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Abstract

The purpose of this paper is to present the results of a comparative study of various formulations of a
frequency-domain least-squares (LS) estimator. This study was the basis for the optimization of the LS
algorithm for modal parameter estimation. Nowadays, modal analysis studies the dynamical behaviour of
very complex structures, which requires both robustness for high model orders and efficient numerical
properties to analyse extensive data sets that are obtained during high channel-count modal testing. This
paper focuses on the optimal choice between various transfer function models and a weighted formulation
of the LS problem by taking also a measure for the noise on the data into account. The evaluation is based
on a practical case study, discussing the dynamical modelling of slat tracks of an Airbus A320 commercial
aircraft. This safety critical component is characterized by a complex modal behaviour requiring both high
model orders and a high spatial resolution in order to achieve an accurate model.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The identification of multivariable transfer function models is applied in numerous applications
that require accurate models that describe high order systems in the frequency domain. Structural
dynamics is one of the application fields that requires the use of complex models, where the
technique of modal analysis is often used for this purpose. In general, the amount of data that is
acquired during a modal test is large given the high number of responses, typically 1000 degrees of
freedom (d.o.f.) and a high spectral resolution. This is certainly the case for high-channel count
systems that use a multi-patch accelerometer setup for testing large structures such as car bodies,
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aircrafts or space structures. The same holds for optical measurement techniques, such as
a scanning laser vibrometer setup, that are often used to test lightweight plate-like structures
(e.g., floor and side panels of cars and aircrafts). Therefore, it is important to pay attention to the
numerical efficiency of the methods that are used to estimate the modal parameters from the data.
More specifically, this means that computation time and memory usage as well as numerical
conditioning are important aspects with respect to the applicability and accuracy of the analysis
method.

Moreover, because the level of excitation is not uniformly distributed over all d.o.f. when
testing large structures, or the reflectiveness of the structure is not uniform when using optical
techniques, the quality of the measured frequency response functions varies. By taking these
effects into account by means of a measure for the noise on the data, the presented least-square
(LS) approach makes it possible to improve the accuracy of the estimated model by giving the bad
quality measurements a lower weight during the estimation process.

However, the main goal of this paper is to present and compare several possible
parameterizations for a LS frequency-domain multivariable transfer function model identifica-
tion. Both the accuracy and numerical efficiency are studied for the LS problem formulation
based on the so-called normal matrix formulation. The algorithms are evaluated for a practical
case discussing the dynamical modelling of slat tracks of an Airbus A320 commercial aircraft.

2. Parametric model

Given the global character of the poles of a mechanical system, a scalar matrix-fraction
description [1]—better known as a common-denominator model (CDM)—will be used for the
development of the frequency-domain estimators. The measured frequency response function
(FRF) at DFT frequency f ð f ¼ 1;y;Nf the number of spectral lines), between output o ðo ¼
1;y;No the number of outputs) and input i ði ¼ 1;y;Ni the number of inputs), is then modelled
as

#HkðOf ; yÞ ¼
BkðOf ; yÞ
AðOf ; yÞ

ð1Þ

for k ¼ 1;y;NoNi: BkðOf ; yÞ ¼
Pn

j¼0 bkjO
j

f is the numerator polynomial between the output/
input d.o.f. combination k and AðOf ; yÞ ¼

Pn
j¼0 ajO

j
f is the common-denominator polynomial.

The coefficients aj and bkj are the unknown parameters h to be estimated. In general, the order of
the denominator polynomial and numerator polynomials can differ. In the case that real-valued
coefficients are used, the model order has to be doubled in order to estimate a model with Nm

modes, while for complex coefficients, the model order n equals the number of identifiable modes
Nm: Although most modal parameter estimators in literature are formulated using real-valued
coefficients, complex coefficients can be preferable as discussed in Section 5.1.

For continuous-time domain models, various choices for Of are possible such as for instance
Of ¼ iof (Laplace domain), orthogonal polynomials (Forsythe, Chebyshev), Of ¼

ffiffiffiffiffiffiffiffiffiffi
ðiof Þ

p
(diffusion phenomena) or Of ¼ tanh tRðiof Þ (microwaves (Richardson domain) [2]). For a
discrete-time domain model, the generalized transform variable Of ; evaluated at DFT frequency
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f ; is given by Of ¼ eð�iof TsÞ (Z-domain) with Ts the sampling period. The optimal choice for the
application of modal analysis is discussed in Section 5.2.

