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1. Introduction

Forced vibration excited by displacement boundary conditions plays an important role in
structural dynamics. This type of problem with rod and beam is also used as examples in
textbooks of partial differential equations and structural dynamics [1–5]. Usually, the problem is
converted, by a transformation, to a forced vibration by body force with homogeneous boundary
conditions. Then the solution is obtained by using Fourier series with a Duhamel’s integral. For
example, see Refs. [4,6] for the rod problems, Refs. [7,8] for the beam problems, and Ref. [9] for
extension of approaches of Refs. [7,8] to the Timoshenko beam. However, it is often found that
the term-by-term differentiated series, expected to represent the second derivative in time and the
second derivative (for rod) or fourth derivative (for beam) in space, does not converge. The
solutions are not verified. To the author’s knowledge, a rigorous answer in terms of a closed form
solution, in the classical sense, is not found in the publications.

An improved approach is developed here to construct the closed form solutions that have
continuous derivatives and satisfy the differential equations in a classical sense. The key
contribution, improved from the previous approaches, is to let the transformed body force vanish
at the end points, in addition to the conditions imposed on the transform function at the
boundary by the previous approaches. Then the convergence of the differentiated series is assured.
see front matter Published by Elsevier Ltd.
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The approach is developed in Section 2 for the axial forced vibration of a rod. Then it is extended
to the lateral vibration of a beam in Section 3.

The traditional notations for derivatives with respect to time and space variables are adopted,
e.g., €uðx; tÞ ¼ q2u=qt2; u00ðx; tÞ ¼ q2u=qx2; uð4Þðx; tÞ ¼ ux4ðx; tÞ ¼ q4u=qx4:
2. Axial forced vibration of a rod by displacement boundary condition

Consider an axial vibration of a rod, with one end fixed and the other end subject to a
prescribed displacement:

r €u � Eu00 ¼ 0; uð0; tÞ ¼ 0; uða; tÞ ¼ gðtÞ; uðx; 0Þ ¼ 0; _uðx; 0Þ ¼ 0: (1)

The problem can be solved with a transformation, widely adopted in publications:

u ¼ v þ pðx; tÞ; (2)

pð0; tÞ ¼ 0; pða; tÞ ¼ gðtÞ (3)

It reduces to a problem of forced vibration by a body force with homogeneous boundary
conditions:

r€v � Ev00 ¼ qðx; tÞ ¼ �ðr €p � Ep00Þ; vð0; tÞ ¼ 0; vða; tÞ ¼ 0;

vðx; 0Þ ¼ jðxÞ ¼ �pðx; 0Þ; _vðx; 0Þ ¼ cðxÞ ¼ � _pðx; 0Þ: ð4Þ

Then the Fourier series with a Duhamel’s integral is applied to solve v from Eq. (4):

vðx; tÞ ¼
X

vmðtÞ sin amx;

vmðtÞ ¼ jm cos omt þ
cm

om

sin omt þ
1

rom

Z t

0

qmðtÞ sin omðt � tÞdt; ð5Þ

where jm; cm and qmðx; tÞ are the Fourier coefficients of jðxÞ; cðxÞ and qðx; tÞ over Ox ¼ ½0; a�;
respectively, corresponding to the basis

fsin amx; m ¼ 1; 2; . . .g

with

am ¼ mp=a ¼ OðmÞ; om ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
am ¼ OðmÞ:

For example, jðxÞ ¼
P

jm sin amx; jm ¼ 2
a

R a

0 jðxÞ sin amxdx:
An example commonly found in the literatures, e.g., Ref. [4], is

pðx; tÞ ¼ gðtÞx=a; (6)

where p(x, t) meets the requirement (3), and results in qðx; tÞ ¼ �r €gðtÞx=a: It is observed, that the
differential equation is not satisfied at x ¼ a; if the second derivatives are obtained from term-by-
term differentiation. But, this differentiation is built in the solution process and no other
definition is available. Furthermore, the Fourier coefficients qmðtÞ ¼ 2r €gðtÞð�1Þm�1=mp ¼ Oðm�1Þ;
so vm(t) is at most of order O(m�2). The twice differentiated series does not converge and cannot
represent the second derivative.
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An alternative approach exists, which can improve this situation and derive a closed form
solution in the classical sense. In addition to Eq. (3), let the transform satisfy

qð0; tÞ ¼ qða; tÞ ¼ 0: (7)

