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Abstract

The Kramers–Kronig (K–K) dispersion relations developed for the complex modulus of elasticity of
solid viscoelastic materials connect the frequency dependences of the dynamic modulus and loss modulus.
Whether the boundedness of the complex modulus at high (‘‘infinite’’) frequency is required, or not, for the
applicability of the K–K relations is investigated in this paper. The derivation of the K–K relations
developed for the complex modulus is presented by examining the physical background of the relations. It
is shown that the K–K relations can be applied even if the complex modulus is unbounded at high
frequencies. The fractional derivative Kelvin model is used to demonstrate the application of the K–K
relations for a class of unbounded complex modulus.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The Kramers–Kronig (K–K) relations are named after the two authors who developed
equations during the early part of the last century in the electromagnetic theory to connect the real
and imaginary parts of the complex refraction index [1] and those of the complex susceptibility [2].
It has since been recognized that the K–K relations, also known as dispersion relations, are of
general nature, because they rely on the causality, i.e., that no response can occur before the
excitation. The causality is the feature of real physical systems and, therefore, the dispersion
relations can be applied in different fields, such as optics, electrodynamics, electrical circuit
theory, acoustics, etc., to link the real and imaginary parts of the relevant frequency response
function under certain conditions [3].
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The complex modulus of elasticity is widely used to characterize the linear dynamic elastic and
damping properties of viscoelastic solid materials in the frequency domain. It is known that the
complex modulus can formally be considered as a frequency response function of the material,
which is evidently causal. It follows that the K–K relations can be applied to the complex modulus
or its inverse, the complex compliance–frequency function [4–9]. The K–K relations are a pair of
integral equations, which enable the imaginary part of the complex modulus to be calculated from
the frequency dependence of the real part if the latter is known for all frequencies, and vice versa.
Several forms of the dispersion relations have been developed, and some equations contain the
limit value of complex modulus at high (‘‘infinite’’) frequency as a result of the assumption that
the complex modulus is a bounded function of frequency [5,7,8]. This assumption is closely related
to the belief that the complex modulus of viscoelastic materials, especially the polymeric ones,
approaches a finite limit at high frequencies and which is referred to as the glassy modulus. In
contradiction to this, a number of experiments made on polymeric damping materials at very high
frequencies, up to around 1012 Hz; do not support this belief, but suggest that the complex
modulus may be an unbounded function of frequency [10–14]. In addition, the new fractional
derivative models enable the prediction of unbounded high-frequency behaviour of the complex
modulus [15–19]. Therefore, the question arises: can the K–K relations be applied or not, if the
complex modulus–frequency function is unbounded? The aim of the paper is to answer this
question.
The paper consists of three parts. In the first part the general definition of the complex modulus

is given and experimental data on the high-frequency behaviour of polymeric materials are
discussed and shown. In the second part, the derivation of the K–K relations for the complex
modulus is reviewed and it is shown that the bounded high-frequency behaviour is not required
for the derivation. In the third part, the application of the K–K relations is demonstrated for a
class of unbounded complex modulus through the fractional derivative Kelvin model.

2. The complex modulus of viscoelastic materials

The complex modulus concept has been developed to characterize the linear dynamic properties
of solid materials in the frequency range. The complex modulus of elasticity is usually defined for
harmonic vibration as the ratio of the complex amplitude of stress to that of strain. Nevertheless,
a more general definition of the complex modulus for arbitrary time history is needed to link the
frequency domain with the time domain, where the causal behaviour is specified. This general
definition can be given by means of the Fourier transform [8,9], and is written here for the shear
modulus G by

*GðjoÞ ¼
*sðjoÞ
*eðjoÞ

; ð1Þ

where j ¼
ffiffiffiffiffiffiffi
�1

p
is the imaginary unit, o ¼ 2pf ; f is the frequency in Hz, and *sðjoÞ and *eðjoÞ are

the Fourier transforms F of the stress and strain-time functions, respectively, defined as