To obtain an identifiable parameterization (1), it is necessary to impose a (scalar) constraint.
This is readily verified by considering the following expression:

#HkðOf ; yÞ ¼
BkðOf ; yÞ
AðOf ; yÞ

¼
aBkðOf ; yÞ
aAðOf ; yÞ

: ð2Þ

Clearly, for every non-zero scalar a another equivalent scalar matrix-fraction description is
obtained. The parameter redundancy can be removed e.g., by fixing one coefficient of the
denominator, such as for instance the highest order coefficient of the denominator, i.e., an ¼ 1 or
by imposing a norm-1 constraint, i.e., hH

AhA ¼ 1 with hA containing only the denominator
coefficients. Other constraints are possible such as e.g., hHh ¼ 1 with h containing all polynomial
coefficients aj and bkj ; the parameters to be estimated. The choice of the parameter constraint will
be further discussed in Section 5.3.

A linear LS approach requires model equations that are linear-in-the-parameters. An often used
approximation, first presented by Levi [3] for SISO systems, consists of replacing the model #Hk in
(1) by the measured FRF Hk and multiplying with the denominator polynomial

Wkðof Þ
Xn

j¼0

bkjO
j

f �
Xn

j¼0

ajO
j

f Hkðof Þ

 !
E0: ð3Þ

By introducing an adequate weighting function Wkðof Þ in Eq. (3), the quality of the LS estimate
can often be improved as discussed in Ref. [4] and Section 5.

3. Frequency-domain LS formulation

Since Eq. (3) is linear-in-the-parameters and because a common-denominator model is used,
they can be reformulated as JhE0

C1 0 ? 0 U1

0 C2 ? 0 U2

^ & ^

0 0 ? CNoNi
UNoNi

2
6664

3
7775

hB1

hB2

^

hBNoNi

hA

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
E0 ð4Þ

with

Ck ¼

Ckðo1Þ

Ckðo2Þ

^

CkðoNf
Þ

8>>><
>>>:

9>>>=
>>>;
; Uk ¼

Ukðo1Þ

Ukðo2Þ

^

UkðoNf
Þ

8>>><
>>>:

9>>>=
>>>;

and hBk
¼

bk0

bk1

^

bkn

8>>><
>>>:

9>>>=
>>>;
; hA ¼

a0

a1

^

an

8>>><
>>>:

9>>>=
>>>;
; ð5Þ

where

Ckðof Þ ¼ Wkðof Þ½O0
f ;O

1
f ;y;On

f �; Ukðof Þ ¼ �Ckðof ÞHkðof Þ: ð6Þ
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The Jacobian matrix J of the LS problem (4) has Nf NoNi rows and ðn þ 1ÞðNoNi þ 1Þ columns
(with Nfcn; where n is the order of the polynomials). Because every equation in Eq. (4) has been
weighted with Wkðof Þ; the matrix entries Ck in Eq. (4) generally differ.

Contrary to the Uk matrices, the Ck matrices occurring in Eq. (4) do not contain measured data
and thus are not subject to errors. The matrix J in Eq. (4) can be partitioned as J ¼ ½ C;U� with
the matrix C exactly known and U subject to errors, where C is Nf NoNi � ðn þ 1ÞðNoNiÞ and U is
Nf NoNi � ðn þ 1Þ: As a result, it is possible to apply the so-called ‘‘mixed LS–TLS’’ algorithm,
presented in Ref. [5], to estimate the parameter vector h with ðn þ 1ÞðNoNi þ 1Þ elements, where
TLS stands for total least squares. This algorithm determines the coefficients h such that
½C;U � DU�h ¼ 0 with DU an perturbation matrix with a minimal Frobenius norm and
h ¼ ½hT

B; h
T
A�

T with hB a vector of length ðn þ 1ÞðNoNiÞ and hA a vector with ðn þ 1Þ elements.
However, this algorithm is not applicable for modal analysis practices since computation effort is
OððNoNiÞ

3Nf n2Þ: Fast algorithms for solving this mixed LS–TLS problem, based on sparse QR
decompositions and projection techniques, are presented in Refs. [6,7], typically requiring
OðNoNiNf n2Þ flops.

