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Abstract

An effective method for the free vibration of arbitrary plan-form shallow shells is proposed. The
algorithm is based on the R-function theory and variational Ritz method. The effectiveness of the method
offered is illustrated by examples of shallow shells of a complex plan form at different boundary conditions.
Three types of curvatures are considered, which are the spherical, circularly cylindrical and of hyperbolic
paraboloid shape. A number of the test problems were solved to check the veracity of the proposed method.
The comparison between the obtained results and those available in the literature, was carried out.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of dynamic research into elements of thin-walled designs simulated by shallow
shells with the given plan form, is present for many fields of science and engineering. However, in
general, the solution is connected with many mathematical difficulties. It is explained by the
necessity of solving systems of differential equations with partial derivatives of comparatively high
order.
Many studies in the free vibration analysis of shallow shells have been presented in numerous

review works. Among them are Leissa’s monograph [1], Qatu’s review article [2] and a more recent
survey by Liew et al. [3], focused on research advances in vibration studies since the 1970s.
Detailed analysis of many studies related to the vibration of shallow shells of arbitrary shape leads
to the next conclusion. The most widespread numerical methods used for the solution of such
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problems are the finite element method (FEM) [4], finite strip [5] and boundary elements
(BEM) [6]. However, more recently many researchers have begun to use the well-known
general Rayleigh–Ritz or Ritz method. At this point attention is drawn to papers [7–10],
in which the pb-2 Ritz method is used. The review of many works [7–13] devoted to the
application of the Ritz method to free vibration analysis of shallow shells allows the
conclusion to be drawn that the majority of them consider shells with simple enough
planform, such as rectangular, circle, annular, rhombic, triangular or trapezoidal, at the best is
in the convex domain. From the present point of view it is also explained by those difficulties,
which can arise with the construction of the systems of co-ordinate functions for non-convex
areas.
The present paper is in agreement with the above mentioned works, but at the same time has

principal differences, because the proposed method is based on R-function theory and variational
methods [14].
The R-function method (RFM) is less well known than those above-mentioned

methods but it is universal and effective [15,16]. One of the main RFM advantages is the
possibility of construction the general structure of solution (GSS) in analytical form for plates and
shallow shells with any arbitrary planform. These solution’s structure exactly satisfy either all
boundary conditions or only main (kinematic) boundary conditions and contains indefinite
functions, which can be found by means of any variational or other numerical method. The
constituent elements of structural formulae, which were constructed, are the functions by
means of which either the equation of area’s boundary or its separate segment is described. Such
equations can be constructed for arbitrary area by means of R-functions theory in the form of a
single analytical expression. It is important to note that the solutions structure for different
shapes of areas does not vary with fixed type of boundary conditions. It has allowed formalizing a
mathematical target setting, to construct algorithms of their solution and to create the
computer-aided programming systems fulfilling all the necessary numerical research. Despite
wide experience in application of the R-functions theory with respect of plate and shell
problems, this method has begun to be applied to dynamic problems of the shallow shells
theory only recently. Thus, in Ref. [17] the problem about free oscillations of cantilever shallow
shells (cylindrical, spherical and hyperbolic paraboloid) was resolved by the means of a
RFM method. The present paper is dedicated to development of the RFM for problem solving
about oscillations of shallow shells of the composite shape with different types of boundary
conditions.

2. Variational statement of the vibration problem

Consider free vibrations of a shallow shell of uniform thickness h using classical theory based
on Kirchhoff–Love hypotheses.
The Ritz procedure requires minimizing the functional

J ¼ Vmax � Tmax;
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where Vmax and Tmax are the maximum values of potential energy V and kinetic energy T of the
system. The potential energy is

