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1. Introduction

Central to the study and understanding of slab-shaped material motion is plate theory, which
has been researched extensively for many years. Thin plate theory [1] is a simplified version that
fails to accurately incorporate dynamic response when the sample is thick compared to a
wavelength. In contrast, thick plate theory [2] usually incorporates all the dynamics of the plate
and is normally used when the sample is on the order of a wavelength of energy in the structure.
More complex investigations have analyzed the dispersion curve for the plate without fluid
loading [3–5] or for the plate in contact with a continuous fluid on one or both sides [6–11].
Additional papers have been published that examine plate response to various other loading
configurations. For example, studies have explored the radiation efficiency of infinite fluid-loaded
plates subjected to point loads [12], calculated the corresponding transfer functions for thin plate
models coupled to fluid loading [13], and determined mode shapes for a thick plate with finite
depth that is loaded by fluid on both sides [14]. Multilayer theory has also been developed for this
problem [15]. During these investigations, the response of thick-walled plates has been typically
left as an open-form solution that involves a matrix inverse at a specific wavenumber and
frequency.

This paper derives the equations of motion of an infinite, isotropic thick plate, either not in
contact with fluid, or coupled on one or both sides with fluid loading as it is excited with a
continuous plane wave forcing function. The equations of motion are formulated into a four-by-
four system of linear equations with four-wave propagation coefficients as the unknown terms.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Once the system matrix is known, the dispersion equations, derived in closed-form expressions
from the determinant of the matrix, explicitly show the effects of the fluid loading. Calculated next
are the closed-form transfer functions of plate motion divided by source excitation, which are
written in a form that expresses the plate and the fluid terms separately. Based on these transfer
functions, the displacement shapes of the plate modes are studied with respect to the unloaded
plate and fluid loading on one or both sides of the plate.
2. System model

The system model is a thick plate in contact on none, one, or both sides with a fluid that exerts a
continuous pressure on the plate. In the case of the plate without fluid, the force on the plate is a
mechanical force applied directly to the plate. The model configurations, referred to as nonfluid-
loaded, single fluid-loaded, and double fluid-loaded plates, are based on the following
assumptions: (1) the forcing function acting on the plate is a plane wave with definite
wavenumber and frequency content, (2) the corresponding response of the plate is at a definite
wavenumber and frequency, (3) motion is normal and tangential to the plate in one direction
(two-dimensional system), (4) the plate has an infinite spatial extent, (5) the particle motion and
pressure response is linear, and (6) the fluid medium, when present, has no loss. For the case
where the fluid is on both sides of the plate, each fluid has the same acoustic properties.

The motion of the plate for all cases is governed by the equation [16]

mr2uþ ðlþ mÞrrdu ¼ r
q2u

qt2
; (1)

where r is the density (kg/m3), l and m are the Lamé constants (N/m2), t is the time (s), d denotes a
vector dot product, and u is the Cartesian coordinate displacement vector of the plate. The
coordinate system of the plate is shown in Fig. 1. Note that the use of this orientation results in
b ¼ 0 and a having a value less than zero. Furthermore, the thickness of the plate, h, is a positive
value. For the single and double fluid-loaded plates, the acoustic pressure in the fluid on the
excitation side of the plate is governed by the wave equation and is written in Cartesian
coordinates as [17]

q2p1ðx; z; tÞ

qz2
þ

q2p1ðx; z; tÞ

qx2
�

1

c2
f

q2p1ðx; z; tÞ

qt2
¼ 0; (2)
Fig. 1. Coordinate system used in model.
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where p1(x,z,t) is the pressure (N/m2), with subscript 1 denoting the fluid on the excitation side of
the plate; z is the spatial location (m) normal to the plate, x is the spatial location (m) tangential to
the plate, and cf is the compressional wave speed of the fluid (m/s). For the double fluid-loaded
plate, the acoustic pressure in the fluid opposite the excitation side of the plate is governed by the
wave equation and is written in Cartesian coordinates as

q2p2ðx; z; tÞ

qz2
þ

q2p2ðx; z; tÞ

qx2
�

1

c2
f

q2p2ðx; z; tÞ

qt2
¼ 0; (3)

where p2(x,z,t) is the pressure (N/m2) and subscript 2 denotes the fluid opposite the excitation side
of the plate. The above equations are the governing partial differential equations of the nonfluid-
loaded, single fluid-loaded and double fluid-loaded plate systems.