*sðjoÞ ¼ FsðtÞ ¼
1

2p

Z
N

�N

sðtÞe�jot dt; ð2Þ
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where t is the time. Eq. (1) is general from another point of view as it can be related to any
modulus of elasticity (Young’s, bulk, etc.) regardless of the fact that the material is either isotropic
or anisotropic. It is easy to show that for harmonic vibration Eq. (1) reduces to the ratio of the
complex amplitudes of the stress and strain. The components of the complex modulus are used to
characterize the dynamic elastic and damping properties of the material:

*GðjoÞ ¼ GdðoÞ þ jGlðoÞ ¼ GdðoÞ½1þ j ZðoÞ�; ð3Þ

where Gd is the dynamic modulus of elasticity, Gl is the loss modulus and Z is the loss
factor, where

ZðoÞ ¼
GlðoÞ
GdðoÞ

: ð4Þ

The complex modulus describes the dynamic behaviour of the solid material in the frequency
domain. The complete characterization of dynamic behaviour requires knowledge of the variation
of complex modulus, in principle, for all frequencies; that is, from 0 Hz up to physically
meaningful high frequencies. Much effort has been made to determine experimentally the
frequency dependences of complex modulus of viscoelastic materials (especially the polymers),
over as wide a frequency range as possible. All experimental data show that the dynamic modulus
increases with increasing frequency, and the loss modulus and loss factor pass through at least one
peak [20–22]. These experimental observations are in good agreement with the theoretical
predictions [8,23]. However, the dynamic behaviour of polymeric materials at high frequencies,
well away the loss peak, is not so clear. According to a widely accepted belief, the dynamic
modulus approaches a finite limit, referred to as the glassy modulus, while the loss modulus and
loss factor approach zero at high frequencies. In contrast, the experimental data on a number of
polymeric materials concerning very high frequencies, up to around 1012 Hz; do not support this
belief [10–14]. These data reveal that the dynamic modulus increases monotonically even at very
high frequencies, although the increase can be very weak, and the loss modulus may exhibit
the same frequency increase above its peak [10,11]. Accordingly, the loss factor appears to
approach a finite limit instead of zero in the high-frequency region [10–14]. Fig. 1 illustrates the
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Fig. 1. The frequency variations of dynamic shear properties experienced for a polyurethane damping material [14].

(Some overlapping experimental data have been omitted for the sake of clarity.)
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high-frequency behaviour of dynamic shear modulus and loss factor experienced for a
polyurethane damping material [14]. It is clear that approximating this behaviour for ‘‘infinite’’
frequency leads to the conclusion that the complex modulus of polymeric materials may, in
principle, be an unbounded function of frequency.

3. K–K relations for the complex modulus

Eq. (1) suggests that the complex modulus of elasticity can formally be considered as a
frequency response function of the material modelled by a linear, causal system: e.g., if *eðjoÞ is the
excitation, then *sðjoÞ is the response and vice versa. It is known that the frequency dependences of
the real and imaginary parts of a real, and therefore causal system, under certain conditions, are
interrelated through the K–K relations [3]. It follows that the K–K relations can also be applied to
the complex modulus–frequency function.
The K–K relations for the complex modulus can be derived by different methods [7,8,23]. One

of the methods applies the Cauchy’s integral formula to *GðjoÞ [7,8] and uses the theorems of
complex functions, and, therefore, the physical background of the derived relations remains
somehow hidden. In this paper another method of the derivation is reviewed with the intention to
examine the physical background of the K–K relations developed for the complex modulus. The
basic idea of this derivation is to show that the relation between the real and imaginary parts of
the complex modulus–frequency function is the result of the causality, but the fulfilment of some
other conditions defined in the time domain are also required to derive the relations.
Consequently, the derivation starts with the specification of material behaviour in the time
domain to a proper excitation. Any time function, in principle, could be chosen for the excitation,
but for the sake of clear physical interpretation a step function is reasonable to use. In addition,
the strain step function of e0 magnitude is chosen: namely,

eðtÞ ¼ e01ðtÞ; ð5Þ

because then the stress response is the relaxation function, which is well known from both
theoretical and experimental studies [20,23]. The relaxation function srðtÞ of a real solid material
must have the following properties:

(a) srðtÞ is a real, monotonically decreasing function of time [23],
(b) srðtÞ is causal: i.e., srðtÞ ¼ 0 if to0; and
(c) srðtÞ approaches a finite limit s0 for long durations: s0 ¼ G0e0; where G0 is the static modulus

of elasticity also known as equilibrium modulus.