Vmax ¼
Eh

2ð1� n2Þ

Z Z
O
½ðex þ eyÞ

2 � 2ð1� nÞðexey � g2xy=4Þ�@O

þ
Eh3

24ð1� n2Þ

Z Z
O
½ðKx þ KyÞ

2 � 2ð1� nÞðKxKy � K2
xyÞ�@O: ð1Þ

The kinetic energy is

Tmax ¼
Z Z

O
ð ’u2 þ ’v2 þ ’w2Þ@O: ð2Þ

The lengthening strain ex; ey; shift strain gxy and curvature Kx; Ky; Kxy are defined as

ex ¼ @u=@x þ w=Rx; ey ¼ @v=@y þ w=Ry; gxy ¼ @v=@x þ @u=@y; ð3Þ

Kx ¼ @2w=@x2; Ky ¼ @2w=@y2; Kxy ¼ @2w=@x@y: ð4Þ

Assuming harmonic motion for the time response in free vibration in-plane displacements u; v (in
directions of Ox- and Oy-axis) and also transverse deflection w (in direction of axis-Oz) may be
expressed in the form

uðx; y; tÞ ¼ Uðx; yÞsin lt; vðx; y; tÞ ¼ V ðx; yÞsin lt; wðx; y; tÞ ¼ W ðx; yÞsin lt; ð5Þ

where l is a natural frequency.
By considering Eqs. (3)–(5), an initial problem may be reduced to determination of the

stationary point of the functional
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where D ¼ Eh3=12ð1� n2Þ denotes the flexural rigidity, r is the mass density per unit volume, E is
Young’s modulus, n is the Poisson factor, and U ; V ; W are the shell’s displacements.
According to the Ritz method, unknown displacements functions U ; V ; W are represented as

U ¼
XN1

i¼1

aiUi; V ¼
XN2

i¼N1þ1

aiVi; W ¼
XN3

i¼N2þ1

aiWi; ð7Þ

where fUig; fVig; fWig define mathematically complete sets of co-ordinate functions, satisfying, at
least, cinematic (main) boundary conditions, ai is an indefinite factor.
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Substituting Eq. (7) into Eq. (6) unknown coefficients can be defined from a functional
minimum condition

@J=@ai ¼ 0; i ¼ 1; 2; 3;y;N3: ð8Þ

The algebraic system of the uniform linear equations (8) may be represented in matrix form as

ðA� l2BÞX ¼ 0; ð9Þ

where XTða1; a2;y; anÞ is a vector of unknown factors, A ¼ faijg; B ¼ fbijg are Ritz matrices, the
elements of which are defined by

aij ¼
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If a shallow shell has complex plan form or boundary conditions then the problem of construction
of the sequences of co-ordinate functions is very difficult. In the present work, this problem is
solved by a variational–structural method based on the R-functions theory RFM. According to
this method the system of co-ordinate functions can be obtained by a solution’s structure which
can satisfy either all or only main (kinematic) boundary conditions.

3. Structures of the solution for different kinds of boundary conditions

The RFM has been used before for vibration problems of plates of complex form with different
boundary conditions [15,16]. The GSS had been constructed for the base types of fastening,
clamped edge, simply supported, free edge and mixed boundary conditions.
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Table 1

Structural formulas for different boundary conditions

Kind of fastening Boundary conditions Structure of the solution

Rigidly clamped U ¼ 0;V ¼ 0;W ¼ 0; @W=@n ¼ 0 U ¼ oP1 , V ¼ oP2; W ¼ o2P3
Simply supported U ¼ 0; V ¼ 0; W ¼ 0; Mn ¼ 0 U ¼ oP1; V ¼ oP2 W ¼ oP3
Slip clamped W ¼ 0; @W=@n ¼ 0; et ¼ 0; sn ¼ 0 U ¼ P1; V ¼ oP2 , W ¼ o2P3
Slip supported W ¼ 0; Mn ¼ 0; et ¼ 0; sn ¼ 0 U ¼ P1 , V ¼ oP2; W ¼ oP3
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The ways of shells fastening are varied enough. In Table 1 for some types of fastening of shells
the examples of the structural formulas, which satisfy only kinematic regional conditions, are
given.
In the given formulas, sn is the normal stress, et is the strain along the tangent,Mn is the normal

bending moment [18]. The function oðx; yÞ satisfies the conditions

oðx; yÞ > 0 8ðx; yÞAO; oðx; yÞ ¼ 0 8ðx; yÞA@O

and may be constructed by RFM.
The indefinite components of the structural formulas [15] P1; P2; P3 are represented as

expansion of the series on any complete system of functions, for example, power polynomials,
spline, trigonometric polynomials or others

