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1. Introduction

The study of natural frequencies of cables and their modes of vibration has a long history.
Among the more valuable recent contributions are those of Irvine and Caughey [1], who presented
correct expressions and extensive numerical data for the natural frequencies and vibration modes
of a uniform horizontal cable with small sag. The main advantage of this work is that, using one
suitably dimensionless parameter, the natural frequencies of horizontal cables can be expressed in
straight format. As a result, this approach provides a quick and accurate means of determining
the natural frequencies of a horizontal cable. Moreover, Irvine [2,3] extended this solution to the
case of an inclined cable. Taking the static profile of an inclined cable, he derived expressions for
its dimensionless in-plane natural frequencies. Since the geometric parameter of a small-sag
inclined cable is so small in actual structural applications, he concluded that this term could be
ignored in calculating in-plane natural frequencies; that is, the properties of an inclined cable are
taken to be the same as those of a horizontal cable.

In other research on inclined cables, Yamaguchi and Ito [4], Yamaguchi [5], and Triantafyllou
[6] found that the in-plane natural vibration properties of an inclined cable differ from those of a
horizontal cable in other respects. Yamaguchi and Ito [4] derived the basic equation of motion of
an inclined cable in the global coordinate system using an accurate hyperbolic function to
see front matter r 2004 Elsevier Ltd. All rights reserved.
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simulate its static profile, and on this basis discussed additional in-plane vibration properties of an
inclined cable. Triantafyllou [6] derived an asymptotic solution for a small-sag inclined cable and
demonstrated the same additional in-plane vibration properties. These additional properties are
that (i) there is no crossover of natural frequencies in the symmetric mode toward the natural
frequencies of the antisymmetric mode and (ii) the corresponding modes are neither symmetric
nor antisymmetric. Focusing on these phenomena, Triantafyllou and Grinfogel [7] also derived an
asymptotic equation for the in-plane natural frequencies and modal shapes of a taut inclined
cable.

This note presents a modification of the expressions for the in-plane natural frequencies of an
inclined cable as derived by Irvine [2,3]. Beginning with Irvine’s static profile for an inclined cable
and considering the influence of inclination angle on in-plane natural frequencies and modal
shapes, a simple and approximate modification of the Irvine’s equations is derived that can
demonstrate the additional in-plane vibration properties exhibited by an inclined cable. Here, the
equations of motion of an inclined cable in the local coordinate system are induced first. The
modified Irvine equations for in-plane natural frequencies and modal shapes of a small-sag
inclined cable are then derived. Further, solutions given by the modified Irvine equations are
compared with exact results obtained by a Galerkin method, and the applicable range of the new
equations is discussed in detail.
2. Equations of motion of an inclined cable

An inclined cable with a uniform cross-section and uniform weight per unit length hanging
between two points is considered, as shown in Fig. 1. In this note, the horizontal and vertical axes
(x,z) are treated as the global coordinate system, while the longitudinal and transverse coordinates
(x�; z�) are treated as the local coordinate system.
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Fig. 1. Geometry of an inclined cable.
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2.1. Static profile of an inclined cable

In the local coordinate system (x�; z�), the equilibrium of an inclined cable can be written as

d

ds
T

dx�

ds

� �
¼ �mg sin y; ð1Þ

d

ds
T

dz�

ds

� �
¼ �mg cos y; ð2Þ

where T is the initial tension, s is the coordinate along the cable, y is the inclination angle, m is the
mass per unit length of the cable and g is the gravitational acceleration.

