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Abstract

In this study, a non-linear time-varying dynamic model is used to investigate sub-harmonic and chaotic
motions exhibited by a typical multi-mesh gear train. The purely torsional system is formed by three rigid
shafts connected to each other by two spur gear pairs. The lumped parameter dynamic model includes both
gear backlash clearances and parametric gear mesh stiffness fluctuations. Steady state period-one motions
of the same system were studied in another by using a multi-term harmonic balance method in conjunction
with discrete Fourier transforms. This study expands the same solution technique for an investigation of
sub-harmonic resonances of the forced response. The accuracy of the predictions is demonstrated by
comparing them to the direct numerical integration results. Effect of several system parameters such as
alternating mesh stiffness amplitudes, gear mesh damping and static torque transmitted on sub-harmonic
motions are described. It is shown that stable sub-harmonic motions mostly in the form of softening type
resonances dictate the frequency ranges in which the period-one motions are unstable due to parametric
excitations. Other non-linear phenomena including long sub-harmonic motions and period-doubling
bifurcations leading to chaotic behavior are also predicted.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic behavior of gear systems has been one of the main topics in power transmission
research. Both fatigue life and noise behavior of a gear set is influenced by its dynamic behavior.
Since gear mesh and support bearing forces increase under typical dynamic operating conditions,
dynamic forces transmitted to the housing and other structures are also increased, resulting in

*Corresponding author. Tel.: +1-614-292-4678; fax: +1-614-292-3603.
E-mail address: kahraman.l @osu.edu (A. Kahraman).

0022-460X/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsv.2003.11.029



418 A. Al-shyyab, A. Kahraman | Journal of Sound and Vibration 279 (2005) 417-451

excessive noise levels attributable to the gears. Likewise, dynamic loads at the gear mesh cause
elevated tooth root and contact stresses, leading to shorter tooth bending and pitting fatigue lives.

The gear system that will be studied in this paper, as shown in Fig. 1, is a multi-mesh gear train
that is formed by three shafts and two gear pairs. As one of the most common configurations used
in automotive, acrospace, marine and industrial power trains, this arrangement can be found in
passenger car automatic, manual and continuously variable transmissions, commercial industrial
gearboxes and helicopter drive trains. A number of models were proposed in the past to describe
the dynamic behavior of this system. Most of these models were linear time-invariant type as the
gear backlash and mesh stiffness fluctuations were both ignored [1-13]. Such simplifications
allowed larger number of degrees of freedom to be included in the models since eigenvalue and
modal summation formulations were suitable. Shaft and bearing flexibilities and combined
transverse-torsional motions of gears were all included in these models to study larger-scale
gear—shaft-bearing systems. In some cases, even the case housing flexibilities were included in the
form of a case stiffness matrix [13]. While these models offered guidelines towards the design of
gear systems with favorable shaft and bearing arrangements, they brought limited insight to the
behavior at the gear mesh. Meanwhile, the recent experimental data [14—16] indicated that tooth
separations are observed commonly, suggesting that the models must include gear backlash
non-linearity. In addition, the mesh stiffness fluctuations were found to be one of the main
excitations originating from the spur gear mesh, and hence, they must be included in a gear
dynamics model as well [17].

Another group of models included the mesh stiffness fluctuations in the form of a parametric
excitation while still assuming no tooth separations. Papers by Benton and Seireg [18,19], Mollers
[20], Nakada and Utagawa [21], and most recently, Lin and Parker [22] focused on the instabilities
caused by parametric excitations. These studies presented stability maps that define the ranges of
unstable motions as a function of gear mesh damping and mesh stiffness excitation amplitudes.
Sinusoidal and rectangular functions were considered as extreme cases of mesh stiffness

Gear 1

Shaft 1

Shaft 2

Shaft 3

Gear 4

Fig. 1. The multi-mesh gear train considered in this study.



A. Al-shyyab, A. Kahraman | Journal of Sound and Vibration 279 (2005) 417-451 419

variations. It was predicted that gear systems could exhibit both primary and sub-harmonic
resonances resulting in regions of unstable motions with very large amplitudes.