P1 ¼
XN1

i¼1

aiji; P2 ¼
XN2

i¼N1þ1

aici; P3 ¼
XN3

i¼N2þ1

aiwi: ð11Þ

Substituting Pi ði ¼ 1; 3Þ in the structural formulae, it is possible to receive necessary sequences of
co-ordinate functions fUig; fVig; fWig:
One of the essential practical advantages of the RFM is the possibility of accounting for special

behaviour of solutions. Below is presented the example of a structure, which includes a cutout on
the free edge of a shallow shell. Suppose that the shell is rigidly clamped on one part of the
boundary (u ¼ v ¼ 0; w ¼ @w=@Z ¼ 0; ðx; yÞA@O1) and free on another (Tn ¼ 0; S ¼ 0; Qn ¼ 0;
Mn ¼ 0; ðx; yÞA@O2). There is a crack/cut on a free side of the boundary (Fig. 1).
First of all it should be noted that the conditions on the free edge are natural, and the

conditions on rigidly clamped segment of the boundary are principal. At first sight it seems that
the sequence of co-ordinate functions can be obtained by means of structural formulas (types by
Kantorovich),

W ¼ o21P1; U ¼ o1P2; V ¼ o1P3; ð12Þ

where o1 ¼ 0 is the equation of the rigidly clamped part of the boundary, P1; P2; P3 are indefinite
components of the structure of the solution, which are expanded in series on any complete system
of functions. The coefficients of this expansion may be found from the condition of a functional
minimum (8). However, the edges of shallow shells, which are along a crack/cut, can diverge in the
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Fig. 1. Plan-form of the console trapezium shallow shell.
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direction of a perpendicular median surface during lateral vibrations. Because of the continuity of
a function W ðx; yÞ structure (12) fails to take into account such phenomena and consequently the
structure must be considered incomplete. It is possible to construct a structure of the solution for
the W function, which would be complete, i.e., one would provide the ‘‘jump’’ for the deflection
W ðx; yÞ: Using the R-functions theory, the normalized equations of a crack/cut as o2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l23a %j

p
will be constructed, where l ¼ 0 is the normalized (sign l changes at PF line crossing) equation of a
line including the crack/cut. The function jðx; yÞX0 describes the area, which separates the crack/
cut from the PF line, 3a is the sign of the R-operation, namely R-disjunction [15]

x3ay ¼ x þ y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: ð13Þ

By designating the parties of the crack/cut o2 ¼ 0 as oþ
2 and o�

2 ; then the approach to the crack/
cut from the different parties, the function [15]

D
ðlÞ
1 o2 ¼ ð@l=@xÞ@o2=@x þ ð@l=@yÞ@o2=@y ð14Þ

behaves as

D
ðlÞ
1 o2

�1 along o�
2

þ1 along oþ
2

( )
:

For example, in the case of a plan-form represented in Fig. 1, one has l ¼ x sin aþ y cos a�
d1 cos aþ a sin a: D

ðlÞ
1 o2joþ

2
¼0 ¼ @o2=@n ¼ 1; D

ðlÞ
1 o2jo�

2
¼0 ¼ �@o2=@n ¼ �1: Thus the function

D
ðlÞ
1 o2 is determined everywhere on the O; and it is equal to D

ðlÞ
1 o2 ¼ 71þ Oðo2Þ: Using a

function D
ðlÞ
1 o2 it is possible to construct functions q1 and q2; which ones, approaching to a crack/

cut on a normal to the one side, tend to 0 and at the approaching to the other side, tend to 1,
namely

q1 ¼ 1
2
ð1þ D

ðlÞ
1 o2Þ ¼

0 when l-� 0

K when l-þ 0

( )
; q2 ¼ 1

2
ð1� D

ðlÞ
1 o2Þ ¼

1 when l-� 0

0 when l-þ 0

( )
: ð15Þ

Assuming that a deflection function on a line of a crack/cut looks like W2 ¼ P12q1 þ P22q2; where
P12 and P22 are indefinite components, freedom of the behaviour of the W function will be
provided on each of the parties of a crack/cut. Thus, a structure of the solution for W function in
a considered case may be presented as