It is important to note that no restriction has been placed on the initial value srð0þÞ of the
relaxation function. It is usual in the theory of viscoelasticity to assume that srð0þÞ is finite,
although, it is not clear from physical point of view why should it be so. Therefore, at this stage,
this question is left open. Fig. 2 illustrates the strain step excitation and the relaxation function for
both finite and infinite initial values.
The transformation of the relaxation function of the aforementioned properties into the time

domain leads to the K–K relations. As a first step in the derivation, the relation between the
complex modulus and the relaxation function is developed. The replacement of the Fourier
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transform of the strain step function into Eq. (1) results in

*GðjoÞ ¼ jo
Z

N

�N

gðtÞe�jot dt; ð6Þ

where gðtÞ is the relaxation modulus defined as

gðtÞ ¼
srðtÞ
e0

: ð7Þ

A similar procedure (applying the inverse Fourier transform to *srðjoÞ expressed from Eq. (1))
yields

gðtÞ ¼
G0

2
þ

1

2p

Z
N

�N

*GðjoÞ
jo

ejot do; ð8Þ

where G0 ¼ *Gð0Þ: It is clear that *Gð0Þ ¼ Gdð0Þ; since Glð0Þ ¼ 0 (no motion, no energy loss). The
separation of the right hand side of Eq. (8) into real and imaginary parts gives

gðtÞ ¼
G0

2
þ

1

2p

Z
N

�N

Gd ðoÞ
o

sinot þ
GlðoÞ
o

cosot

� �
do

� j
1

2p

Z
N

�N

GdðoÞ
o

cosot �
GlðoÞ
o

sinot

� �
do: ð9Þ

Using the above equations, the frequency domain consequences of the properties of the relaxation
function can be determined. The first property considered is that gðtÞ is a real, monotonically
decreasing function, which results in the convergence of Eq. (6). Then, Eq. (6) can be divided into
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(b)

Fig. 2. The strain step excitation (a) and the stress response (b) of a viscoelastic material assuming finite (—) and

infinite (- - -) initial values.
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its real and imaginary parts as

GdðoÞ ¼ o
Z

N

�N

gðtÞ sinot dt; ð10Þ

GlðoÞ ¼ o
Z

N

�N

gðtÞ cosot dt: ð11Þ

From these equations it can be seen that

GdðoÞ ¼ Gdð�oÞ ð12aÞ

and

GlðoÞ ¼ �Glð�oÞ: ð12bÞ

Using Eqs. (12a) and (12b), the relaxation modulus defined by Eq. (9) can be written as

gðtÞ ¼
G0

2
þ

1

p

Z
N

0

GdðoÞ
o

sinot doþ
1

p

Z
N

0

GlðoÞ
o

cosot do: ð13Þ

The next property considered is the causality: that is gðtÞ ¼ 0 if to0: The application of this
property in Eq. (13) leads to two equations namely,

gðtÞ ¼
2

p

Z
N

0

Gd ðoÞ
o

sinot do ð14Þ

and

gðtÞ ¼
2

p

Z
N

0

GlðoÞ
o

cosot doþ G0: ð15Þ

It follows that the relaxation function can be determined from knowledge of either the dynamic
modulus or the loss modulus–frequency function. Consequently, GdðoÞ and GlðoÞ are not
independent of, but determine, each other. The interrelation between GdðoÞ and GlðoÞ can be
derived by inserting Eqs. (14) and (15) into Eqs. (11) and (10), respectively. The insertions, and
some mathematical manipulations yield