Eqs. (1)–(3) are coupled to each other using four to six boundary conditions, depending on the
presence or absence of fluid. The normal stress at the top of the plate ðz ¼ bÞ is equal to the
opposite of the pressure in the fluid and is expressed as

tzzðx; b; tÞ ¼ ðlþ 2mÞ
quzðx; b; tÞ

qz
þ l

quxðx; b; tÞ

qx
¼ �p1ðx; b; tÞ; (4)

where uz(x,z,t) is the displacement in the z-direction (m) and ux(x,z,t) is the displacement in the x-
direction (m). The tangential stress at the top of the plate is zero and is written as

tzxðx; b; tÞ ¼ m
quxðx; b; tÞ

qz
þ

quzðx; b; tÞ

qx

� �
¼ 0: (5)

For the double fluid-loaded plate, the normal stress at the bottom of the plate ðz ¼ aÞ is equal to
the opposite of the pressure in the fluid. This expression is

tzzðx; a; tÞ ¼ ðlþ 2mÞ
quzðx; a; tÞ

qz
þ l

quxðx; a; tÞ

qx
¼ �p2ðx; a; tÞ; (6)

where p2(x,a,t) represents the transmitted (or radiated) acoustic pressure in the fluid field on the
opposite side of the acoustic excitation. For the nonfluid-loaded and single fluid-loaded plate,
p2ðx; z; tÞ � 0 in Eq. (6). The tangential stress at the bottom of the plate is zero, with this equation
written as

tzxðx; a; tÞ ¼ m
quxðx; a; tÞ

qz
þ

quzðx; a; tÞ

qx

� �
¼ 0: (7)

For the single and double fluid-loaded plates, the interface between the first fluid and the surface
of the plate at z=b satisfies the linear momentum equation, which is [18]

rf

q2uzðx; b; tÞ

qt2
¼ �

qp1ðx; b; tÞ

qz
; (8)

where rf is the density of the fluid (kg/m3). For the double fluid-loaded plate, the interface
between the second fluid and the surface of the plate at z ¼ a also satisfies the linear momentum
equation and is written as

rf

q2uzðx; a; tÞ

qt2
¼ �

qp2ðx; a; tÞ

qz
: (9)
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Modeling the displacement as a dilatational wave and a shear wave, and inserting this term into
Eqs. (1)–(9), results in the plate displacements given by

uxðx; z; tÞ ¼ Uxðkx; z;oÞ expðikxxÞ expðiotÞ

¼ Aðkx;oÞikx expðiazÞ þ Bðkx;oÞikx expð�iazÞ½

�Cðkx;oÞib expðibzÞ þ Dðkx;oÞib expð�ibzÞ	


 expðikxxÞ expðiotÞ ð10Þ

and

uzðx; z; tÞ ¼ Uzðkx; z;oÞ expðikxxÞ expðiotÞ

¼ Aðkx;oÞia expðiazÞ � Bðkx;oÞia expð�iazÞ½

þ Cðkx;oÞikx expðibzÞ þ Dðkx;oÞikx expð�ibzÞ	


 expðikxxÞ expðiotÞ; ð11Þ

where Aðkx;oÞ;Bðkx;oÞ;Cðkx;oÞ; and Dðkx;oÞ are wave propagation constants of the plate and
are determined by solving the four by four system described below; i ¼

ffiffiffiffiffiffiffi
�1

p
; o is frequency

(rad/s); a is the modified wavenumber associated with the dilatational wave and is expressed as

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

d � k2
x

q
; (12)

where kd is the dilatational wavenumber and is equal to o=cd where cd is the dilatational wave
speed (m/s); b is the modified wavenumber (rad/m) associated with the shear wave and is
expressed as

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

s � k2
x

q
; (13)

where ks is the shear wavenumber (rad/m) and is equal to o=cs where cs is the shear wave speed
(m/s); and kx is the spatial wavenumber in the x-direction (rad/m). If the pressure in the fluid is
generated by an acoustic plane wave, the spatial wavenumber is given by

kx ¼
o
cf

sinðyÞ; (14)

where y is the angle of incidence (rad) of the incoming acoustic wave, with y ¼ 0 corresponding
to excitation normal to the plate (or broadside excitation). Wavenumbers larger than o=cf

are possible and are typically generated from turbulent fluid loading or structural wave
loading. The relationship between the wave speeds cd and cs and the Lamé constants are
determined by

cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2m

r

s
; cs ¼

ffiffiffi
m
r

r
: (15,16)

Assembling Eqs. (1)–(16) yields the four-by-four system of linear equations that model the
system:

Ax ¼ b; (17)
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where the entries of Eq. (17) are

A11p ¼ �a2l� 2a2m� lk2
x; A11s ¼ A11d ¼

rf o
2a

g
; (18,19)