W ¼
o21P1 in the vicinity of o1 ¼ 0

W2 þ P1 in the vicinity of o3 ¼ 0

( )
: ð16Þ

where o3 ¼ 0 is the equation of the free part including a crack/cut. Using the interlocational
Lagrange formula [15,16], the final structure of the solution for W ðx; yÞ looks like

W ¼ ðo21=ðo3 þ o21ÞÞ½W2 þ ðo3 þ 1ÞP1�: ð17Þ

4. Numerical examples

The specialized problem-oriented system POLE-SHELL [19] was created for numerical
implementation of the given algorithm. This system has the necessary computational base, which
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allows fulfilling a broad numerical experiment. The source programs RL [20] were compounded
and their testing was executed to solve the problem of free oscillations of shallow shells within the
limits of this system.

Example 1. Consider a shallow spherical shell with a square planform with the parameters:
a=h ¼ 100; n ¼ 0:3 (Fig. 2). Boundary conditions: (a) slip supported; (b) slip clamped. Table 2
compares the fundamental frequency parameter L ¼ la2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrh=DÞ

p
given by Bucco and Mazumdar

[21] who used the FEM with the present method. The parameter K� has the same sense, as in Ref.
[21] and is defined as K� ¼ ½12ð1� n2�1=2a2=Rh; where R is the radius of curvature of the spherical
surface of the shell. To determine convergence of the obtained results calculations were carried
out at different numbers of co-ordinate functions (ncf). The ncf was determined by the degree of
approximating polynomials. From Table 2 it can be seen that the stabilization of results occurs at
35 co-ordinate functions. It corresponds the eighth degrees of approximating polynomials for
functions Uðx; yÞ;Vðx; yÞ;W ðx; yÞ: The consequent increasing of number ncf changes the results in
the fourth order character, it means that the error is about 0.5%.

Example 2. The free vibration of the shallow spherical shell with planform submitted in Fig. 3 is
considered. The edges of the shell are assumed to be slip supported. Investigation of the
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Fig. 2. Shallow spherical shell with square planform.

Table 2

Vibration of a slip supported and slip clamped shallow shell with square planform

L; Slip supported L; Slip clamped

K ncf ¼ 30 ncf ¼ 35 ncf ¼ 45 [5] ncf ¼ 30 ncf ¼ 35 ncf ¼ 45 [5]

0.0 19.810 19.786 19.785 19.785 36.068 36.068 36.066 36.002

3.0 20.036 20.012 20.012 20.011 36.193 36.193 36.191 36.125

5.0 20.431 20.407 20.407 20.405 36.413 36.412 36.412 36.344

10 22.190 22.168 22.168 22.160 37.431 37.426 37.426 37.351

20 28.142 28.125 28.125 28.104 41.250 41.232 41.231 41.134

50 53.690 53.681 53.681 53.678 61.636 61.563 61.559 61.404

100 101.267 101.262 101.262 101.738 105.844 105.693 105.683 105.797
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dependence of vibration frequencies from curvature and the depth of cut ðr=aÞ in the shell were
made. The values of parameters of the shell were selected as: a=h ¼ 100; n ¼ 0:3; b ¼ 0:4a; c ¼
0:3a; r=a ¼ 0; 0.1, 0.2, 0.3. Convergence of the frequencies for such a shell is shown in Table 3. It is
interesting to note that for higher numbers of mode causes the convergence is slower. It also
depends on shell geometry. For example, for r=a ¼ 0 convergence is faster than for r=a ¼ 0:3: The
further increasing a degree of approximating polynomials does not influence the obtained results
essentially. Error makes no more than 0.3%.