From Eqs. (1) and (2), the following equations can be obtained:

d

ds
T

dx�

ds
cos y� T

dz�

ds
sin y

� �
¼ 0; ð3Þ

d

ds
T

dx�

ds
sin yþ T

dz�

ds
cos y

� �
¼ �mg: ð4Þ

Eq. (3) may be integrated directly to

H ¼ T
dx�

ds
cos y� T

dz�

ds
sin y ¼ Const:; ð5Þ

where H is the horizontal component of cable tension which is constant everywhere. Consequently
Eq. (4) may be derived

d

ds
T

dz þ dx tan y
ds

� �
¼ �mg; ð6Þ

where x ¼ x� cos y� z�siny and z ¼ z�= cos y:
Retaining only the first-order terms in dz=dx in Eq. (6) and solving the resulting differential

equation by the method of successive approximation, the static profile of an inclined cable is
obtained as

z ¼ 1
2
xð1 � xÞ 1 þ

�

6
ð1� 2xÞ

n o
þ Oð�2Þ; ð7Þ

where z ¼ �z=ð8b cos yÞ; �z ¼ z=L; �x ¼ x=L; b ¼ mgL=ð8H sec yÞ; � ¼ mgL=ðH sec yÞ sin y ¼ 8b sin y
and L is the span of the cable between two supports.

If x ¼ x� cos y� z� sin y and z ¼ z�= cos y are adopted, the static profile of an inclined cable in
the local coordinate system (x�; y�) is also found by ignoring square and cubic terms of � as

z
�
¼ 1

2
�x�ð1 � �x�Þ 1 �

�

3
ð1� 2 �x�Þ

n o
þ Oð�2Þ; ð8Þ

where z
�
¼ �z=ð8b cos yÞ; �z� ¼ z�=L and �x� ¼ x�=L:

Eqs. (7) and (8) are the same as the static profile derived by Irvine [2,3]. Irvine changed the
notation from � to �� in Eq. (8), while notation � is unchanged here.
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Moreover, according to Ref. [2], the ratio of cable sag ðd�
¼ mgL2 cos y=ð8HÞ in �x� ¼ 1

2
by

neglecting �) to cable length L is b cos y: Here b cos y is called the ratio of sag to span in the local
coordinate system (x�; z�).
2.2. Equations of in-plane motion for an inclined cable

In the local coordinate system (x�; z�), the displacement of a cable element under in-plane
vibrations is shown in Fig. 2. Equations of in-plane motion of an inclined cable are obtained from
Fig. 2 as

d

ds
ðT þ tÞ

dx�

ds
þ
qu�

qs

� �� �
¼ m

q2u�

qt2
� mg sin y� px� ðx�; tÞ; ð9Þ

d

ds
ðT þ tÞ

dz�

ds
þ

qw�

qs

� �� �
¼ m

q2w�

qt2
� mg cos y� pz� ðx

�; tÞ; ð10Þ

where t is the additional tension generated, w� is the transverse displacement in the z� direction, u�

is the longitudinal displacement in the x� direction, px�ðx�; tÞ and pz� ðx
�; tÞ are loads in the x� and

z� directions and t is time.
Removing the self-weight term using Eqs. (1) and (2), the equations of in-plane motion for an

inclined cable in the local coordinate system (x�; z�) are obtained as

d

ds
t
dx�

ds
þ ðT þ tÞ

qu�

qs

� �
¼ m

q2u�

qt2
� px�ðx�; tÞ; ð11Þ
dx*

dz*

T ds
dz*

T
dx*
ds

+
d
ds

( )∆∆sT ds
dz*

T ds
dz*

∆s +
d
ds

( )∆sT
dx*
ds T

dx*
ds

dx* +
u*

∆s 1

+
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∆s1dz*
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Fig. 2. Displacements of an element of the cable in the local coordinate system.
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d

ds
t
dz�

ds
þ ðT þ tÞ

qw�

qs

� �
¼ m

q2w�

qt2
� pz� ðx

�; tÞ: ð12Þ

Substituting u ¼ u� cos y� w� sin y; w ¼ u� sin yþ w� cos y; px ¼ px� cos y� py� sin y and py ¼