Experimental studies by Gregory et al. [23], Kahraman and Blankenship [14,16], Umezawa et al.
[24] indicate that unstable regions predicted by linear time-varying models are dictated by
bounded sub-harmonic motions. As the vibration amplitudes get larger in these regions, tooth
separations are initiated. This results in a softening type response (bending to the left) that is
formed by period-n (nT) sub-harmonic motions (n>2). Models of Kahraman and Blankenship
[16], and Kahraman and Singh [25] included both the gear backlash and mesh stiffness
fluctuations, and exhibited this behavior for a single gear pair. Most recently, Al-shyyab and
Kahraman [26] proposed a non-linear time-varying dynamic model of the system shown in Fig. 1.
The system was reduced to a two-degree-of-freedom definite model by using the relative gear mesh
displacements as the co-ordinates. Dimensionless equations of motion were solved for the steady
state period-1 (17) response by using a multi-term harmonic balance method (HBM) in
conjunction with discrete Fourier transforms and a parametric continuation scheme. The HBM
solutions were shown to be accurate by comparing them to direct numerical integration (NI)
solutions. Floquet theory was applied to determine the stability of the steady state HBM
solutions. An example gear train was used to investigate the influence of key system parameters
including alternating mesh stiffness amplitudes, gear mesh damping, static torque transmitted and
the gear mesh frequency ratio.

1.1. Scope and objectives

In this study, the non-linear time-varying dynamic model of the gear system shown in Fig. 1, as
proposed in Ref. [26], will be used to study sub-harmonic and chaotic motions. Both the gear
backlash clearance and the parametric gear mesh stiffness fluctuations will be included in the
model. Steady state n7 (n=2) motions of the same system will be determined by using a multi-
term HBM in conjunction with discrete Fourier transforms. Sub-harmonic resonances in the
instability ranges will be predicted. Accuracy of the predictions will be demonstrated by
comparing them to the NI results. The effect of several system parameters such as alternating
mesh stiffness amplitudes, gear mesh damping and static torque transmitted on sub-harmonic
motions will also be investigated. Other non-linear phenomena including long sub-harmonic
motions, period doubling bifurcations and chaotic behavior will also be demonstrated.

2. Dynamic model and equations of motion

Sub-harmonic and chaotic motions exhibited by the system shown in Fig. 1 is the main focus of
this study. The system consists of two separate gear meshes. Four gears mounted on three shafts
form this gear train. The torsional dynamic model shown in Fig. 2 was proposed in Ref. [26]. We
refer to this previous paper for the details of the dynamic model, assumptions employed and
non-dimensionalization of the equations of motion. In this study, only the details of the model
formulation that are relevant to sub-harmonic motions will be included.

In Fig. 2, each gear of polar mass moment of inertia /; and base radius r; is allowed to vibrate in
torsional direction by 0; (i = 1-4). Here, 0, represents the vibrations of gear i about its nominal
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Fig. 2. Dynamic model of the physical system shown in Fig. 1.

rigid body rotation Q;f where €; is rotational speed in radians per second and 7 is real time in
seconds. Functions k(7)) and k,(?) represent gear mesh flexibilities of the first and second gear
meshes, respectively. The gear mesh damping values are denoted by ¢; and ¢,. These stiffness and
damping elements were applied at respective gear meshes in the direction of the gear mesh line of
action. Displacement excitations e;(f) and e;(7) are connected in series to the stiffness and
damping elements as shown in Fig. 2. Gear backlash non-linearity is modelled as piecewise linear
“dead-zone” type clearance functions g; and g, of amounts 2b; and 2b,, respectively, and applied
to the displacement terms only. Here, neither the backlash functions nor the time-varying effects
are applied to the gear mesh damping. This is partly because of the fact that the damping
coefficients ¢; and ¢, in this model represent an array of different damping mechanisms including
gear mesh, windage, lubrication and bearings. In addition, it was also reported earlier that the
predictions of single gear pairs models with constant damping agree well with experimental data
[15,16]. Therefore, linear time-invariant viscous damping values are considered here.