The numerical values of the frequency parameter for various values K� ¼ ½12ð1� n2Þ�1=2a2=Rh

are presented in Table 4. By setting r=a ¼ 0 and b ¼ 0 the results (not shown here) coincide with
the given test, confirming the validity of the proposed algorithm. From Table 4 it can be seen, that
at the increasing depth of a crack/cut parameter of frequency is increasing, especially in case of
plates that corresponds to the physical sense of a problem. With increasing curvature of the shell
this influence appreciably decreases. Also it may be interpreted from Table 4 that the frequency
will decrease with increases in shallowness for a given geometric parameter r=a:

Example 3. Calculate the frequency of free shallow shell oscillation, which is considered at
Example 2. Suppose that the boundary conditions are mixed and the depth cut is fixed i.e.,
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Fig. 3. Plan-form of the shallow spherical shell.

Table 3

Convergence of frequencies of vibration for a shallow shell (Example 2, K� ¼ 50)

r=a ncf L1 L2 L3 r=a ncf L1 L2 L3

0 44 52.69 62.77 70.48 0.2 44 56.69 70.97 83.38

56 52.67 62.67 69.21 56 56.48 70.44 82.64

70 52.66 62.65 69.17 70 56.36 70.32 81.84

0.1 44 55.66 65.88 80.52 0.3 44 60.76 88.68 94.35

56 55.35 65.61 78.72 56 60.46 87.66 92.99

70 55.20 65.57 77.89 70 60.34 87.49 92.26
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r=a ¼ 0:2: Consider that parts of boundary 1, 2 (Fig. 3) are rigidly clamped (C), other parts of the
boundary are: (a) free (F); (b) simply supported (SS); (c) clamped (C). The convergence of the
frequencies and its numerical results are respectively shown in Tables 5 and 6.

From the characteristics given in Table 5 it may be concluded that L converges faster for a shell
with more boundary constraints. It may also be noted that convergence is slower with increasing
mode order (as in the previous example). The analysis of the received results shows that increases
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Table 4

Frequencies of vibration for a slip supported shallow shell (Fig. 3), a=h ¼ 100; n ¼ 0:3; b ¼ 0:4a; c ¼ 0:3a; r=a ¼
0; 0:1; 0:2; 0:3

r=a K� L1 L2 L3 r=a K� L1 L2 L3

0.0 0 16.80 37.85 47.14 0.2 0 25.93 49.30 63.92

10 19.55 39.15 48.22 10 27.80 50.31 64.74

20 26.11 42.80 51.32 20 32.77 53.23 67.12

30 34.36 48.28 56.10 30 39.69 57.76 70.91

40 43.34 55.04 62.16 40 47.71 63.56 75.89

50 52.66 62.65 69.17 50 56.36 70.32 81.84

60 62.16 70.85 76.86 60 65.38 77.77 88.56

70 71.76 79.44 85.03 70 74.63 85.74 95.87

80 81.41 88.31 93.55 80 84.01 94.08 103.66

90 91.08 97.36 102.32 90 93.49 102.70 111.80

100 100.75 106.56 111.26 100 103.02 111.54 120.22

0.1 0 23.42 42.14 58.88 0.3 0 33.64 71.56 76.72

10 25.47 43.32 59.76 10 35.10 72.26 77.40

20 30.81 46.69 62.32 20 39.16 74.34 79.41

30 38.08 51.82 66.37 30 45.12 77.68 82.66

40 46.36 58.24 71.64 40 52.33 82.12 86.99

50 55.20 65.57 77.89 50 60.34 87.49 92.26

60 64.35 73.53 84.89 60 68.86 93.63 98.30

70 73.70 81.93 92.46 70 77.72 100.40 104.98

80 83.15 90.65 100.46 80 86.80 107.68 112.18

90 92.67 99.60 108.80 90 96.03 115.36 119.80

100 102.23 108.71 117.38 100 105.37 123.37 127.75

Table 5

Convergence of frequencies of vibration for a shallow shell (Example 3, K� ¼ 50)

