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1. Introduction

For self-excited friction-induced oscillations, essentially four different excitation mechanisms
have been described in literature: First, a friction coefficient decreasing with relative
sliding velocity may lead to negative damping and consequently to an oscillatory instability
of the steady sliding state. Second, mode-coupling (sometimes also referred to as binary
flutter or displacement-dependent friction force instability) may destabilize the steady sliding
state also for constant friction coefficients. Third, sprag slip, and fourth the follower force
nature of the friction force have been identified as fundamental mechanisms for friction self-
excited vibrations. All of these mechanisms are amply described in literature [1-8], a recent
survey on the excitation mechanisms may be found in Ref. [9], a further discussion is therefore not
given here.

In the course of searching for measures to suppress friction self-excited vibrations arising
from these mechanisms, the idea of active control by superimposing some sort of force- or
amplitude-excitation has always been a very attractive one; indeed it has been known for a
long time that superimposing ultrasonic vibrations markedly affects the friction characteristics of
many technical systems. Rather recently the approach of this so-called dither, i.e. the application
of superimposed high-frequency excitation to affect the low-frequency behaviour of the
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system, has been applied successfully—at least in theoretical modelling—to suppress or quench
the friction self-excited vibrations arising from a falling friction characteristic (confer especially
the pioneering work of Thomsen [10]) and to stabilize a friction affected externally driven
nonlinear oscillator [11]. Also experimental validation for the effect of dither has recently been
obtained [12]. Therefore, in the present paper the effect of dither on the mode-coupling friction
induced instability is investigated.

2. The model problem

Mode-coupling instability is essentially a two-degree-of-freedom phenomenon, it is
therefore sufficient to formulate a simple two-degree-of-freedom model and investigate
its dynamics and response to dither. A graphical interpretation of the model of the
present paper is given in Fig. 1. The model may be thought of as a single-point mass sliding
over a conveyor belt, mainly held in position by two linear springs k; and &, parallel and normal
to the belt surface, k» may be regarded as the physical contact stiffness between the objects in
relative sliding motion. Moreover, there is another linear spring k (oriented at an oblique angle of
45° relative to the normal direction) leading to off-diagonal entries in the model’s stiffness matrix,
which has already earlier turned out to be necessary for the appearance of mode-coupling
instability [6]. For the friction a Coulomb model is assumed, where the frictional force F, is
proportional to the normal force F, exerted at the friction interface, F; = uF,, where u is the
kinetic coefficient of friction taken to be constant. Since the normal force at the friction interface
is linearly related to the displacement x, of the mass normal to the contact surface, the following
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Fig. 1. Two-degree-of-freedom model.
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equations result:
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where N denotes a constant normal load, vp stands for the belt speed, linear viscous damping has
been assumed and an external forcing parallel to the moving belt with frequency  and amplitude
a is applied to the mass. To bring the equations into a more generic form it is convenient to divide
by m and to use the relative (Lehr’s) damping coefficients D; = ¢;/(2w;m) with w? = (k; + k/2)/m,

i=1,2:
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To investigate the effect of the external forcing on the system, Eq. (2) are brought into the
standard (vector-)form

2)

)

2 .
%+ S(X. X) _ (aQ s(l)n(Qt) ) ,

where X = (x1,x2)" and S collects all terms not explicitly depending on time.

3. Derivation of effective slow-timescale equations

To derive effective slow-timescale equations the approach of Thomsen from [10] is applied to
the two-degree-of-freedom problem at hand. Due to the conceptual clarity of the approach of Ref.
[10], formal analogy is kept as far as possible. This also allows the reader quick comparison of the
results of the present work in a two-degree-of-freedom mode-coupling instability context with the
results of Thomsen’s analysis in the context of a single-degree-of-freedom problem with a friction
characteristic depending explicitly on the differential sliding velocity. In the following it is
assumed that € > w;, and the goal is to derive effective equations of motion for dynamical
processes on the slow timescale corresponding to w; or w,. For this purpose solutions of Eq. (3) of
the form

X(1) = Z(t) + Q' ¢(1, Q1) 4)

are considered, where Q! ¢(1, Qt) represents the fast timescale component of the response X. The
reason for the pre-factor Q! is, that Z is assumed to be of the same order of magnitude as ¢, since
only then can the dither vibrations ‘activate’ the inherent friction nonlinearity, as will become
clear from the results of the analysis. Also it is enforced that the high-frequency component does
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have a zero mean over the high-frequency period
2n

b= =5 | #eod@)=0 ©
TJo

since otherwise the mean component could be attributed to the slow timescale component Z. As
usual in multiple-timescale analyses, the two timescales 7 and Q¢ are in the following treated as
independent variables, such that dX/dt = Z 4+ Q ¢ + ¢', where ¢ = 0¢/0t and ¢’ = d¢p/(Q1).
To simplify the analysis further, it is assumed that the high-speed component does—in the first
order of approximation—not show slow timescale behaviour, i.e. ¢(z, Q) =~ ¢(Q2¢). Using the
decomposition, Eq. (3) reduces to

B aQ sin(Qr) _1re s )

= 0 —Q N Z+SZ+Q 9,2+ ¢)]. (6)

To first order the solution for ¢ results in

—aQ sin(Q21) .
o(Qn) = 0 +0(Q7), (7
and by that, making use of Eq. (4)
—a sin(Qt) s

X(1) = Z(¢t) + 0 + 0(Q27). (8)

To obtain equations of motion for the slow timescale variables Eq. (6) is averaged over one fast
vibration cycle

Z+(S(Z+Q "¢, Z+¢)) =0, 9)

and Eq. (7) can be used to evaluate the average of S over one period of the fast vibration.