px� sin yþ py� cos y into Eqs. (11) and (12) yields

@

@s
t
dx

ds
þ T þ tð Þ

qu

qs

� �
¼ m

q2u

qt2
� pxðx; tÞ; ð13Þ

@

@s
t
dx tan yþ dz

ds
þ T þ tð Þ

qw

qs

� �
¼ m

q2w

qt2
� pyðx; tÞ; ð14Þ

where u and w are displacements in the x and z directions, and px and pz are loads in the x and z

directions, respectively.
Eqs. (13) and (14) represent the equations of motion of an inclined cable in the global

coordinate system (x, z), and they are the same as those derived by Yamaguchi and Ito [4]. This
confirms the correctness of the equations of motion in the local coordinate system (x�; z�).
2.3. Modified expressions for in-plane modal shapes and natural frequencies of a flat-sag inclined
cable

Using h� ¼ tdx�=ds and H� ¼ T dx�=ds ¼ H sec y=ð1� ðdz�=dx�Þ tan yÞ � H sec y; Eqs. (11)
and (12) can be rewritten as

d

ds
h� þ ðH� þ h�

Þ
qu�

qx�

� �
¼ m

q2u�

qt2
� px� ðx�; tÞ; ð15Þ

d

ds
h� dz�

dx�
þ ðH� þ h�

Þ
qw�

qx�

� �
¼ m

q2w�

qt2
� pz� ðx

�; tÞ: ð16Þ

If only a flat-sag cable is considered, the longitudinal component of the equation of motion may
be considered unimportant and can be dropped. Furthermore, ds � dx� is assumed and h� is the
same everywhere. Eq. (16) can then be reduced to

h� d2z�

dx�2
þ H� þ h�

ð Þ
q2w�

qx�2
¼ m

q2w�

qt2
� pz� ðx

�; tÞ; ð17Þ

where h� is the additional horizontal component of tension and is a function of time alone [3].
From Fig. 2, the additional tension generated t is given by

t ¼ EA
dz�

ds

qw�

qs
þ

dx�

ds

qu�

qs
þ

1

2

qw�

qs

� �2

þ
1

2

qu�

qs

� �2
( )

; ð18Þ

where E is Young’s modulus and A is the cross-sectional area.
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Considering the first-order terms of Eq. (18) and adopting h� ¼ tdx�=ds; the additional
transverse tension h� is obtained as

h�
¼ EA

dx�

ds

� �3 qu�

qx�
þ

dz�

dx�

qw�

qx�

� �
ð19Þ

which we integrate into the form

h�
¼

EA

Le

Z L

0

d2z�

dx�2
w� dx�; ð20Þ

where Le ¼
R L

0 ðds=dx�Þ
3dx� is the length of the cable.

Eq. (17) may be simplified as follows by considering the linear terms and neglecting load pz� :

h�
d2z�

dx�2
þ H� q

2w�

qx�2
¼ m

q2w�

qt2
: ð21Þ

Eqs. (20) and (21) constitute a linear homogeneous system in w�: With these two equations the
fundamental features of linear theory of free vibrations may be explored.

By making Eqs. (20) and (21) non-dimensional, the following equations of in-plane motion are
obtained as

�h
� d2z

�

d �x�2
þ

q2w
�

q �x�2
¼ p2 q

2w
�

qt2
; ð22Þ

�h
�
¼

1

l2

Z L

0

d2z
�

d �x�2
w
�

dx� ð23Þ

where w
�
¼ �w�=ð8b cos yÞ ð �w� ¼ w�=LÞ is the non-dimensional displacement in the z* direction,

�x� ¼ x�=L is the non-dimensional coordinate in the x* direction, D �H ¼ DH=ðH sec yÞ; t ¼ o0t is

the non-dimensional time, o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H sec y=mðp=LÞ2

q
is the first natural circular frequency of the

inclined taut string, l2
¼ k2

ð8b cos yÞ2=Le is Irvine parameter [2,3], k2
¼ EA=ðH sec yÞ is the ratio

of the elongation stiffness to horizontal component of tension [4] and Le ¼ 1þ 8b cos yð Þ
2=8 [2,3].