A11 ¼ A11p þ A11s; A12 ¼ A11p � A11s; A13p ¼ 2kxbm; (20222)

A13s ¼ A13d ¼
rfo

2kx

g
; A13 ¼ �A13p þ A13s; A14 ¼ A13p þ A13s; (23225)

A21 ¼ �2mkxa; A22 ¼ �A21; A23 ¼ mb2
� mk2

x; A24 ¼ A23; (26229)

A31 ¼ ðA11p � A11d Þ expðiaaÞ; A32 ¼ ðA11p þ A11dÞ expð�iaaÞ;

A33 ¼ ð�A13p � A13dÞ expðibaÞ; ð30232Þ

A34 ¼ ðA13p � A13dÞ expð�ibaÞ; A41 ¼ A21 expðiaaÞ;

A42 ¼ �A21 expð�iaaÞ; ð33235Þ

A43 ¼ A23 expðibaÞ; A44 ¼ A23 expð�ibaÞ; (36,37)

x11 ¼ Aðkx;oÞ; x21 ¼ Bðkx;oÞ;

x31 ¼ Cðkx;oÞ; x41 ¼ Dðkx;oÞ ð38241Þ

b11p ¼ �PeðoÞ; b11s ¼ �PeðoÞ; (42,43)

b11 ¼ b11p þ b11s; b21 ¼ 0; b31 ¼ 0; b41 ¼ 0: (44247)

In Eqs. (19) and (23),

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
cf

� �2

� k2
x

s
; (48)

where g is the wavenumber of the acoustic pressure in the fluid (rad/m). In Eqs. (42) and (43),
PeðoÞ is the excitation level of the incoming energy. In Eqs. (18)–(47), subscript p corresponds to
terms related to the plate, subscript s corresponds to the case of both the single and double fluid-
loaded plates, and subscript d corresponds only to the case of the double fluid-loaded plate. To
model the behavior of the thick plate without the fluid loads, the terms with subscripts s and d are
set equal to zero. To model the behavior of the fluid plate with a single fluid load, the terms with
the subscript d are set equal to zero.
3. Dispersion equations

The dispersion equation is an equation whose zeros correspond to single-mode propagation
in the structure. This function is proportional to the determinant of A in Eq. (17). For the
case of the nonfluid-loaded plate, the determinant of A is calculated in closed form and is
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written as

Dnðkx;oÞ ¼ p1ðkx;oÞ cos ðahÞ cosðbhÞ þ p2ðkx;oÞ sin ðahÞ sin ðbhÞ � p1ðkx;oÞ; (49)

where

p1ðkx;oÞ ¼ �8abk2
xðb

2
� k2

xÞ
2 (50)

and

p2ðkx;oÞ ¼ ðb2
� k2

xÞ
4
þ 16a2b2k4

x: (51)

For the case of the single fluid-loaded plate, the determinant of A is written as

Dsðkx;oÞ ¼ p1ðkx;oÞ cos ðahÞ cos ðbhÞ þ f 1ðkx;oÞ cos ðahÞ sin ðbhÞ

þ f 2ðkx;oÞ sin ðahÞ cos ðbhÞ þ p2ðkx;oÞ sin ðahÞ sin ðbhÞ

� p1ðkx;oÞ; ð52Þ

where

f 1ðkx;oÞ ¼ irf ðgrÞ
�1aðb2

� k2
xÞ

2
ðb2

þ k2
xÞ

2 (53)

and

f 2ðkx;oÞ ¼ 4irf ðgrÞ
�1a2bk2

xðb
2
þ k2

xÞ
2: (54)

For the case of the double fluid-loaded plate, the determinant of A is written as

Ddðkx;oÞ ¼ p1ðkx;oÞ cos ðahÞ cos ðbhÞ þ 2f 1ðkx;oÞ cos ðahÞ sin ðbhÞ

þ 2f 2ðkx;oÞ sin ðahÞ cos ðbhÞ

þ ½p2ðkx;oÞ þ f 3ðkx;oÞ	 sin ðahÞ sin ðbhÞ � p1ðkx;oÞ; ð55Þ

where

f 3ðkx;oÞ ¼ r2
f ðgrÞ

�2a2ðb2
þ k2

xÞ
4: (56)

In Eqs. (49), (52), and (55), the p constants corresponds to terms associated with the plate and
the f constants correspond to terms associated with the fluid loads.