It is obvious, that all linear terms in S are unaltered in form by the averaging procedure, since
they either lead to terms constant with respect to Qt, or to terms proportional to sin(€¢) which
have vanishing high-frequency average. The only term that has to be calculated explicitly is the
nonlinear term comprising the sgn-function arising from the friction force

(—(@3 — k/2m)zy sgn(vg — 21 + aQ cos(Q1)))
= (0} — k/2m)zou(sgn(vp — 21 + aQ cos(Q1)))
= (0} — k/2m)zaji, (10)

where for abbreviation i has been introduced, which can be obtained from simple analytical
integration as
= usgn(vg —z;) forlvg — z1|>a2 (11)

and

a2

which effectively describes a modified friction characteristic, depicted in Fig. 2. Obviously high-
frequency dither leads to two effects for |vg — Z;|<aQ: (1) the absolute level of the friction

) .
ﬂ:u(—l—i——arccos(—UB Zl)) for |vg — 21| <aL2, (12)
Y
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Fig. 2. Effective friction characteristic for the low-speed dynamics resulting from high-frequency dither.

coefficient is reduced and (2) an effective viscous damping results from the positive slope of the
friction characteristic. It should be noted here, that these results have already been obtained in
Thomsen’s single-degree-of-freedom problem [10], which is in fact not really surprising, since the
basic effect of dither lies in directly changing the slow-timescale friction characteristic,
independent of the dimensionality of the dynamical problem at hand.

The focus of the present paper however lies in investigating how this change in the slow-
timescale friction characteristic influences the stability characteristics of a system faced with
mode-coupling instability, which is rather intricately dependent on the specific friction and
damping situation (compare e.g. Ref. [7]). Using it to write down the final equations for the slow
timescale it turns out that they are—apart from a modified friction characteristic and the missing
high-frequency forcing—formally identical to the original Eq. (2)

<21> N {2D1a)1 0 } (zl> N w} £ <zl) [~} = k/2m)z; 13)
52 0 2D20)2 22 — % co% V) B N/Wl '
For all subsequent exemplary calculations the following parameters will be used, which allow to
show all relevant phenomena:
k
oy =457, wy=5s"1, — =552 N/m= —10Nkg™,
2m
Q=50s"!, vg=10ms~!, D; =0.05, D,=0.04, (14)

where the damping constants have been chosen such as to obtain mass-proportional damping.

To roughly estimate the modelling quality of the approach chosen, first the results from the full
set of Eq. (2) are compared with the results from the effective slow timescale Eq. (13), see Fig. 3. It
turns out that the averaged equations capture the effective average slow-timescale dynamics
surprisingly well, as can be seen from Fig. 3.
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Fig. 3. Comparison of the results of time-marching the full Eq. (2) in the upper row and the effective averaged Eq. (11)
in the lower row. Parameters: u = 0.1, a = I m.

4. Effect of dither on the steady sliding state

Now consider the effects that dither has on the static solutions, i.e. the slow timescale steady
sliding state determined from Eq. (13) by setting all temporal derivatives to zero and solving the
remaining linear inhomogeneous equations

o~ O}~ k/2m)| (A :< 0) (1s)
_k w3 2 NfmJ):

where ﬁo denotes the effective friction coefficient evaluated for Z; = 0. For relative velocities
(which equal the belt velocities for static solutions) larger than aQ the static solution is obviously
unchanged by the superimposed dither. For relative velocities smaller than a2 the static
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Fig. 4. The static solutions of Eq. (11) (z! solid, z dashed) vs. the belt velocity vp (left) and vs. dither amplitude a
(right).

displacement of the sliding mass goes continuously to the value corresponding to u =0 for
decreasing relative velocities, as can be seen from the left graph of Fig. 4. This is a direct
consequence of the effective reduction of the effective friction coefficient in the situation of
superimposed dither. Fig. 4 also shows the effect of increasing the dither amplitude «: dither has
no effect at all, until aQ reaches vg, then a further increase of « leads asymptotically to the values
corresponding to the frictionless system.