It is assumed in Fig. 2 that the torsional shaft flexibilities are negligible. However, this
assumption might not be valid for a system having a relatively long shaft segment between gears 2
and 3. In such cases, 0,(7)# 0;(7) and a torsional spring must be defined between these two gears
increasing the degrees of freedom to three. Likewise, one could include the inertias of the input
and output as well that would introduce two additional co-ordinates. In order to keep the model
formulations at a manageable level, only the limiting case of rigid shafts is considered here by



A. Al-shyyab, A. Kahraman | Journal of Sound and Vibration 279 (2005) 417-451 421

letting 05(7) = 03(7) and I3 = I, + Iz, and using relative gear mesh displacements

Pr(@D) = 10D+ D)+ e (D),  paD) = r302(7) + r404(7) + ex(D), (1a,b)
as the co-ordinates, the equations of motion can be written as [26]
> 2 2
piD) +c [;—l-i-lr }Pl(-)-i-éz[] }P2(_)+kl(f)[ }gl(f)
I J45!
+ ka(D) [”2 3] go(0) = TiTl@ +&1(D), (2a)
2
b0+ a[22) 0 + e[ 2+ B+ [ eomon
2
+ 10 [+ 300 = 70+ 20 (2b)
23

Here g; and g, are gear backlash functions defined as

[r101(D) + 1202(0) + &1(D] — b1, [r101(D) + r202(D) + &1(D)] > by,
1101(D) + r202(7) + &1(D| <D, (3a)
[110,(D) + r20:(D) + &1 (D] + b1, [r10:(D) + r20:(D) + & (D] < — by,

[1302(2) + r404(7) + &x(D] — b2, [r302(D) + r404(D) + &x(D)] > b2,
g2=10, 1r302(7) + r404(7) + &x(1)| < b, (3b)
[1302(7) + 1404(D) + &(D] + b2, [r302(D) + r404(D) + 2x(D] < — bo.
Dimensionless equations of motion are obtained by defining
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where ki, and k»,, are the mean components of k;(¢) and ky(#), respectively. Considering a
dimensionless time 7= fw. where o, is the characteristic frequency, and then letting w; =
aj/w. (1,7 =1,2), pi®) = piD)/b., el?)=ei(7)/b. and b; =b;/b. (i=1,2), where b. is a
characteristic length, dimensionless equations of motion are obtained as [26]
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where
pi(t)_bf, pi(t)>bi7

gi(t) = 4 0, pi(OI<bi, =12, (5b)
pi(t) + b, p()< —b;
=T e, =T e (sc.d)

3. Multi-term harmonic balance solution for sub-harmonic motions

The procedure that was used earlier [26] for solution of period-one motions is expanded here to
obtain nT sub-harmonic motions (rn>2). In Fourier series form, periodic functions x;(¢) and fi(z)
are written as

K
k1(f) =1+ [k cos(hAr) + i), | sin(hAD)], (6a)
h=1
K
() = 1+ [K5) cos(hnAt) + k5, | sin(hnAp), (6b)
h=1
fiy =M+ Z [fs,) cos(£At) + 13/, sin(ZAr)], (6¢)
£ =12 + Z P cos(£AD) + 137, sin(£AD)]. (6d)

Here, A = A and A, = nA are the fundamental (gear mesh) frequencies of the stiffness of the first
and second gear meshes, respectively, where A = Z,Q;/w, is the dimensionless gear mesh
frequency (Z; is the number of teeth of gear 1), and the multiplier # can be any real number as it
defines the ratio of the number of teeth of gears 2 and 3 in Fig. 1, n = Z,/Zs.

One can assume 771 sub-harmonic solutions, p;(¢) and p,(#), again written in Fourier series form
as

(D - () A () A[
pi(t) =u;’ + Z u,, Cos , + uy, | sin il (7a)
r=1
. [rnAt
pal) =l + Z 82 os (M) a2 sin (M) . (7b)

Here u(ll), u(zlr), M(zl,)w u(lz), u(zzr) , u(ﬁ)ﬂ (re[l, R]) are unknown coefficients of the assumed solution and
n is a sub-harmonic index, introduced to facilitate sub-harmonic solutions. For a harmonic

balance to hold in Eq. (5a), the non-linear functions g,(¢) and g,(¢) are required to be periodic as
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well at the same harmonic orders as the assumed solutions:

R
gi1(t) = oV 4 E [v(l) cos( rd ) + o) sm( rd tﬂ (8a)
1 1 2 n 2r+1 n ’
r=1

A
g2(1) = v}? + Z [0(22) cos( ; ) + 08| sin <r,:7 t)] , (8b)

where the unknown coefficients v(l’), v(zlr) and v(zir) 41 (re[l, Rl and i = 1,2), also known as describing

functions, must be determined before the unknown response parameters can be found. Given
0 = At/n, a set of (4R + 3) non-linear algebraic equations are obtained by substituting Egs. (6)—(8)
into Eq. (5a), neglecting higher order terms, and equating the coefficients of like harmonics. This
set of algebraic equations is written in vector form as

S(U,v) = 0. )

Here U = [u(ll),ug), . .,u(zz,u(zllgﬂ,u(lz),ugz), . ,u(zzlg,u(2212+l,u4R+3] , where u4pi3 = A, and S both
have dimension (4R + 3), and the elements of S are given as (r€[1, R]).
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The last equation above (je[l,2R+ 1] and / =1 or 2) is added in order to expedite solution
through the bifurcation points. As the solution approaches (singular) bifurcation points, the
control parameter can be switched from the dimensionless frequency A to another unknown and
the other elements of the solution vector u and A can be treated as unknowns to be determined.

Table 1
Dimensional parameters of the baseline example gear pair
Parameter Gear 1 Gear 2 Gear 3 Gear 4
Base circle radius (m) 0.10 0.05 0.10 0.05
Mass (kg) 14.81 3.7 7.4 1.85
Inertia (kg/m?) 0.074 0.0046 0.0375 0.0023
Mean mesh stiffness (N/m) 5% 108 2.5 % 108
Mesh damping coefficient (Ns/m) 2721 1360
0.4
z
a0
2T

€)

2 2T

£.,02 3

2y AT

2T
T —
;=
0 Il
0 1 2 4
(b)

Fig. 3. Comparison of r.m.s. values of 17, 2T and 37 motions predicted by HBM and NI for R=6,{ =0.05, K =1,
K =1 =03, wpx200 =186, {2 =4V =0.185, by =by = 1 and b, = 30 um. (—) Stable and (—) unstable

HBM solutions and ([J) NI solutions. (a) p;, (b) pa.
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Fig. 4. Mean components of n7T (a) pi(t) and (b) p»(¢f) motions for R=6, {=0.05, K=1, = K(zz) = 0.3,

W X220, = 1.86 f(z) 4f(1) 0.185,b; = b, = 1.0 and b, = 30 um. (—) Stable and (—) unstable HBM solutions and
() NI solutions.

Discrete Fourier transforms are used to represent vgi) in terms of uf” [15,16,26]. The values of
the p;(¢) and g,(?) at the discrete time ¢t = gp (where ¢€[0, Q — 1]) are written as

2

Pig = u(ll) + Z [u(zl,) cos( q) + (zlr)ﬂ sin ( n'qu)] (I1a)
2

e 3 [ () e ()] i

and
Dig(t) — bi,  pig(t) > by,
gig = 0, Pig(DI<bi,  i=1,2, (11¢)
Pig(D) + bi,  piy()< — by,

where p =2n/(QA) and Q is the total number of the discrete points. Using Egs. (11), the
coefficients of U,-m can be determined by using of the inverse Fourier transforms such
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Fig. 5. An enlarged view of the r.m.s. amplitudes of n7 motions shown in Fig. 3. (—) Stable and (—) unstable HBM

solutions and () NI solutions. (a) p;, (b) pa.
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Above values of vy) are substituted into Eq. (10) to obtain (4R + 3) non-linear algebraic equations

that can be solved for U using the Newton—Raphson method according to
U™ — ym-b _ (J*l)(mfl)s(mfl)_

(13)
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Fig. 6. Harmonic amplitudes (a) A(11/)3, (b) A(ll/)2 and (¢) A(l]) corresponding to Fig. 3(a). (—) Stable and (—) unstable
HBM solutions.

Here, superscript 7 is an index for iterations and J~! is the inverse of the Jacobian matrix of the
vector S estimated at the previous iteration values. Starting with an initial guess U® and a control
parameter set to u* (say A), the iteration of Eq. (13) is repeated until the steady state solution U™
converges within a certain predefined error limit. The control parameter is set to the next value of
interest by increasing or decreasing u* until a bifurcation point impedes continuation. Then,
another unknown is adapted as the new control parameter. The individual elements of J in
Eq. (13) are given in Appendix A. Finally, the Floquet theory is used to determine is the stability
of the HBM solutions [26].
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Fig. 7. Harmonic amplitudes (a) A(lz/)3, (b) A(lz/)2 and (c) A(lz) corresponding to Fig. 3(b). (—) Stable and (—) unstable
HBM solutions.