Using Eq. (8) and w ¼ ~wð �x�Þeiot; Eq. (22) becomes

q2 ~w�

q �x�2 þ p2o2 ~w� ¼ �h
�
1� �þ 2� �x�ð Þ: ð24Þ

A solution to Eq. (24) that satisfies zero boundary conditions at two supports is

w
�
¼

�h
�

p2o2
ð1� �þ 2� �x�Þ � tan

po
2

þ
�

tanðpo=2Þ

� �
sinpo �x� � ð1 � �Þ cospo �x�

� �
: ð25Þ

Eq. (25) is now used to eliminate �h
�
and obtain the following transcendental equation:

4

l2

po
2


 �3

¼ 1 þ
�2

3

� �
po
2

� tan
po
2

þ
�2

tan po=2
�

2�2

po
: ð26Þ

Eqs. (25) and (26) are the modified Irvine equations for the in-plane modal shapes and natural
frequencies of an inclined cable.
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2.4. Comparisons with Irvine equation

Irvine thought that parameter � could be ignored despite having derived the static profile of an
inclined cable in consideration of � [2,3]. Taking this approach, Eqs. (25) and (26) become

w
�
¼

�h
�

p2o2
1 � tan

po
2

sinpo �x� � cos po �x�
n o

; ð27Þ

4

l2

po
2


 �3

¼
po
2

� tan
po
2

: ð28Þ

Comparing these Irvine equations with the modified Irvine equations derived here, the differences
are that modal shapes are influenced by parameter � and natural frequencies are influenced by �2.

The greatness of Irvine’s work is to offer a simple and accurate equation for the in-plane
natural frequencies and modal shapes of a horizontal cable based on very few assumptions. So
these modified Irvine equations are based on the same assumptions as for a horizontal cable.
Moreover, the introduction of an inclination angle results in equations including the parameter �
besides the Irvine parameter l2:

Irvine used the single parameter l2 to calculate in-plane natural frequencies and modal shapes
for a horizontal cable [1,3]. Triantafyllou and Grinfogel adopted two parameters l2 and � in
considering the in-plane vibration properties of an inclined cable [6,7]. From the definitions
l2

¼ k2
ð8b cos yÞ2=ð1 þ ð8b cos yÞ2=8Þ and � ¼ 8b sin y; parameters l2 and � are seen to be related

to three parameters: b; k2 and y: That is, the natural frequencies of an inclined cable actually
depend on these three parameters, as pointed out by Henghold et al. [8]. In this note, in order to
compare the results obtained by a Galerkin method, the following discussion is based on the three
parameters b cos y; k2 and y:

3. Numerical results

3.1. In-plane free vibration analysis by a Galerkin method

In order to check the accuracy of the modified Irvine equations, a Galerkin method [4,5] is
applied to Eqs. (11) and (12) by assuming

�u� ¼
X1
i¼1

Pi
x�ðtÞ sin

ip�s
�st

; �w� ¼
X1
i¼1

Pi
y� ðtÞ sin

ip�s
�st

; ð29Þ

where Pi
x�ðtÞ and Pi

z� ðtÞ are unknown functions of time, �st ¼ st=L is the non-dimensional length of
the cable and �s ¼ s=L:

Non-dimensional Eqs. (11) and (12) (here we neglect the loads) become

€P
i

x� ðtÞ þ
1

p2

X1
i¼1

2ijp2

�s3t
k2I�2 þ I�1
� �

Pi
x� ðtÞ þ k2I�3Pi

y� ðtÞ
n o

¼ 0; ð30Þ

€P
i

y� ðtÞ þ
1

p2

X1
i¼1

2ijp2

�s3t
k2I�4 þ I�1
� �

Pi
y� ðtÞ þ k2I�3 	 Pi

x� ðtÞ
n o

¼ 0; ð31Þ
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where

I�1 ¼

Z �st

0

cos y
ðdx�=d�s�Þ cos y� ðdz�=ds�Þ sin y

cos
ip�s
�st

cos
jp�s
�st

ds;

