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Abstract

This paper presents an explicit acoustical wave propagator technique to investigate the flexural wave
scattering and dynamic stress concentration in a ribbed plate based on Mindlin plate theory. A scheme
combining Chebyshev polynomial expansion and fast Fourier transformation is introduced to implement
the operation of the acoustical wave propagator. The exact analytical solutions are also presented to
demonstrate the validity of the present technique. The wave propagation patterns are used to investigate
the effect of rib on the flexural wave scattering and distribution of dynamic stress concentration. Dynamic
stress concentration factors around the discontinuities are examined in detail.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Structures consisting of thin plates stiffened by multiple ribs are of considerable importance in
air/space and maritime industries. Due to the structural discontinuities, dynamic stress
concentrations are often located near or at these rib–plate interconnections. However, although
much numerical work has been done to investigate the vibration of stiffened plates, only a handful
of researchers have investigated dynamic stress concentration of ribbed plates. Mukherjee and
Mukhopadhyay [1] have provided a literature review, in which they have given a general picture of
research on dynamic stress concentration. Other researchers have written detailed papers of
particular aspects of dynamic stress concentration. Ungar [2] investigated the transmission of
plate flexural waves through reinforcing ribs and discussed the dynamic stress concentration
factors. Later, Stearn [3,4] examined the local increase of dynamic stress and strain in a flat plate
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at a sharp change of section by the diffuse field bending wave model in the frequency domain. The
spatial variation of stress, strain and acceleration in structures subject to broad frequency band
excitation was also investigated. However, the effects of this kind of discontinuity on the flexural
wave propagation and scattering, and the distribution of dynamic stress concentration in the time
domain are not well understood. Hence, it is still necessary to develop an effective and accurate
method to investigate a range of such interesting acoustical problems as dynamic stress
concentration and pre-fatigue at structural discontinuities, and transient energy exchange across
the coupling boundaries.
Recently, Pan and Wang [5] extended the work by Tal-Ezer and Kosloff [6] and developed the

acoustical wave propagator (AWP) technique for describing the propagation and scattering of
one-dimensional acoustical wave packets. Peng and Pan [7,8] further extended this technique to
investigate the time-domain flexural wave propagation in thin plates and dynamic stress
concentration on a stepped plate. The aim of the present paper is to apply the AWP technique to
analyze the wave propagation and scattering and dynamic stress concentration in a ribbed plate.
Dynamic stress concentration factors in the time domain are discussed in detail.

2. Theory of the AWP technique

Plates with rib or beam structures are common components of many practical engineering
structures, as shown in Fig. 1. In this paper, investigation of the wave propagation and dynamic
stress concentration is based on Mindlin’s theory. When disturbed, wave motion occurs in the
plate. The wave motion generates dynamic moments and shear forces which result in internal
stresses.
The plate is subjected to an external transverse point load Pðx0; y0; tÞ that is suddenly applied, as

illustrated in Fig. 1. This load can be defined as an initial displacement. Meanwhile, two kinds of
moments (bending moments and twisting moments) and the plate transverse shear forces are
involved.
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Fig. 1. Schematic of a ribbed plate.
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From the stress–strain relations, the stresses are given by [9]
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where E is Young’s modulus and u is the Poisson ratio of the plate material. cx and cy are the
rotation angles of a line which is normal to the mid-surface before the deformation, about the
x- and y-axes, respectively.
The principal stress can be calculated by [10]

sP ¼
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The derivatives of the moments and shear forces can be obtained as
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where D ¼ Eh3ðx; yÞ=ð12ð1� u2ÞÞ is the flexural rigidity of the plate and

h ¼ hðx; yÞ ¼
hR; ðx; yÞDRIB;

h; other;

(

where hR and h are the thickness of the rib and the plate, respectively. oxðx; yÞ; oyðx; yÞ and V are,
respectively, the angular velocities of the plate and velocity in the z-axis, where ox ¼ @cx=@t;
oy ¼ @cy=@t and V ¼ @W=@t: Qx and Qy are the shear forces in the x- and y-axes, respectively; G

is the modulus of the rigidity; and k is a shear factor.
The governing equations of motion of the ribbed plate system are derived as
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where r is the mass per unit area of the plate.
The system state equation can be obtained by combining Eq. (3) with Eq. (4)
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where
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Eq. (5) can be rewritten by integrating Eq. (6) with respect to time