4. Results and discussion

A HBM solution similar to the one proposed above was used successfully to predict 17 motions
of the same gear train [26]. In that study, 17 solutions were shown to become unstable near
regions of parametric resonances. NI method was used in these regions to show that these regions
are indeed dictated by stable sub-harmonic motions. These nT motions will be predicted
analytically in this study for the same gear train example of Ref. [26]. The parameters of the
example system are listed in Table 1. The dimensionless system parameters are calculated by using
these dimensional parameters and the relationships given in Section 2.
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Fig. 8. Bifurcation diagram of stable nT and chaotic motions of Fig. 3(a) within A€[2.0,4.0].
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Fig. 9. 2T motion of Fig. 3(a) at A = 3.8; (a) p1(¢) versus time, (b) the FFT spectrum, (c) the phase plane plot and
(d) the Poincaré map.

A large number of parameters define the system dynamically. In order to limit the parameter
set, only the fundamental harmonics of the mesh stiffness functions (¢) and x;(¢) are considered
here by setting K =1 in Eq. (6) so that the mesh stiffness functions are harmonic. Similarly,
constant external forces were considered to account for the mean force transmitted, while torque
pulsations and kinematic gear transmission errors are not included in this parametric study (77(7)
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Fig. 10. 4T motion at A = 2.475 of Fig. 3(a); (a) p1(¢) versus time, (b) the FFT spectrum, (c) the phase plane plot and
(d) the Poincaré map.

and T4(7) are constants and e;(7) = e,(7) = 0) resulting in constant f;(¢) and f>(7) in Egs. (5¢,d).
Further, gears 2 and 3 have the same number of teeth, n = Z,/Z; = 1.

4.1. Comparison to NI results

Fig. 3 compares a set of n7" sub-harmonic motions obtained by HBM to those obtained by
direct NI. These solutions were obtained by assuming a six-term steady state solution, R = 6 in

Eq. (7), and letting n<3. A damping ratio value of {=0.05 is considered where (=

c1/2v/ kimmiz = ¢2/27/kawmaa, my = LI/ (r}; + r21-) Harmonic gear mesh stiffness amplitudes

I _ (

of 5 = 0.3 correspond to a theoretical involute contact ratio value of 1.7 [26]. In addition,

fl(z) = fl(l) = 0.184 corresponds to an input torque value of 77 = 100 Nm. A characteristic length
of b. = 30 um is considered with b; = b, = 1. The value of the characteristic frequency is set to
o, = @11 = 9874 rad/s. As in Ref. [26], the undamped natural frequencies of the system defined in
Table 1 are w,; = 0.96 and w,, = 1.86. The root-mean-square (r.m.s.) values p;(¢) and p,(t) are
defined as

R 1/2
P = {Z [4)) T } : (14a)
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Fig. 11. Chaotic motion at A = 2.35 of Fig. 3(a); (a) pi(¢) versus time, (b) the FFT spectrum, (c) the phase plane plot
and (d) the Poincaré map.
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where AE’?W is the amplitude of the r/nth component of p;(¢) that is defined as

A = ()P + ) (14b)

In Fig. 3(a), p{"™ is plotted as a function of A including (stable and unstable) 17, 27 and 3T
motions. Stable and unstable HBM solutions are shown by thick and thin lines, respectively. In
addition, square symbols represent the NI solutions obtained by varying the initial conditions to
converge to the desired solutions in the multi-valued stable solution regions. The HBM and NI
solutions agree well, 1nd1cat1ng that the HBM is accurate in predicting both 17" and nT motions.
Such an agreement is evident in Figs. 3(b) and 4 for p; (rms)"and mean components of pi(¢) and
p2(2) as well.