ncf C–F C–SS C–C

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

44 4.79 16.07 23.42 33.05 78.71 83.57 104.23 109.96 82.11 95.77 118.32 124.00

56 4.68 14.92 22.50 32.37 78.68 83.47 103.24 107.58 82.07 95.44 117.73 123.03

70 4.61 14.59 22.24 32.04 78.64 83.39 103.00 107.29 81.99 95.36 117.29 122.13
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in the boundary constraints always lead to increases in frequency parameter. For example in the
case of a combination rigidly clamped–free edge (C–F) values of the frequency parameter are
much less than with conditions rigidly clamped or combinations rigidly clamped–simply
supported. Thus increasing curvature does not exert strong influence on values of frequencies.
In the cases C–SS and C–C curvature of the shell puts the main influence on the frequency
parameter. Thus the values of the frequency parameter differ a little among themselves at high
enough curvature. On the whole it can be seen in Table 6 that an increase in curvature of the shell
(see K� values) causes an increase in its frequency.

Example 4. Consider the free vibration problem of the shallow shell upon the base represented in
Fig. 1, and with the crack/cut PF on a free side. Assume, that the shell can be: (a) cylindrical
ð1=Rx ¼ 0Þ; (b) spherical ð1=Rx ¼ 1=Ry ¼ 1=RÞ; (c) doubly curved ð1=Rx ¼ �1=RyÞ: Suppose a ¼
0; i.e., line of crack/cut is parallel to clamped edge. The numerical values of the frequency
parameter Li ¼ lia

2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
are presented in Table 7. From Table 7 it follows that spherical and

doubly curved shallow shells are most rigid. For these shells the frequencies are higher than for
cylindrical shallow shells and the presence of the crack/cut has no essential influence on their
frequencies. But the cylindrical shell is less rigid. Its frequencies are less. However, the presence of
a crack has more essential influence on frequency of cylindrical shell oscillations.

Presented data were obtained by approximation of indefinite components in structural
formulas, 66 co-ordinate functions for U and V and 78 for W : Integration was executed with the
help of 16-pointed Gauss’s formula. If the crack’s length tends to zero the obtained results may be
compared with the ones, which are known in Ref. [22]. Comparing the results obtained by the
offered method with results in Ref. [22] (marked �) is submitted in the Table 7. It can be seen that
they are in the good agreement.

Example 5. Consider a shallow shell with plan-form shown in Fig. 4. In this case function o1;
which corresponds to a clamped edge, should be constructed by means of an R-functions i.e.,
o1 ¼ F130F2; where 30 is a sign of R-disjunction, which is determined by formula (13) at a ¼ 0;

F1 ¼ ðyX0Þ; F2 ¼ ððR2 � ðx � ða þ a1Þ=2Þ
2 � y2Þ=ð2RÞX0Þ:
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Table 6

Frequencies of vibration for shallow shell (Fig. 3) with mixed boundary conditions, a=h ¼ 100; n ¼ 0:3; b ¼ 0:4a;
c ¼ 0:3a; r=a ¼ 0:2

K� C–F C–SS C–C

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

0 3 8.88 17.15 29.98 32.41 54.57 73.65 90.47 44.96 74.76 94.39 107.99

10 3.10 9.24 17.45 30.09 35.56 56.02 75.06 91.18 47.06 75.69 95.42 108.58

50 4.61 14.59 22.24 32.04 78.64 83.39 103.00 107.29 81.99 95.36 117.29 122.13

100 6.18 21.12 28.84 35.02 133.26 135.14 152.90 159.14 136.58 139.06 160.74 166.69
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The sequence of co-ordinate functions has been constructed by means of the formula (17) as well
as in Example 4. The function o3 looks like

o3 ¼ F340F440o2;
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Fig. 4. Plan-form of the console shallow shell with a crack/cut PF on a free site.