There are four conditions in Eqs. (3) and (7). A four-term polynomial blending is suggested

pðx; tÞ ¼ C0ðtÞ þ C1ðtÞx þ C2ðtÞx
2 þ C3ðtÞx

3;

qðx; tÞ ¼ �rð €C0 þ €C1x þ €C2x2 þ €C3x3Þ þ Eð2C2 þ 6C3xÞ:

The answer is straightforward, with an additional term to Eq. (6):

pðx; tÞ ¼ gðtÞx=a þ E�1rgðxÞ €gðtÞ; qðx; tÞ ¼ �E�1r2gðxÞgð4ÞðtÞ; (8)

where

gðxÞ ¼
a2

6
�

x

a
þ

x

a

� �3
	 


: (9)

In fact, for u, as well as v, to have continuous second derivatives it is necessary that €gðtÞ is
continuous and certain consistency conditions are satisfied:

gð0Þ ¼ _gð0Þ ¼ €gð0Þ ¼ 0: (10)

The first two equations are required by the third, fourth and fifth equations of Eq. (1) at x ¼ a and
t ¼ 0: The last one is required by the first, third and fourth equations of Eq. (1). The initial
conditions in the auxiliary system (4) are then reduced to

jðxÞ ¼ �pðx; 0Þ ¼ �gð0Þx=a � €gð0ÞgðxÞr=E ¼ 0;

cðxÞ ¼ � _pðx; 0Þ ¼ � g
:::
ð0ÞgðxÞr=E:

The function gðxÞ is involved in Eq. (4) now. With gð0Þ ¼ gðaÞ ¼ 0; its Fourier coefficients are

gm ¼ ð�1Þm2a�1a�3
m : (11)

Thus,

vmðtÞ ¼
rgm

Eom

� g
:::
ð0Þ sin omt �

Z t

0

gð4ÞðtÞ sin omðt � tÞdt
	 


: (12)

Since am ¼ OðmÞ and om ¼ OðmÞ; therefore gm ¼ Oðm�3Þ and vmðtÞ ¼ Oðm�4Þ: It is straightfor-
ward to verify that the twice differentiated series, with respect to x or t, have coefficients of order
Oðm�2Þ: Hence, the series converge uniformly and thus represent the second derivatives. Then the
Eq. (1) is satisfied in the classical sense.

In summary, for Eq. (1) to have a classical solution with continuous second derivatives, it is
necessary that €gðtÞ is continuous and the consistency conditions (10) are satisfied. When g(4)(t) is
continuous, the classical solution can be constructed, in a closed form, with the transform (2),
define by Eqs. (8) and (9), and the Fourier series (5); vm(t) of Eq. (5) is defined in Eq. (12) and gm in
Eq. (12) is defined in Eq. (11).
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3. Lateral forced vibration of beam by displacement boundary condition

The approach developed in Section 2 can be extended to beam bending problems. As a
demonstration, consider the following case:

rA €w þ EIwð4Þ ¼ 0; wð0; tÞ ¼ 0; w00ð0; tÞ ¼ 0; wða; tÞ ¼ gðtÞ;

w00ða; tÞ ¼ 0; wðx; 0Þ ¼ 0; _wðx; 0Þ ¼ 0: ð13Þ

Similarly, a transform is introduced:

w ¼ v þ pðx; tÞ; (14)

pð0; tÞ ¼ 0; p00ð0; tÞ ¼ 0; pða; tÞ ¼ gðtÞ; p00ða; tÞ ¼ 0: (15)