It is noted that these dispersion curves without the fluid load and with the double fluid load
have both been previously derived. The plate dispersion curve without fluid loading is known as
the Rayleigh–Lamb frequency equation for the propagation of waves in a plate, which is given in
Ref. [19] as Eq. (8.1.61). The plate dispersion curve with the double fluid load for the case of
symmetrical wave response is listed in Ref. [6] as Eq. (25) and for the case of antisymmetrical
response is shown as Eq. (26). Eqs. (49) and (55), although not identical to those listed in Refs.
[19,6], have the same zeros that correspond to the branches of the dispersion curves for the
nonfluid-loaded and double fluid-loaded plate.
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4. Closed-form transfer functions

The closed-form transfer functions can be determined by solving Eq. (17) as

x ¼ A�1b; (57)

then taking the entries of x and inserting them into Eqs. (10) and (11), and finally reducing the
resultant expressions. For the nonfluid-loaded plate, the transfer function of the tangential
displacement at location z divided by the excitation level is equal to

U ðnÞ
x ðkx; z;oÞ

PeðoÞ
¼

U ðTnÞ
x ðkx; z;oÞ

2mDnðkx;oÞ
; (58)

where

U ðTnÞ
x ðkx; z;oÞ ¼ p3fcos ðazÞ � cos ðbhÞ cos ½aðz þ hÞ	g

þ p4fcos ðbzÞ � cos ðahÞ cos ½bðz þ hÞ	g

þ p5 sin ðahÞ sin ½bðz þ hÞ	 þ p6 sin ðbhÞ sin ½aðz þ hÞ	 ð59Þ

with

p3ðkx;oÞ ¼ 8iabk3
xðb

2
� k2

xÞ; p4ðkx;oÞ ¼ �4iabkxðb
2
� k2

xÞ
2; (60,61)

p5ðkx;oÞ ¼ �16ia2b2k3
x; p6ðkx;oÞ ¼ 2ikxðb

2
� k2

xÞ
3: (62,63)

For the single fluid-loaded plate, the transfer function of the tangential displacement at location z
divided by the excitation level is equal to

U ðsÞ
x ðkx; z;oÞ

PeðoÞ
¼

U ðTnÞ
x ðkx; z;oÞ
mDsðkx;oÞ

: (64)

For the double fluid-loaded plate, the transfer function of the tangential displacement at
location z divided by the excitation level is equal to

U ðdÞ
x ðkx; z;oÞ

PeðoÞ
¼

U ðTdÞ
x ðkx; z;oÞ
mDdðkx;oÞ

; (65)

where

U ðTdÞ
x ðkx; z;oÞ ¼ p3fcos ðazÞ � cos ðbhÞ cos ½aðz þ hÞ	g

þ p4fcos ðbzÞ � cos ðahÞ cos ½bðz þ hÞ	g

þ p5 sin ðahÞ sin ½bðz þ hÞ	 þ p6 sin ðbhÞ sin ½aðz þ hÞ	

þ f 4 sin ðahÞ cos ½bðz þ hÞ	 þ f 5 sin ðbhÞ cos ½aðz þ hÞ	 ð66Þ

with

f 4ðkx;oÞ ¼ 4rf ðgrÞ
�1a2bkxðb

2
þ k2

xÞ
2 (67)

and

f 5ðkx;oÞ ¼ �2rf ðgrÞ
�1akxðb

2
� k2

xÞðb
2
þ k2

xÞ
2: (68)
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For the nonfluid-loaded plate, the transfer function of the normal displacement at location z

divided by the excitation level is equal to

U ðnÞ
z ðkx; z;oÞ

PeðoÞ
¼

U ðTnÞ
z ðkx; z;oÞ

2mDnðkx;oÞ
; (69)

where

U ðTnÞ
z ðkx; z;oÞ ¼ p7fsin ðazÞ � cos ðbhÞ sin ½aðz þ hÞ	g

þ p8fsin ðbzÞ � cos ðahÞ sin ½bðz þ hÞ	g

þ p9 sin ðahÞ cos ½bðz þ hÞ	 þ p10 sin ðbhÞ cos ½aðz þ hÞ	 ð70Þ

with

p7ðkx;oÞ ¼ �8a2bk2
xðb

2
� k2

xÞ; p8ðkx;oÞ ¼ �4ak2
xðb

2
� k2

xÞ
2; (71,72)

p9ðkx;oÞ ¼ 16a2bk4
x; p10ðkx;oÞ ¼ 2aðb2

� k2
xÞ

3: (73,74)

For the single fluid-loaded plate, the transfer function of the normal displacement at location z
divided by the excitation level is equal to

U ðsÞ
z ðkx; z;oÞ

PeðoÞ
¼

U ðTnÞ
z ðkx; z;oÞ
mDsðkx;oÞ

: (75)

