrates the percentage relative reductions of structural displacements ðKX Þ;
interstory drifts ðKDX Þ and accelerations ðK .XÞ with the percentage relative optimal control force
ðKus

Þ equal to 0.0088%. About 46% displacement reduction and 72% acceleration reduction at
the top floor are achieved. The percentage acceleration reduction at higher floor is more than at
lower floor while the percentage displacement reduction varies slightly.

6. Conclusions

A semi-active optimal control method for non-linear multi-degree-of-freedom systems has
been developed based on the dynamical programming principle, statistical linearization method
and variational principle, and has been applied to a tall building structure with MR-TLCD
for random wind response reduction. The developed control method has the following
advantages: (a) it is applicable to non-linear and multi-degree-of-freedom systems under random
excitation and with non-linear semi-active control devices; (b) it is simple, effective and has a
classical explicit solution of control law to the dynamical programming equation; (c) it is
uniform and available as the non-linear controlled system tends to corresponding linear one;
(d) it combines the benefits of active and passive control methods, as illustrated by the random
wind response control of the building structure with semi-active MR-TLCD. The semi-active
optimal control force for MR-TLCDs is obtained in the form of a quasi-linear dissipative
damping force, which does not have the potential to destabilize the structure. Numerical
results for the structural system with an MR-TLCD at the top show that more random
response reduction can be achieved by using the developed control method. In consequence, the
developed semi-active optimal control method is potentially promising for structural control
applications.
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