fðx; y; tÞ ¼ e�ðt�t0Þ #Hfðx; y; t0Þ; ð7Þ

where f is a state vector consisting of the angular velocities ox and oy; velocity V ; shear forces Qx

and Qy; bending moments Mxðx; y; tÞ and Myðx; y; tÞ; and one of the twisting moments,
Mxyðx; y; tÞ; of the plate. e�ðt�t0Þ #H is defined as the acoustical wave propagator for flexural waves in
ribbed plates. The operation of the AWP subjected to the initial state vector fðx; y; t0Þ is used to
evaluate the state vector fðx; y; tÞ of an acoustical wave at any time t: Since the material properties
are defined as a function of position, it is worth noting that the effect of boundaries and spatial
variation of the acoustical media have been already included in the system operator #H: In other
words, the plate and the rib do not have to be formulated separately, so the AWP technique is
more explicit and elegant than other methods.
If the thickness of the rib is smaller than sizes in other dimensions, so the classical Kirchhoff

thin plate theory is regarded as a special case of Mindlin plate theory. For this case, Eq. (5) can be
simplified into
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where
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3. Numerical scheme of the AWP

3.1. The Chebyshev polynomial expansion and fast Fourier transformation scheme

It is necessary to expand this exponential propagator e�ðt�t0Þ #H in order to evaluate its operation
on the initial wave packet. Different expansions of the propagator along with the technique used
to calculate the spatial derivatives lead to different time-evolution schemes. Recent work on the
time-domain Schr .odinger equation shows that the Chebyshev polynomial expansion (CPE)
scheme has some distinct features. The main feature is that very long time steps can be used in the
calculation; in some cases, a single time step completes the whole calculation. Another feature is
that the expansion coefficients of Chebyshev polynomials decay exponentially when the order of
the coefficient function is sufficiently larger than its argument. Matrix operator algebra is required
for the implementation of the acoustical wave propagator. Since the real Chebyshev polynomials
used in the expansion of the acoustical wave propagator are defined in the ranges of ½�1; 1�; the
normalized system operator #H0 can be calculated by #H0 ¼ #H=lmax; where lmax represents the
maximum eigenvalue of the system operator #H:
The acoustical wave propagator is expanded in Chebyshev polynomials of the first kind, and

Eq. (7) can be rewritten as

fðx; y; tÞ ¼
XN
k¼0

akðRÞTkð #H0Þfðx; y; t0Þ; ð10Þ

where akðRÞ ¼ 2IkðRÞ except a0ðRÞ ¼ I0ðRÞ and IkðRÞ is the kth order modified Bessel function of
the first kind; R ¼ ðt � t0Þlmax:
The Chebyshev polynomials in Eq. (10) can be calculated by

T0ð #H0Þ ¼ I; T1ð #H0Þ ¼ #H0; Tkþ1ð #H0Þ ¼ 2 #H0Tkð #H0Þ � Tk�1ð #H0Þ when kX1: ð11Þ

If the initial state vector fðx; y; t0Þ and R are determined, the expansion coefficients can be
calculated by the modified Bessel function of the first kind. Thus the AWP operation becomes the
calculation of the Chebyshev polynomial Tkð #H0Þ; which mainly involves the evaluation of spatial
derivatives.
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Therefore, the following Fourier and inverse Fourier transformations are used to calculate the
spatial derivatives of function fðx; y; tÞ:

@n
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@n

@yn
fðx; y; tÞ ¼ F�1fð jkyÞ

nF ½fðx; y; tÞ�g; ð12Þ

where F ½ � and F�1f g represent the Fourier transformation and inverse Fourier transformation,
respectively. kx and ky are the bending wave numbers in the x- and y-axes, respectively.
Pan et al. [5,7,8] have examined the accuracy of the Fourier transformation method for

evaluating spatial derivatives. When the spatial sampling intervals Dx and Dy are given, the
discrete Fourier expansion of a wave packet supports the maximum wave number (equivalent to
the shortest wavelength or the highest frequency). As mentioned above, R is a function of lmax
which is obtained from the system operator #H by the equation ð #H� lIÞf ¼ 0: For example, the
normalization factor R related to #H in Eq. (9) can be calculated by
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About the boundary condition, a Gaussian function Gf is introduced to implement the
convolution with thickness function hðx; yÞ and smooth the discontinuity. If very sharp
boundaries are present, a large Gaussian factor will be used. Meanwhile, more grid points
should be involved to assure the convergence. The effect of the number of grid points on the
predicted results will be discussed in the following section.