Gd ðoÞ ¼
2o2

p
PV

Z
N

0

GlðuÞ=u

o2 � u2
du þ G0; ð16Þ

GlðoÞ ¼ �
2o
p

PV

Z
N

0

GdðuÞ
o2 � u2

du; ð17Þ

where the integration variable u has been introduced and PV stands for the principal values of the
integrals. Eqs. (16) and (17) are the K–K, or dispersion relations developed for the complex
modulus of elasticity of the solid material.
At this stage, it is instructive to summarize the conditions used to derive the K–K relations. The

first condition used implicitly is the linearity, since all equations quoted above rely on the
assumption that the relation between the stress and strain is linear. The second condition is
the convergence of Eqs. (10) and (11), and the third condition is the causality. It is emphasized that
the convergence of Eqs. (10) and (11), besides the linearity and causality, is absolutely necessary in
order to derive the K–K relations. It is clear that these integrals are convergent for monotonically
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decreasing relaxation functions characterizing the real solid material [23]. Nevertheless, it is
important to recognize that Eqs. (10) and (11) can be convergent even if the relaxation function is
unbounded, i.e., has singularity at zero time. For example, if the relaxation obeys a simple power
function of

gðtÞpt�n; ð18Þ

which is singular at t ¼ 0þ; then Eqs. (10) and (11) can be convergent, since

Z
N

0

t�n sinot dt ¼
pon�1

2GðnÞsinðnp=2Þ
; ð19Þ

Z
N

0

t�n cosot dt ¼
pon�1

2GðnÞcosðnp=2Þ
; ð20Þ

where t > 0; 0ono1 and G is the gamma function. Therefore, it can be concluded that the K–K
relations for the complex modulus can be derived even if the relaxation function is singular at
t ¼ 0þ: The fact that the relaxation function may be singular has a far-reaching consequence on
the possible high-frequency behaviour of the complex modulus, because

gð0þÞ ¼ lim *GðjoÞ
o-N

: ð21Þ

This relation can be proved by the rules of Fourier transform. It follows from the foregoing that
the boundedness of the complex modulus is not required to derive the K–K relations.
Consequently, the K–K relations may be valid even if the complex modulus is unbounded at high
frequencies. It is clear, however that the unboundedness of complex modulus cannot be arbitrary,
since the integral of Eqs. (16) and (17) does not exist for any unbounded function. Similarly, the
singularity of the relaxation function cannot be arbitrary for the existence of the integral of
Eqs. (10) and (11). The development of restrictions on the unboundedness of complex modulus is
not subject of this work, but it is important to note that the K–K integrals exist for the unbounded
complex modulus characterizing the high-frequency behaviour of real materials. Namely, it is
known from experiments [10,11] that both the dynamic modulus and the loss modulus of some
polymeric damping materials, at high frequencies, exhibit a weak increase, which obey a power
law of form oa; where a is small (usually 0oao0:1 [19]). It is clear that the integrals of the K–K
relations exist for this type of high-frequency behaviour.
For the sake of completeness, it is further noted that the unbounded complex modulus raises

the problem of the singular relaxation function. Some authors consider this as a disputable
question; however, the singular relaxation function appears frequently in the relevant literature,
especially in the modern theory of viscoelastic models [15–17]. The singular relaxation function is
often refuted by the plausible explanation that the infinite stress in a real material is unacceptable.
In contrast to this, a clear physical explanation can be attributed to the singularity of the
relaxation function within continuum theory. Namely, the singularity indicates that infinite force
would be required to get a perfect strain jump at zero time; consequently such an experiment, in
the practice, is impossible to perform with the relevant materials.
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4. Demonstration by the fractional Kelvin model

The fractional derivative Kelvin model is the generalization of the well-known Kelvin model
consisting of an ideal elastic spring and a viscous dashpot connected in parallel. The fractional
derivative Kelvin model, referred to as fractional Kelvin model, has been developed and used
successfully to fit experimental data on some solid materials [24], especially damping polymers in
the rubbery range [25–28]. It is known that the model is linear and causal [25], and moreover it can
be related to the molecular theory of some polymeric materials [26]. Nevertheless, the relaxation
function of the fractional Kelvin model is singular at t ¼ 0þ and, thus, the relevant complex
modulus is unbounded at ‘‘infinite’’ frequency. It will be shown in this part that the model satisfies
the K–K relations.
The constitutive equation for the fractional Kelvin model is [24]:

sðtÞ ¼ G0eðtÞ þ G0tac
da

dta
eðtÞ; ð22Þ

where tc is the creep time, and 0oao1: The ath order derivation of eðtÞ is defined as [26]

da

dta
eðtÞ ¼

1

Gð1� aÞ
d

dt

Z t

0

eðtÞ
ðt � tÞa

dt; ð23Þ

in which t is a dummy variable. The solution of Eq. (22) for a strain step excitation of e0
magnitude yields the model relaxation function [24]:

srðtÞ ¼ G0e0 1þ
ðt=tcÞ

�a

Gð1� aÞ

� �
: ð24Þ

It is clear that srðtÞ is singular at t ¼ 0þ as illustrated in Fig. 3 for a ¼ 0:5:
The complex modulus for the model is easy to derive bearing in mind that [26]