In Fig. 3, the 17 motions within the frequency ranges A€(1.76,2.05) and A€(3.5,3.92) are
unstable. These ranges correspond to fundamental parametric instabilities of A~2w,; and
A=2w,,, respectively. In these regions, stable sub-harmonic motions take over, preventing any
very large amplitude vibrations. For instance, as A is reduced from 4.0, the 17 motion loses its
stability and a jump-up to a stable 27 motion takes place at A = 3.92. The forced response curve
of this 27 sub-harmonic resonance follows a softening type bend to the left, primarily due to the
tooth separations. Within A€(3.5,3.92), 2T motions are the only stable solutions exhibiting tooth
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separations (single-sided impacts) while linear 17" (no impact) and 27 motions coexist within
A€(3.5,2.57). Similarly, by reducing A beyond 2.05 near A ~2m, causes similar bifurcations that
results in a jump-up from a stable 17 to a stable 27 motion or a 37 motion. The curves
representing the 27 sub-harmonic resonance also exhibit a softening type non-linear behavior.
However, the shape of this curve is rather complicated since the primary resonance frequency
A= w, coincides with the fundamental parametric resonance frequency A ~2w,;. A zoomed view
of the same 27T motions within A€(0.8,2.4) shown in Fig. 5 reveal that several bifurcations take
place on this 27 branch.

A 3T sub-harmonic resonance curve, also of softening type as shown in Fig. 3, is located on top
of the 2T curve. This is the sub-harmonic resonance corresponding to A~ 3w, . While 17 motions
lose their stability near 4~ 2w,; making the 27 motions unavoidable, this is not the case for the
37T resonance. Here, the 17 motions remain stable near A4~ 3w,;, and hence 37 motions form an
island and are not connected to the 17 motions. Therefore, these 37 motions should not be easily
observed in real life as changing A 1s not sufficient to obtain them.

The forced response curves of A1/3, (1’}2 and A ¥ are shown in Fig. 6 and 7 (j = 1,2) for the
same system as Fig. 3. These figures demonstrate further that the solutions marked as 27 and 37T
motions are dominated by (’/2 and A 1,3 components of the frequency spectrum, respectively,
while the primary resonances of 17 motions are mostly defined by A
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Fig. 15. 8T motion of Fig. 3(a) at A = 1.825; (a) p,(¢) versus time, (b) the FFT spectrum, (c) the phase plane plot and
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4.2. Long-period sub-harmonic and chaotic motions

One other observation from Fig. 3 is that the stable 27 motions become unstable at A = 2.57
and 1.89 as A is reduced on the upper 27 branches. At A = 2.57, a jump-down to the stable 1T
motion does not take place when the 27 solution becomes unstable. Instead, a set of bifurcations
occurs to form other long-period nT motions at amplitudes comparable to the unstable 27T
motion. The bifurcation diagram presented in Fig. 8 is obtained by reducing A incrementally from
A =4 to 2 and taking the steady state solution from the previous frequency increment as the
initial guess in Eq. (13). Here, the 27 motion bifurcates to 47 motions at A = 2.57 through a
typical period-doubling bifurcation. Further reducing the frequency, a chaotic motion is obtained
at A4 = 2.4. Figs. 9-11 show 2T, 4T and chaotic motions at A = 3.8, 2.475 and 2.35, respectively.
In Fig. 9(a) and 10(a), the time histories (normalized by the mesh period 7" = 1/A) illustrate that
the motions repeat themselves at every two and four mesh periods, respectively. The 27T motions
have a large % order in FFT spectrum of Fig. 9(b) while a tangible % order is also evident in
Fig. 10(b) for the 4T motion. The Poincare maps of Figs. 9(d) and 10(d) contain two and four
discrete points, respectively, further demonstrating that these are indeed 27 and 47 motions.
Meanwhile, in Fig. 11, the time history is not periodic, the FFT spectrum has a broadband
content, and the phase plane and Poincare maps point to an apparent strange attractor indicating
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Fig. 16. Chaotic motion of Fig. 3(a) at A = 1.65; (a) pi(¢) versus time, (b) the FFT spectrum, (c) the phase plane plot
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Fig. 17. Bifurcation diagram of stable n7T motions of Fig. 3(a) within A€[1.1,2.1].

that the motion is chaotic. Similarly, Fig. 13 shows a bifurcation diagram obtained on the upper
branch 2T curve of Fig. 3 by reducing A from 2.1 to 1.1 gradually. A number of period-doubling
bifurcations take place to form a well-defined 2" T route to chaos (2—4—8— --- — chaos) within
A€e(1.625,2.05). Figs. 13-16 illustrate examples of 27, 4T, 8T and chaotic motions within this
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frequency range. In Fig. 12, other long-period sub-harmonic motions such as 5(2”)T motions also
exist between the frequency bands of chaotic motion.