3.2. Comparison of the predicted results by the AWP technique with the exact analytical solutions

Since the numerical convergence and stability of the Chebyshev–Fourier scheme have been
examined in Refs. [5,7,8], in this paper, the predicted results obtained from the AWP technique
are compared with the exact analytical solution of the maximum stress in a flat plate. The
displacement has the following analytical solution [9]:
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where b ¼ ðEh2=ð12ð1� u2ÞrÞÞ1=2; W ðr; tÞ;s and f0 represent the deflection displacement of the
plate in the z-axis, Gaussian factor and a constant, respectively.
The first and second order derivatives of W ðr; tÞ are given by
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The stresses can be calculated by
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The principal stress is calculated by

sP ¼ maxfsr; syg: ð17Þ

The material used in the calculation of exact analytical solutions is a steel plate. Its material
properties are given as follows: E ¼ 21:6� 1010 N=m2; u ¼ 0:3 and r ¼ 7800 kg=m3: The
dimensions of the plate in the x; y and z directions are 10, 10 and 0:002 m; respectively. The
Gaussian factor s; a constant f0 and the number of grid points N are, respectively, 0.1, 0.001 and
100. The initial displacement is located at the centre of this plate.
When t ¼ 0:034 s; the propagation of the wave packet covers the observation area

(�6 mpxp4 m and �5 mpyp5 m). Fig. 2 shows the comparison of the principal stress
between the predictions of the Chebyshev–Fourier scheme and the exact analytical solution. The
agreement between the results of the Chebyshev–Fourier scheme and the exact analytical solution
is seen to be very satisfactory. Therefore, this scheme can be used to predict accurately the
distribution of dynamic stress concentration.

3.3. The effect of the number of grid points on the predicted results

As mentioned above, the number of grid points N has a significant effect on the predicted
results. There is a minimum value Nmin to assure the convergence of the Chebyshev–Fourier
scheme. Fig. 3 shows the predicted results of the principal stress sP along y ¼ 0 m and at t ¼
0:01 s and different N:When No100; there are not enough points involved in the calculation, and
the accumulation of numerical error impairs the predicted accuracy. In some cases, the calculation
becomes dispersion quickly. When N > 100; with an increase in N; the accuracy of the predicted
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Fig. 2. Comparison between the Chebyshev–Fourier scheme and the exact analytical solution when y ¼ 0 m and
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results of the principal stresses improves slightly. Therefore, Nmin ¼ 100 is used to predict the
distribution of dynamic stress.

4. Numerical examples and discussion

The same material is used in numerical calculation. Absolute values of parameters are given as
follows: E ¼ 21:6� 1010 N=m2; u ¼ 0:3; h ¼ 0:002 m; hR ¼ 0:005 m; xr ¼ 6 m; xR ¼ 0:02 m; r ¼
7800 kg=m3 and s ¼ 0:1; x0 ¼ 5 m and y0 ¼ 5 m; and the dimension of this plate is 10 m� 10 m:
The expansion coefficients of Chebyshev polynomials are related to the modified Bessel functions
of the first kind.
The following initial state vector is chosen to demonstrate the implementation of AWP on an

initial wave packet in a ribbed plate:

fðx; y; tÞ

¼ ½oxðx; y; 0Þ oyðx; y; 0Þ 0 Qxðx; y; 0Þ Qyðx; y; 0Þ Mxðx; y; 0Þ Myðx; y; 0Þ Mxyðx; y; 0Þ �T;

ð18Þ
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where oxðx; y; 0Þ; oyðx; y; 0Þ; Qxðx; y; 0Þ; Qyðx; y; 0Þ; Mxðx; y; 0Þ; Myðx; y; 0Þ and Mxyðx; y; 0Þ are
determined by the initial displacement W ðx; y; 0Þ ¼ W0e