5. Effect of dither on the stability of the steady sliding state

Now the slow timescale Eq. (13) are linearized around the static solution corresponding to the
steady sliding state and the steady sliding state’s linear stability will be considered. For that
purpose equations for the “perturbations’ Y around the static solution (steady sliding state) Z° are
obtained by inserting Z = Z° +Y into Eq. (13) and subtracting Eq. (15) from the result to
eliminate inhomogeneous terms. The resulting equation is then linearized, where it has to be taken
into account that i depends on the relative sliding velocity vp — Z; and thus has to be taken into
account correctly in the linearization process. Writing
=i+

S| A+ 0E) =1+ 5+ 0@, (16)
1

21=0

where
-2 1

R =2, W =po————
1 — (vp/a)?

(17)
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the linearized homogeneous equations representing the dynamics of Y read

()71) N 2Dy + (w3 — k/2m)z) 0 ] ()"1)
n
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@ =L i —k/2m)] [y
+ ’ ](1)=0. (18)
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It should be noted that the effect of dither consists in (1) a modified stiffness matrix, which has
basically been expected from the type of system under consideration, and (2) a modified damping
matrix, in which additional effective viscous damping appears.

Following the usual procedure the homogeneous Eq. (18) may be rewritten as a system first
order in d/d¢ and solved by an eigenanalysis with an ansatz proportional to exp(c + iw?), where @
represents the resulting oscillation frequency and ¢ the corresponding growth rate. Fig. 5 shows
the results: For sufficiently small dither amplitudes a (such that a2 <wvp) the stability behaviour is
identical to the system without dither (solid line graphs in Fig. 5), cf. e.g. Ref. [7]: the frequencies
of two modes of the system approach each other when the control parameter (i.e. the friction
coefficient u in the present context) is increased, until the modes coalesce, rendering a defective
system. A further increase of the control parameter leads to a spectral unfolding again, such that a
more strongly damped mode and an unstable mode result (compare the middle graph of Fig. 5
where the growth rates are depicted vs. p).

When the dither amplitude exceeds a critical value (¢ =0.2 in the present example),
corresponding to the dither velocity first reaching the band velocity, the mode-coupling diagram
(left and middle graph of Fig. 5) is distorted. For the parameters used, the whole system is
stabilized, which can be seen from the right graph of Fig. 5 that depicts the critical friction
coefficient u, forming the borderline between a stable and unstable steady sliding state. Note for
completeness that p.(a) is indeed not continuous at a = 0.2, which goes back to the fact that the
present approach has yielded jt not continuously differentiable there. Nevertheless it is clear that
an increasing dither amplitude stabilizes the present system substantially.
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Fig. 5. Effect of dither on mode-coupling. Natural frequencies w vs. u (left) and growth rates ¢ (middle) for a<0.2m

(solid), @ = 0.2001 m (dashed), a = 0.25m (dash-dotted) and ¢ = 0.30m (dotted). The right graph shows the critical
friction coefficient u. vs. the dither amplitude a.
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However it should also be noted that systems in slightly subcritical situations might also be
destabilized by dither, as can be seen by looking at the growth rates ¢ for ¢ = 0.2001 m: there is a
small interval of friction coefficients around u = 0.4 in which the more unstable mode has larger
growth rates than both stable modes of the original system without the superposition of dither.
Conceptually this effect goes back to the additional viscous damping added to the system by
dither: for mode-coupling unstable systems it is known (cf. Ref. [7]) that an increase in viscous
damping can, under certain circumstances, destabilize the system. Since dither also leads to a
change in the system’s damping matrix, this leads to the conclusion that dither may—under very
specific conditions (cf. Ref. [7])—lead to a destabilization of systems endangered by mode-
coupling instability.

An important question that also remains to be answered is, how much energy would be needed
to quench mode-coupling instability by dither. The above considerations have shown that dither
affects the slow timescale vibrations only, if the velocity corresponding to the superimposed dither
reaches the belt velocity: a2 = v, i.e. the dither has to bring the system into a state of intermittent
change of the direction of the friction force. This sets the requirement on the dither amplitude to
actually affect the stability properties of the steady sliding state.

6. Conclusions

It has been shown that in close analogy to single-degree-of-freedom cases (cf. e.g. to the original
work by Thomsen [10]) dither in general has a stabilizing effect on the mode-coupling instability
in friction-induced oscillations, if the dither amplitude is sufficiently large. For the slow-timescale
dynamics dither results in a continuous friction characteristic for low relative velocities with
effectively lowered absolute friction coefficients and an additional viscous damping effect. It
should also be noted that the stability equations for the slow-timescale dynamics do explicitly
depend on the steady sliding state, which is usually not the case when typical mode-coupling
stability calculations are performed.

Future work should focus on three aspects: First, experimental evidence for the phenomenon
described only theoretically up until now should be gathered. Second, limit cycle behaviour of
mode-coupling induced vibrations under the influence of dither should be studied. Third, the
influence of further system nonlinearities, e.g. due to nonlinear contact stiffness, etc., should be
taken into account into extended models, to better approximate real-life engineering applications
plagued by mode-coupling-induced vibration and noise.
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