In the same fashion, 37 motions lose their stability at 4 = 1.96 as A is reduced. A bifurcation
diagram of this branch of 37 motions shown in Fig. 17 indicates that, at 4 = 1.96, the 37 motions
bifurcate to 67 motions. What follows is a 3(2")T period-doubling cascade leading to chaotic
behavior. Figs. 18-21 illustrate 37, 67, 12T and chaotic motions at A4 = 2.26, 1.87, 1.74 and 1.72,
respectively.

It is also worthwhile to point out in Fig. 3 that more than one stable n7 motions coexist at
certain A values. For instance, at A4 = 1.35, there are three such motions, namely two stable 17
motions (one linear and one single-sided impact) and one stable 27 motion. As A is increased to
1.5, a jump-up takes place, while the resultant stable motion will be either the other upper branch
17T motion or a sub-harmonic motion. In this case, the initial conditions at the point of jump-up
should determine the type of the resultant motion.

4.3. Influence of system parameters

Influence of the mean force transmitted by the gear train on the steady state 27 response is
shown in Fig. 22. Here, the same system as Fig. 3 considered under torque values of 7" = 50, 100
and 150 Nm. As reported earlier for 17 motions [26], increasing the mean force fails to prevent

tooth separations from occurring. The qualitative shape of the p(lr'm's‘) and p{"™ curves remain



438 A. Al-shyyab, A. Kahraman | Journal of Sound and Vibration 279 (2005) 417-451

0.15 0.16

= <
-0.15 oLl ‘ l
2388 2400 0 1 2

@ uT (b) j

1.2 1.2
= =

0.8 L L 0 . )

-0.15 0.15 -0.15 0.15

(c) pu(t) (d) pi()

Fig. 19. 6T motion of Fig. 3(a) at A = 1.870; (a) p;(¢) versus time, (b) the FFT spectrum, (c) the phase plane plot and
(d) the Poincaré map.

the same while the overall amplitudes are elevated with increasing mean force values fl(l) and fl(z).
It is also noted that the frecguencies ranges in which the 27 motions become unstable are not
influenced by the fl(l) and fl(z .

The influence of the damping ratio on the p™ and p™* response curves of 27T and 3T
motions near one of the fundamental parametric resonances within A €[1.5, 6] is shown in Fig. 23.
Here, the backlash values are reduced to b; = by = % in order to demonstrate double-sided impact
motions characterized by tooth separations followed by back collisions. Double-sided impact
motions were shown to exist for this system for 17 motions only when the system is lightly
damped [26]. The 2T response curves corresponding to three levels of damping { = 0.075, 0.05
and 0.02 demonstrate the influence of the damping values on the sub-harmonic response is very
significant. While the damping value does not influence the amplitude of 27 single-sided impact
motions at any given A4, it affects the extent of these motions. For instance, when { = 0.075, 2T
motions range between A = 3.0 and 3.72, almost all of which are stable. This range is extended to
A€e(2.2,3.92) for { = 0.05. In both cases, the 27 motion maintains its stability until it reaches to
its maximum point. When the damping ratio is lower, { = 0.02, the vibration amplitudes become
large enough for gears 1 and 4 to move across the entire backlash zone relative to their mating
gears on the middle shaft to initiate back contact. This causes a hardening-type response curve
bent to the right that starts the end of the lower 27 branch at 4~ 1.79. Lower branch 27 motions
become unstable at A~x2.75, bifurcating to long-period »7T motions as in Figs. 8, 12 and 17.
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Similarly, a boomerang-shaped island of 37 motions are shown at two damping values of
{ =0.02 and 0.03 exhibiting stable single-sided and unstable double-sided impact motions. When
the damping ratios are increased beyond the values used in Fig. 23, say {=0.1, the sub-harmonic
motions become more limited in both range and amplitude as the system tends to behave in a
linear fashion in most of the A ranges. This is consistent with the findings of earlier studies using
non-linear time-varying single pair models [16] and linear time-varying multi-mesh models [22].
The influence of the amplitude of harmonic mesh stiffness excitations on 27 sub-harmonic
resonances is illustrated in Fig. 24. Here, a damping value of { = 0.05 is used as in Fig. 3. Three
different values of harmonic stiffness amplitudes are considered, K(l) = K(Zz) =042, 0.3 and 0.2.
These values represent the fundamental harmonic amplitudes of the mesh stiffness funct1or1 for
gear pairs having an involute contact ratio of 1.5, 1.7 and 1.8, respectively. Both p(rm ) and p{™)
amplitudes of 27 motions decrease significantly when K(zl) = ng) values are decreased. For K(l)
K(Z) = 0.42, the response amplitudes are somewhat larger at a given A. However, 27 motions
bifurcate to other n7T motions at lower frequencies. For instance, pzrms) values of the stable