�½ðx�x0Þ
2þðy�y0Þ

2�=4s2 and the material
properties. In this simulation, W0 ¼ 0:001 m; the number of grid points N is 100 and the spatial
sampling intervals Dx ¼ Dy are 0:1 m: A plate with infinite length in the x and y dimensions is
used, and the spatial range used to observe the evolution of wave packet is �6 mpxp4 m and
�5 mpyp5 m:
Fatigue failures happen frequently in the regions with high stress concentration, and

understanding the distribution of dynamic stress concentration is very useful for engineering
design. Complete information of the whole system at any point and any time can be obtained
from the above equations. In particular, the principal stress occurring at any point and any time
can be calculated. For example, Fig. 4 shows the distribution of the principal dynamic stress sP in
a ribbed plate at different times. For a given impulse of Gaussian wave packet, at t ¼ 0 s; the
principal stress is concentrated on a smaller central area. As time increases, stress concentration
begins to spread out with decreased magnitude. The most interesting feature in Figs. 4(b) and (c)
is the spatial wave interference pattern in the time-domain principal stresses. At a discontinuity,
incident bending waves are partly reflected, and the interference between the incident and
scattered waves causes constructive and destructive stress zones, as illustrated clearly in Figs. 4(c)
and (d). These are analogous to the interference of sound pressure in front of a hard wall surface.
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When the first incident wave arrives at the rib, the scattered waves are produced and combined
with the following incident waves. At t ¼ 0:02 s; due to the effect of more scattered waves from
the rib, more peaks are focused around the rib. It is noted that, at t ¼ 0:034 s; two stress
concentration distributions along the rib are shown in Figs. 4(c) and (d). These distributions
depend on the thickness ratio of the plate and the rib, the characteristics of plate material, width
of the rib, and the distance between impulse point and discontinuity. The results in Fig. 4 agree
well with the analysis by Ungar [2] in which the portion of the plate on the incoming near-side of
the rib experiences greater maximum stresses and strains in the presence of the rib than if no rib is
present.
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Furthermore, to explain the patterns in Fig. 4, the diffracted flexural waves are analyzed and
decomposed into two parts: the incident waves in a plate without the rib, and the scattered waves
caused by the rib. They are defined by fðx; y; tÞDi ¼ fðx; y; tÞSc þ fðx; y; tÞDi; where fðx; y; tÞ
represents the state vector in the plate; and subscripts In; Sc and Di represent the incident waves,
the scattered waves, and the diffracted flexural waves, respectively. Distribution of the scattered
waves is illustrated in Figs. 5. When t ¼ 0:02 s; the incident waves reach the rib, and cause
scattered waves. At t ¼ 0:034 s; another observation from Fig. 5(b) is that more scattered waves
spread out and focus on two arcs near the left side of the rib. Similarly, the degree of curve
depends on the plate thickness ratios, the material properties of the plate, and the distance
between the distributed location and discontinuity. Different from a sphere wave input, the
magnitude of each component in the Gaussian wave packet varies with time. As mentioned above,
the scattered waves vary with the incident waves, discontinuity condition and material properties.
As time increases, the magnitudes and distribution of the diffracted flexural waves will change
with the incident waves and scattered waves. Fig. 5 gives a good explanation of the principal stress
distribution of distributed flexural waves as shown in Fig. 4. The most interesting feature in
Fig. 5(b) is that the spatial wave interference patterns are very different from those obtained in a
stepped plate [7]. Fig. 6 shows the distribution of the predicted points.
Due to propagating wave symmetrically about the x-axis, twelve points in the rib are chosen to

observe the principal stress sP in the time domain, shown in Fig. 7. With the discontinuity, the
ratio of the maximum positive/negative value of stress in the plate with the rib to the maximum
positive/negative value in the plate without the rib at the same point, is called the stress
concentration factor. Fig. 8 shows the dynamic stress concentration factors of twelve points in the
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rib. The stress concentration factors at points 2, 4, 8 and 12 have large values. At points 8 and 12,
the factors as high as 3 have been illustrated in Fig. 8. Conversely, due to the effect of the
interference of the incident waves and scattered waves, the values of dynamic stress concentration
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Fig. 7. Dynamic stresses of 12 predicted points.
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factors at points 1, 3, 5, 7 and 9 are less than 1. With the AWP technique, the complete
information of the whole system at any point and any time can be easily obtained.
The material properties and damping characteristics of a ribbed plate have significant effects on

the displacement, moment and dynamic stress concentration; work in this direction is in progress.

5. Conclusions

In this paper the acoustical wave propagator technique is extended to describe the time-domain
evolution of wave packets in a ribbed plate. A Chebyshev polynomial expansion scheme is
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implemented to carry out the operation of the acoustical wave propagator. Compared with the
exact analytical solution, this scheme is found to be accurate and computationally effective for the
prediction of the time-domain evolution of acoustical waves. The patterns of the principal stress
enable better understanding of the distribution of dynamic stress concentration and pre-fatigue at
structural discontinuities.
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