I�2 ¼

Z �st

0

d �x�

d�s

� �2

cos
ip�s
�st

cos
jp�s
�st

ds;

I�3 ¼

Z �st

0

d �x�

d�s
	
d�z

d�s
cos

ip�s
�st

cos
jp�s
�st

d�s;

I�4 ¼

Z �st

0

d�z�

d�s

� �2

cos
ip�s
�st

cos
jp�s
�st

d�s:

The static profile of an inclined cable is assumed to be a hyperbolic curve described by

�z ¼
�1

8b
cosh �8b �x þ c1ð Þ � �x tan yþ

1

8b
cosh c1; ð32Þ

where

c1 ¼ arcsinh
�4b tan y
sinhð�4bÞ

� �
þ 4b

The eigenvalue problem can be derived from the linearized governing equations of motion given
by Eqs. (30) and (31), which can be discretized into a finite degree-of-freedom system by the
generalized coordinate method. The in-plane natural frequencies and modal shapes of an inclined
cable can be obtained numerically without any limitations as to the cable’s static profile by solving
the eigenvalue problem.
3.2. In-plane natural frequencies and modal shapes of an inclined cable

The parameter b cos y is set in the range from 0.001 to 0.125 and k2 is 900. Figs. 3–6 show the
non-dimensional in-plane natural frequencies of both horizontal cables and inclined cables with
the inclination angle y:
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Fig. 3. In-plane natural frequencies of horizontal cables (k2=900, y=01).
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Fig. 4. In-plane natural frequencies of inclined cables (k2=900, y=301).
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Fig. 5. In-plane natural frequencies of inclined cables (k2=900, y=451).
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Fig. 6. In-plane natural frequencies of inclined cables (k2=900, y=601).
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For horizontal cables (inclination angle y=01 see Fig. 3), in-plane natural frequencies
calculated using the modified Irvine equation and the original Irvine equation coincide well with
the exact results obtained using the Galerkin method. This figure confirms that crossover of the



ARTICLE IN PRESS

Table 1

In-plane natural frequencies of cables (b cos y=0.015, l2=12.94, k2=900)

y 1st 2nd 3rd 4th 5th e

Irvine equation 1.43 2.00 3.02 4.00 5.00

01 Modified Irvine equation 1.43 2.00 3.02 4.00 5.00
0Galerkin method 1.43 2.00 3.02 4.00 5.00

301 Modified Irvine equation 1.43 2.00 3.02 4.00 5.00
0.07Galerkin method 1.43 2.00 3.02 4.00 5.00

451 Modified Irvine equation 1.43 2.00 3.02 4.00 5.00
0.12Galerkin method 1.43 2.00 3.02 4.00 5.00

601 Modified Irvine equation 1.43 2.00 3.02 4.00 5.00
0.21Galerkin method 1.43 2.00 3.02 4.00 5.00

Table 2

In-plane natural frequencies of cables (b cos y=0.026, l2=39.48, k2=900)

y 1st 2nd 3rd 4th 5th e

Irvine equation 1.99 2.00 3.09 4.00 5.01

01 Modified Irvine equation 1.99 2.00 3.09 4.00 5.01
0Galerkin method 1.99 1.99 3.09 3.99 5.01

301 Modified Irvine equation 1.95 2.04 3.09 4.00 5.02
0.12Galerkin method 1.95 2.03 3.09 3.99 5.01

451 Modified Irvine equation 1.92 2.07 3.09 4.00 5.02
0.21Galerkin method 1.93 2.06 3.09 4.00 5.01

601 Modified Irvine equation 1.87 2.13 3.09 4.00 5.02
0.36Galerkin method 1.88 2.11 3.10 4.00 5.02

Table 3

In-plane natural frequencies of cables (b cos y=0.040, l2=91.00, k2=900)