motion reach only amplitude of 0.17 before it bifurcates to a 47 motion. For lower stiffness
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values, say K(zl) = ng) = 0.3, the response amplitudes are smaller and the frequency range of the
stable 2T motions get slightly larger. The entire frequency range (stable and unstable) of solutions
shrinks, and stable and unstable curves come closer. Further decreasing the value of the mesh
stiffness amplitude to K(zl) = K(ZZ) = 0.2, the solution curve near A=~ 2w,, forms a closed loop. It is
no longer linked lower branch 17 motions that are not shown in Fig. 24. As the 37 motions in
Fig. 3, the only way to reach these 27 motions is some sort of a disturbance on the system beyond

changing the value of A.

5. Conclusion

In this study, a non-linear time-varying dynamic model was employed to investigate sub-
harmonic and chaotic motions exhibited by a typical multi-mesh gear train. A lumped-parameter
torsional dynamic model of a system formed by three rigid shafts connected each other by two
spur gear meshes was proposed. The dynamic model includes the gear backlash clearances,
the parametric gear mesh stiffness fluctuations and periodic external excitations. Steady state
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sub-harmonic motions of the same system were studied analytically by using a multi-term HBM in
conjunction with discrete Fourier transforms. The HBM predictions were shown to be in excellent
agreement with direct NI results. Both 27 and 37 sub-harmonic resonances were predicted
analytically and the impact of key system parameters on these resonances was quantified. These
parameters included alternating mesh stiffness amplitudes, gear mesh damping and static torque
transmitted. It was shown clearly that stable sub-harmonic motions, highlighting major
shortcoming of earlier linear time-varying models, dictate the frequency ranges in which the
period-one motions are unstable due to parametric excitations. Other non-linear phenomena
including long-period sub-harmonic motions and several period doubling routes to chaos were
also shown to exist quite commonly.
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Appendix A. Elements of the Jacobian matrix

The individual elements of the Jacobian matrix, aSl@‘) /6uj(./) and 0Ssr+3/04 where
A =u4ry3, i€[1,R], je[l,2R+ 1] and £ =1, 2 are given as
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where 65") , k=1,2, 1s the Kronecker ¢ defined as

P 0, elsewhere.

The partial derivatives 81)5]‘) / 8uj(-/) (k,/ = 1,2) are given as
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Here ¢, and ¢,, are discrete separation functions [4] given by
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Appendix B. Nomenclature

half of clearance (backlash)
damping coefficient

gear motion transmission error
external force

discontinuous displacement function
harmonic balance method
polar mass moment of inertia
gear mesh stiffness

mass

| numerical integration

relative gear mesh displacement

< 723 T~NTe e o >
o]
<
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(A.35)

(A.36)
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number of discrete time points
discrete time interval

number of harmonic components considered in the solution
radius

root mean square

matrix form of non-linear algebraic equation set
torque

fundamental period

time

harmonic amplitude of response
displacement vector

describing function

number of gear teeth

Kronecker delta

sub-harmonic index

dimensionless frequency
dimensionless mesh stiffness
rotational displacement

number

characteristic frequency

nominal rigid body angular velocity
damping ratio

5

TR ED DAAS NS R NN T Y R

Subscripts

a alternating component
c characteristic quantity
eq equivalent

i gear index

m mean component

ni ith natural mode
Superscripts

l gear mesh index (/ = 1,2)
r.m.s. root-mean-square value
T matrix transpose
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