F
da

dta
eðtÞ ¼ ðjoÞa*eðtÞ: ð25Þ
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The model complex modulus is

*GðjoÞ ¼ G0½1þ ðjotcÞ
a�; ð26Þ

where

ðjoÞa ¼ cosðap=2Þoa þ j sinðap=2Þoa ð27Þ

and so

GdðoÞ ¼ G0I1þ cosðap=2Þoa
nm; ð28Þ

GlðoÞ ¼ G0 sinðap=2Þoa
n; ð29Þ

ZðoÞ ¼
sinðap=2Þoa

n

1þ cosðap=2Þoa
n

; ð30Þ

where on ¼ otc is the normalized frequency. The frequency variations of the components of *GðjoÞ
are shown in Fig. 4 for a ¼ 0:5 as an example.
It can be seen that *GðjoÞ is unbounded if o-N in accordance with the behaviour of the

relaxation function at t ¼ 0þ: Nevertheless, the fractional Kelvin model obeys the K–K relations,
which can be proved by two methods. One method is that the relaxation function is calculated by
Eqs. (14) and (15) from GdðoÞ and GlðoÞ; respectively, developed for the model. It is a simple
exercise to show that the calculation of both integrals results in one and the same relaxation
function defined by Eq. (24). The other, direct method is to calculate Eqs. (16) and (17) with the
dynamic modulus and loss modulus of the model. The analytic calculation is easy to perform, if
a ¼ 0:5; and then the evaluation of Eqs. (16) and (17) proves that the fractional Kelvin model
obeys the K–K relations. These calculations demonstrate that the K–K relations can be applied
even if the complex modulus is unbounded at high frequencies.
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Fig. 4. The frequency variations of the dynamic modulus, loss modulus and loss factor predicted by the fractional

Kelvin model.
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5. Closing remarks

The role of the high-frequency behaviour of the complex modulus of viscoelastic materials
when exploring the validity of the K–K relations is important from the point of view of
completeness of the dispersion theory. Nevertheless, it has to be kept in mind that this theory has
serious limitations with respect to the physical reality. Apart from the fact that the ‘‘infinite’’
frequency does not exist, the limitation is primarily due to the assumption used throughout the
theory that the solid material is considered as a continuum. It is clear that this assumption does
not hold true above a certain frequency when the wavelength is comparable with the interatomic
distance ðB10�10 mÞ: This frequency limit is at around 1012 Hz in case of a homogeneous solid
material provided that the phase velocity is about 103 m=s: At higher frequencies, neither the
stress field, nor the strain field can be interpreted and, therefore, the complex modulus has no
physical meaning. Similarly, the relaxation function has no physical meaning for very short
durations, which are smaller than about 10�12 s according to the time–frequency equivalency
principle. Consequently, the initial value of the relaxation function defined as the response to an
ideal strain step function cannot physically be interpreted.

6. Conclusions

Whether the boundedness of the complex modulus at high (‘‘infinite’’) frequency is required, or
not, for the applicability of the K–K relations has been investigated in this paper. The derivation of
the K–K relations developed for the complex modulus has been reviewed by examining the physical
background of the relations and the conditions of the derivation. It has been shown that, besides the
linearity and causality, the convergence of Eqs. (10) and (11) is required to derive the K–K relations
for the complex modulus. In addition, it has been shown that these integrals can be convergent even
if the relaxation function is unbounded, i.e., has singularity at t ¼ 0þ: From this fact it has been
concluded that the K–K relations can be applied even if the complex modulus of a viscoelastic
material is unbounded at high frequencies. The fractional derivative Kelvin model has been used to
demonstrate the application of the K–K relations for a class of unbounded complex modulus.
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