Nevertheless, since the number of measured frequencies Nf is typically large for modal testing,
the LS formulation based on the so-called normal equations is also commonly used by many of the
modal parameter estimators. The normal equations are found by computing JHJE0

R1 0 ? S1

0 R2 ? S2

^ ^ & ^

SH
1 SH

2 ?
PNoNi

k¼1 Tk

2
66664

3
77775

hB1

hB2

^

hBNoNi

hA

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
E0; ð7Þ

where the submatrices are defined as

Rk ¼ CH
k Ck; Sk ¼ CH

k Uk; Tk ¼ UH
k Uk ð8Þ

or explicitly given by

½Rk�rs ¼
XNf

f¼1

jWkðof Þj
2Or�1H

f Os�1
f ;

½Sk�rs ¼ �
XNf

f¼1

jWkðof Þj2Hkðof ÞOr�1H

f Os�1
f ;

½Tk�rs ¼
XNf

f¼1

jWkðof ÞWkðof Þj
2Or�1H

f Os�1
f : ð9Þ

Since the submatrices Rk ¼ CH
k Ck in Eq. (7) do not contain any measurement data (i.e., they are

not subjected to errors), it is possible to apply again the mixed LS–TLS approach. However,
although the number of rows of the normal matrix (7) is much smaller than the number of rows of
the Jacobian matrix in Eq. (4), its size (i.e., ðn þ 1ÞðNoNi þ 1Þ) is often still of importance for the
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computation time in the case of typical modal test data ðNo > 100Þ since solving Eq. (7) for h still
requires OðNoNinÞ

3 flops.
Therefore, under the condition that the parameter constraint only applies to the denominator

coefficients hA; the numerator coefficients can be eliminated from the normal equations by
substitution of

hBk
¼ �R�1

k SkhA ð10Þ

in the last ðn þ 1Þ equations of Eq. (7)

XNoNi

k¼1

SH
k hBk

þ
XNoNi

k¼1

TkhAE0 ð11Þ

yielding a very compact LS problem

XNoNi

k¼1

Tk � SH
k R

�1
k Sk

" #
hA ¼ DhAE0: ð12Þ

The square matrix D has a size ðn þ 1Þ and thus is much smaller than the original normal matrix
(7) with size ðn þ 1ÞðNoNi þ 1Þ:

A LS solution of hA is found by choosing for instance the highest order coefficient an equal to 1,
i.e., hALS

¼ Ið�½Dð1 : n; 1 : nÞ��1fDð1 : n; n þ 1ÞgÞH; 1mH: The mixed LS–TLS solution is given by
the eigenvector ve corresponding to the smallest eigenvalue le found by solving an eigenvalue
problem Dve ¼ leve:

Once the hA coefficients are known, back-substitution based on Eq. (10) can be used to derive
the numerator coefficients hB: The total number of flops required for the elimination of the
numerator coefficients, solving D for hA and the back-substitution is OðNoNin

3Þ: This approach is
more time efficient than solving Eq. (7) directly, i.e., approximately N2

o N2
i times faster.

The LS or mixed LS–TLS solutions for hA; obtained by solving the compact linear LS problem
(12) is the same as obtained by solving the full LS problem (7) (with the same constraint). This can
be proven based on the matrix inversion lemma [1] that states that the inverse of the normal
matrix in Eq. (7) is positive-definite Hermitian symmetric matrix given as

R j S

�� ��

SH j T

2
64

3
75
�1

¼

E j F

�� ��

FH j G

2
64

3
75 ð13Þ

with the submatrices E ¼ ðR� ST�1SHÞ�1; F ¼ �R�1SðT� SHR�1SÞ�1 and G ¼ ðT� SHR�1SÞ�1

where E and G are both Hermitian matrices. As shown in Ref. [8], the jth ð j ¼ 1;y; n þ 1Þ
column of ðT� SHR�1SÞ�1 gives the LS solution for the denominator coefficients hA under the
constraint aj ¼ 1: Notice that, in the case that none of the entries is subject to errors (i.e., no noise
is present on the data), the matrix is not of full rank and so the inverse does not exist. However, in
that case, Eqs. (7) and (12) are exactly equal to zero and as a result the solution hA is uniquely
defined.
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Since the goal is to determine the structural dynamics by means of the modal model, the modal
frequencies, damping ratios and modal residues have to be derived from the estimates of the
polynomial coefficients h: This is done by transforming the common-denominator model (1) into
a pole-residue parameterization, which is done as follows:

* Poles: The poles pr ðr ¼ 1;y;NmÞ are found as the roots of the common denominator
polynomial AðO; yAÞ with coefficients hA: From the poles the modal frequency fdr

and damping
ratio zr are readily obtained as

fdr
¼

ImðprÞ
2p

and zr ¼
ReðprÞ
jprj

: ð14Þ

* Residues: The residue matrices Rr ðNo � NiÞ can be calculated from the coefficients h as follows
ðk ¼ 1;y;NoNiÞ:

Rkr ¼ lim
O-pr

#HkðO; yÞðO� prÞ: ð15Þ

If a discrete-time pole-residue model (Z-domain) is used, the poles pr and residues Rr have to be
transformed to the Laplace domain by means of the impulse-invariant transformation ðz ¼ esTsÞ;
where the damped natural frequency and damping ratio are subsequently obtained from the poles
as Eq. (14).

4. Stabilization charts

The presence of noise (measurement noise, computation noise, etc.) and possible modelling
errors (discrete-time domain model) require the model order n to be chosen high enough in order
to find all physical modes. Over-modelling, however, introduces many computational poles, which
complicates the modal parameter estimation process. In order to assist the user in distinguishing
the physical (structural) from the computational poles, a so-called stabilization chart was
proposed. By displaying the poles (on the frequency axis) for an increasing model order (i.e.,
number of modes in the model), indicates the physical poles since in general they tend to stabilize
for an increasing model order, while the computational poles scatter around. First presented in
the early 1980s, it has become a common tool in modal analysis today. As a result a fast
construction of the stabilization chart is one of the basic requirements of a modal parameter
estimation algorithm.

To construct a stabilization chart, the poles have to be estimated for increasing model orders.
Based on the knowledge of the square matrix D with size ðn þ 1Þ

D ¼
XNoNi

k¼1

Tk � SH
k R

�1
k Sk

" #
ð16Þ

this can be done in a time efficient way, by solving the eigenvalue problem of submatrices of D for
an increasing size. By doing so, a set of LS or mixed LS–TLS solutions (and thus the poles) are
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obtained for a varying order of the denominator polynomial, while the order of the numerator
polynomial is kept constant and equal to the maximum specified order.

Fig. 1 shows the relation between the compact and full LS equations for a varying order
of the denominator polynomial, while the order of the numerator polynomials is fixed to n:
As can be seen from Eq. (16), omitting for example ðn � jÞ rows and columns of the
compact matrix D is equivalent to omitting ðn � jÞ columns in the submatrices Sk and
ðn � jÞ rows and columns in the submatrices Tk of the full problem. The submatrices Rk

remain the same and consequently, the order of the numerator polynomials is fixed to the
maximum order n: As a result, according to Eq. (16), the solution found by solving the
compact eigenvalue problem, where D is now a square ðn � j þ 1Þ matrix, is the same as found
from solving the full problem, since the submatrices that are used for both formulations are still
the same.
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Fig. 1. Relation between compact and full normal matrix based LS equations for varying order of denominator

polynomial, while order of numerator polynomials is fixed to maximum model order n:
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5. Optimal LS formulation for modal parameter estimation

Different formulations can be derived for the frequency-domain LS estimator by varying the
following algorithm characteristics:

* real- or complex-valued coefficients h in the model equation (1);
* generalized transform variable O in the model equation (1);
* parameter constraint, i.e., a LS or mixed LS–TLS constraint.

The performance of the various parameterizations is now assessed using modal test data
obtained from a slat track of an Airbus A320 commercial aircraft. Slat tracks are located at the
leading edge of an aircraft wing and make part of a gliding mechanism that is used to enlarge the
wing surface (cf. Fig. 2). The enlargement of the wing surface is needed in order to increase the lift
force at reduced velocity during landing and take off.