Table 7

Influence of the curvature and length of the crack/cut PF on frequency parameter L for the console shallow shell (Fig.
1), a=Ry ¼ 0:5; b=a ¼ 1; a=h ¼ 100; d=a ¼ 0:25; a1=a ¼ 0:5; r=a ¼ 0:125; n ¼ 0:3; a ¼ 0

Number of the mode

Ry=Rx PF=a L1 L2 L3 L4 L5 L6

þ1 0 7:64� 22:27� 34:71� 64:67� 87:26� 115:3�

0 7.66 22.5 34.9 65.0 87.7 117.0

0.05 7.63 22.5 34.2 64.7 85.5 116.0

0.2 7.54 22.2 34.4 64.5 85.2 115.0

0.3 7.71 22.5 34.5 65.1 86.9 116.0

0.4 7.58 22.4 34.4 64.8 85.4 115.0

0 0 5:452� 20:69� 30:78� 60:97� 84:55� 112:1�

0 5.47 20.9 30.9 61.3 84.7 113.0

0.05 5.18 20.8 30.2 60.2 82.2 112.0

0.2 5.01 20.7 29.8 58.5 81.7 110.0

0.3 5.16 20.8 30.4 59.7 83.3 112.0

0.4 5.03 20.7 30.0 58.9 81.5 110.0

�1 0 8:138� 22:54� 37:56� 74:15� 89:78� 130:8�

0 8.16 22.7 37.6 74.3 90.2 132.0

0.05 7.90 22.6 37.1 73.6 88.8 130.0

0.2 7.97 22.4 37.0 72.3 88.4 127.0

0.3 8.00 22.6 37.4 73.5 90.2 130.0

0.4 7.89 22.4 37.1 72.4 88.6 129.0
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where 40 is sign R-conjunction at a ¼ 0 and

F340F4 ¼ F3 þ F4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
3 þ F2

4

q
:

The functions F3; F4 and o2 are determined as

F3 ¼
b

x
x � yX0

� �
; F4 ¼

a � a1

2

� �2
� x �

a þ a1

2

� �2� �� �
ða � a1ÞX0

�
:
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Fig. 5. Forms of vibration and three first modes for console shallow shells a=Ry ¼ 0:5; PF=a ¼ 0:3; d=a ¼ 0:25;
b=a ¼ 1; r=a ¼ 0:125; a1=a ¼ 0:5; n ¼ 0:3; a ¼ 0:
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The normalized equation of crack/cut line is presented as

o2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l230 %j

p
¼ 0

� �
;

where l ¼ y � d; %jðx; yÞ ¼ ððx � aÞ2 þ ðy � dÞ2 � r2l Þ=ð2rlÞ; where rl ¼ jPF j:
Frequency parameters Li ¼ lia

2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
and according to them forms of vibrations are shown

in Fig. 5. Parameters of the shell are the next: a=Ry ¼ 0:5; PF=a ¼ 0:3; d=a ¼ 0:25; b=a ¼ 1;
r=a ¼ 0:125; a1=a ¼ 0:5; n ¼ 0:3; a ¼ 0:

5. Conclusion

In the paper, an effective RFM method was presented. This method is worked out for solving
the vibration problems of shallow shells with an arbitrary plan forms and different boundary
conditions, including mixed ones. It uses the well-known Ritz method in combination with the R-
functions theory. The sequences of basic functions satisfying different boundary conditions and
taking into account crack/cuts are constructed by the R-functions method. Computations are
carried out in specialized problem-oriented system POLE-SHELL. Several shallow shells
problems are solved to demonstrate the effectiveness of the method for shells having various
geometrical planforms. The results obtained by the proposed algorithm are compared with those
known in literature. There was good agreement in all cases.
It can thus be concluded that the proposed R-function method and software created on its base

is a useful addition to the methods for the analysis of plates and shallow shells.
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