y 1st 2nd 3rd 4th 5th e

Irvine equation 2.00 2.55 3.40 4.00 5.05

01 Modified Irvine equation 2.00 2.55 3.40 4.00 5.05
0Galerkin method 1.98 2.55 3.39 3.99 5.03

301 Modified Irvine equation 1.99 2.56 3.41 4.00 5.05
0.19Galerkin method 1.98 2.56 3.40 3.99 5.03

451 Modified Irvine equation 1.97 2.58 3.41 4.01 5.05
0.32Galerkin method 1.96 2.57 3.42 4.00 5.04

601 Modified Irvine equation 1.91 2.64 3.43 4.04 5.05
0.55Galerkin method 1.92 2.60 3.48 4.03 5.06

Q. Wu et al. / Journal of Sound and Vibration 279 (2005) 1155–11691164
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Fig. 7. In-plane natural modal shapes of cables (b cos y ¼ 0:015; k2=900).
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in-plane natural frequency of the symmetric mode occurs toward the natural frequency of the
antisymmetric mode in the case of horizontal cables.

For inclined cables (inclination angle y=301, 451, and 601; see Figs. 4–6), in-plane natural
frequencies given by the modified equations coincide well with those by the Galerkin method, and
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Fig. 8. In-plane natural modal shapes of cables (b cos y=0.026, k2=900).
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the additional properties of inclined cables are properly described. In contrast, the
in-plane vibration properties of the inclined cables as given by the Irvine equation are the
same as those of a horizontal cable. This discrepancy is the reason for the investigations
of inclined cables by Yamaguchi and Ito [4] and Triantafyllou [6]. By taking �2 into account in the
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Fig. 9. In-plane natural modal shapes of cables (b cos y=0.040, k2=900).
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equation for the in-plane natural frequencies of an inclined cable (see Eq. (26)), it is possible to
capture the additional properties of an inclined cable such that crossover of in-plane natural
frequency of the symmetric mode never occurs toward the natural frequency of the antisymmetric
mode.
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Tables 1–3 show the in-plane natural frequencies of various cables, while Figs. 7–9 give the first
two modal shapes of the same cables. The transverse components w� given by the Galerkin
method are also shown in these figures. Checking the results against the exact values obtained by
the Galerkin method demonstrates that the in-plane natural frequencies and modal shapes
coincide well.

The obtained modal shapes confirm that, by taking the parameter � into account in the equation
for the modal shape of an inclined cable (see Eq. (25)), an additional property of inclined cables
can be properly captured; that is, the fact that the modes are neither symmetric nor antisymmetric
when the cable has an inclination angle [6].

These results demonstrate that modified Irvine equations for an inclined cable, in which �2

is taken into account in calculating in-plane natural frequency and � in calculating modal
shape, offer a simple yet accurate means of expressing the properties of a cable with an
inclination.

The limitations of these modified Irvine equations are b cos yo1
8
and �o1: The broken lines in

Figs 4–6 indicate � ¼0.3, 0.5, 0.7 and 1.0 (the upper limit). The accuracy of the modified equations
is satisfactory even if the parameter � is not very small.
4. Concluding remarks

Two main conclusions may be drawn from this investigation, as follows:
(1)
 Equations for the in-plane motion of an inclined cable in the local coordinate system have
been derived and their correctness verified through comparison with equations by Yamaguchi
and Ito using the coordinate change method.
(2)
 These modified Irvine equations, which take into account �2 (� ¼ 8b cos y) in in-plane natural
frequency and � in modal shape, were derived for the in-plane natural frequencies and modal
shapes of an inclined cable with small sag based on Irvine’s assumptions. The formulae not
only correctly express the additional properties of an inclined cable, but can also be used to
calculate in-plane natural frequencies and modal shapes correctly. Consequently, these simple,
approximate formulae may prove useful in the design of cable structures.
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