The forced vibration by body force with homogeneous boundary conditions is reduced to

rA€v þ EIvð4Þ ¼ qðx; tÞ ¼ �ðrA €p þ EIpð4ÞÞ; vð0; tÞ ¼ 0; v00ð0; tÞ ¼ 0;

vða; tÞ ¼ 0; v00ða; tÞ ¼ 0; vðx; 0Þ ¼ jðxÞ ¼ �pðx; 0Þ; _vðx; 0Þ ¼ cðxÞ ¼ � _pðx; 0Þ: ð16Þ

Then, the solution in the form of Fourier series with a Duhamel’s integral can be obtained:

vðx; tÞ ¼
X

vmðtÞ sin amx;

vmðtÞ ¼ jm cos omt þ
cm

om

sin omt þ
1

rAom

Z t

0

qmðtÞ sin onðt � tÞdt: ð17Þ

Here, jm; cm and qm(x, t) are the Fourier coefficients of jðxÞ; cðxÞ and q(x, t) over Ox ¼ ½0; a�;
respectively, corresponding to the basis fsin ðmpx=aÞ; m ¼ 1; 2; . . .g; with am ¼ mp=a ¼ OðmÞ;
om ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
a2m ¼ Oðm2Þ:

For €v and v(4) to be continuous and to be obtained from differentiating the Fourier series (17), it
is required that

qð0; tÞ ¼ qða; tÞ ¼ 0: (18)

For the six conditions (15) and (18), a six-term polynomial (fifth-degree in x) is suggested and
solved:

pðx; tÞ ¼ C0ðtÞ þ C1ðtÞx þ C2ðtÞx
2 þ C3ðtÞx

3 þ C4ðtÞx
4 þ C5ðtÞx

5;

pðx; tÞ ¼
x

a
gðtÞ þ

rA

EI
zðx; aÞ €gðtÞ; (19)

where

zðx; aÞ ¼
a4

360
�7

x

a
þ 10

x

a

� �3

� 3
x

a

� �5
	 


: (20)

Thus,

qðx; tÞ ¼ �ðr2A2=EIÞzðx; aÞgð4ÞðtÞ:

Now the solution needs to be verified. From Eq. (13), consistency requires

gð0Þ ¼ _gð0Þ ¼ €gð0Þ ¼ 0: (21)
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Therefore,

pðx; 0Þ ¼ gð0Þx=a þ ðrA=EIÞ €gð0Þzðx; aÞ ¼ 0; _pðx; 0Þ ¼ ðrA=EIÞ g
:::
ð0Þzðx; aÞ:

Note that the Fourier coefficients of zðx; aÞ are

zm ¼ ð�1Þm2a�1a�5
m : (22)

Then

cm ¼ � g
:::
ð0Þ

rAzm

EI
¼ Oðm�5Þ;

qmðtÞ ¼ �
r2A2zm

EI

Z t

0

gð4ÞðtÞ sin omðt � tÞdt ¼ Oðm�5Þ;

vmðtÞ ¼
rAzm

EIom

� g
:::
ð0Þ sin omt �

Z t

0

gð4ÞðtÞ sin omðt � tÞdt
	 


: (23)

It is straightforward to verify that the differentiation of series (17) twice with respect to t or four
times with respect to x results in a series whose coefficients are of order Oðm�3Þ: Therefore, the
differentiated series converge uniformly, the derivatives are valid, and the solution is verified in
the classical sense.

As a summary, for Eq. (13) to have a classical solution, with continuous second t-derivative and
fourth x-derivative, it is necessary that €gðtÞ is continuous and the consistency conditions (21) are
satisfied. When g(4)(t) is continuous, the classical solution can be constructed with the transform
(14), defined in Eqs. (19) and (20), and the Fourier series (17); vm(t) of Eq. (17) is defined in Eq.
(23) and zm in Eq. (23) is defined in Eq. (22).
4. Conclusions

Closed form solutions, in the classical sense, were obtained constructively for the forced
vibrations of a rod and beam excited by displacement boundary conditions. The deficiency in a
previous approach solving the rod problem, commonly seen in textbooks, was discussed. The new
approach had additional requirements for the transformed body force to vanish at the end points.
The uniform convergence of the differentiated series was illustrated and the solutions were verified
in the classical sense.
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