For the double fluid-loaded plate, the transfer function of the normal displacement at location z

divided by the excitation level is equal to

U ðdÞ
z ðkx; z;oÞ

PeðoÞ
¼

U ðTdÞ
z ðkx; z;oÞ
mDdðkx;oÞ

; (76)

where

U ðTdÞ
z ðkx; z;oÞ ¼ p7fsin ðazÞ � cos ðbhÞ sin ½aðz þ hÞ	g

þ p8fsin ðbzÞ � cosðahÞ sin ½bðz þ hÞ	g

þ p9 sin ðahÞ cos ½bðz þ hÞ	 þ p10 sin ðbhÞ cos ½aðz þ hÞ	

þ f 6 sin ðahÞ sin ½bðz þ hÞ	 þ f 7 sin ðbhÞ sin ½aðz þ hÞ	 ð77Þ

with

f 6ðkx;oÞ ¼ �4irf ðgrÞ
�1a2k2

xðb
2
þ k2

xÞ
2 (78)

and

f 7ðkx;oÞ ¼ �2irf ðgrÞ
�1a2ðb2

� k2
xÞðb

2
þ k2

xÞ
2: (79)
5. Displacement shapes

A numerical example is discussed to illustrate the effects of fluid loading on the displacement
shapes of the plate. A baseline problem is defined that corresponds to a mildly stiff elastomeric
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solid in contact with sea water on one or two sides. The plate material properties are as follows:
Young’s modulus is E ¼ 108 N=m2; density is r ¼ 1200 kg=m3; Poisson’s ratio is n ¼ 0:4
(dimensionless), and thickness is h ¼ 0:1m: The sea water has a compressional wave speed of
cf ¼ 1500m=s and a density of rf ¼ 1025 kg=m3: The calculated Lamé constants are l ¼

1:43 
 108 N=m2 and m ¼ 3:57 
 107 N=m2: The calculated dilatational wave speed is cd ¼

423m=s and the calculated shear wave speed is cs ¼ 173m=s: The dispersion curves for the system
are not plotted as they are previously available using other work [6,19], nor are the transfer
functions because they are previously available as open form solutions [19] which match
identically the closed-form solutions derived in the previous section.

Fig. 2 shows the displacement shape of the n ¼ 1 antisymmetric mode for the nonfluid-loaded
plate, the single fluid-loaded plate, and the double fluid-loaded plate. The figure on the left
illustrates plate thickness versus tangential displacement and the figure on the right shows plate
thickness versus normal displacement. The solid line is the double fluid-loaded plate, and the
dashed line represents both the nonfluid-loaded plate and the single fluid-loaded plate. The
displacement shapes were determined by taking a point on the n ¼ 1 branch of each
dispersion curve for the three separate cases and then using these values of frequency and
wavenumber to compute the displacements. For the double fluid-loaded plate, the values
of this point were f ¼ 2540Hz and kx ¼ 78:5 rad=m; for the single fluid-loaded plate, these
values were f ¼ 2630Hz and kx ¼ 78:5 rad=m; and for the nonfluid-loaded plate, these values
were f ¼ 2740Hz and kx ¼ 78:5 rad=m: Note from Eqs. (58), (64), (65), (69), (75), and (76) that
the displacement shape is contained entirely in the numerator and that the location of the mode in
the wavenumber–frequency plane is contained entirely in the denominator. Additionally, because
the single fluid-loaded plate contains no fluid terms in the numerator, it has a displacement
Fig. 2. Displacement shaper of the n ¼ 1 mode in (a) tangential direction and (b) normal direction for the double fluid-

loaded plate (———), single fluid-loaded plate and plate without fluid loading (– – – –).
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shape identical to the nonfluid-loaded plate. However, the double fluid-loaded plate does contain
fluid terms in the numerator, and thus its displacement shape is different from both the nonfluid-
loaded plate and the single fluid-loaded plate. Comparison of displacement shapes at other modes
yields similar results to those of the nonfluid-loaded, single-loaded, and double-loaded fluid plate
displacement shapes shown in Fig. 2.
6. Conclusions

This paper has derived the closed-form solutions for a nonfluid-loaded, a single fluid-loaded,
and a double fluid-loaded plate subjected to plane wave energy at all wavenumbers. The
dispersion equation was also formulated based on the matrix equations and was verified using
previously available dispersion equation forms. Furthermore, the displacement shapes of the
system modes were determined, and it was found that the displacement shapes of the plate modes
were identical for a nonfluid-loaded plate and for a single fluid-loaded plate. However, fluid
loading on both sides produced a different displacement shape.
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