Using a scanning laser Doppler vibrometer (SLDV) setup, as shown in Fig. 3, the response
(velocities) to a single input excitation was measured in 352 scan-points. An electrodynamic
shaker was used to apply a random noise excitation in a frequency band of 0–4 kHz with a
resolution of 1:25 Hz: Frequency response and coherence functions were estimated using the H1

estimator with 5 averages. This data set is a good representation of a typical modal data set. Given
the coherences, the variances of the noise present on the FRF data can be computed as

varðHkðof ÞÞ ¼
1

M

ð1 � g2
kðof ÞÞ

g2
kðof Þ

jH2
kðof Þj2 with k ¼ 1;y;NoNi: ð17Þ
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Fig. 2. A slat track (top) mounted in the wing of an Airbus320 aircraft (bottom).
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For the modal identification, a common-denominator model of 50 modes was used to model
the dynamical behaviour within a frequency band of 1000–3725 Hz using various LS
implementations discussed in this section. A weighted linear LS formulation could be used for
the various implementations by means of the non-parametric weighting function used for FRF
data

W 2
k ðof Þ ¼

jHkðof Þj
varðHkðof ÞÞ

; ð18Þ

where possible correlations between the FRFs are neglected. This non-parametric weighting
function avoids the need for an iterative approach such as presented by e.g., Sanathanan and
Koerner [9,6].

5.1. Choice of real- or complex-valued coefficients

The equations derived in the previous sections implicitly assume that the coefficients h are
complex valued. Hence, since a common-denominator model (1) is used, the denominator
polynomial AðOf ; yÞ has scalar coefficients and an order n equal to the number of modes to be
estimated Nm: To obtain real-valued coefficients, the Jacobian matrix has to be transformed into a
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Fig. 3. Force (input) measurement with shaker, stinger and force sensor attached to the slat track (top). Velocity

(output) measurement with scanning laser Doppler vibrometer (bottom).
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real-valued matrix as follows:

JRE ¼

Cre
1 0 ? 0 Ure

1

0 Cre
2 ? 0 Ure

2

^ & ^

0 0 ? Cre
NoNi

Ure
NoNi

2
66664

3
77775 ð19Þ

with

Cre
k ðof Þ ¼

ReðCkÞ

ImðCkÞ

" #
and Ure

k ðof Þ ¼
ReðUkÞ

ImðUkÞ

" #
: ð20Þ

The normal matrix is transformed to a real-valued matrix simply by taking the real part of JHJ

since JT
REJRE ¼ ReðJHJÞ: In the case that real-valued coefficients are estimated, the order of the

denominator polynomial AðOf ; yÞ has to be doubled in order to identify Nm modes again. This,
however, is not in favour of the numerical conditioning of the normal matrix in Eq. (7), especially
when the normal equations are formulated in the Laplace domain ðOf ¼ iof Þ:

5.2. Choice of generalized transform variable

5.2.1. Continuous-time domain—Laplace variable
Most classical formulations of linear LS estimators use a continuous-time model with real-

valued coefficients. A linear, time-invariant (LTI) continuous-time system of order n is modelled
by the common-denominator model (1) by taking the generalized transform variable Of ¼ iof :
As a result, the submatrices Ck and Uk of the Jacobian matrix of the LS problem (4) contain
entries of the form of a power basis

Ckðof Þ ¼ Wkðof Þ½ðiof Þ
0; ðiof Þ

1; ðiof Þ
2;y; ðiof Þ

n�;

Ukðof Þ ¼ �Ckðof ÞHkðof Þ: ð21Þ

It can be noticed that these submatrices have a ‘‘graded structure’’ strongly related to a so-called
structured Vandermonde matrix. The formulation of the Jacobian matrix (cf. Eq. (4)) is
approximately OðnNoNiNf Þ for the case of complex coefficients.

From this, it follows that the submatrices CH
k Ck; CH

k Uk and UH
k Uk appearing in the normal

equations (7) convert into structured matrices as well

So0 iSo1 �So2 ? iðc�1ÞSon

�iSo1 So2 iSo3 ? �icSoðnþ1Þ

�So2 �iSo3 So4 ? iðcþ1ÞSoðnþ2Þ

iSo3 �So4 �iSo5 ? �iðcþ2ÞSoðnþ3Þ

^ ^ ^ & ^

�iðr�1ÞSon irSoðnþ1Þ �iðrþ1ÞSoðnþ2Þ ? ð�iÞðr�1Þiðc�1ÞSo2n

2
66666666664

3
77777777775

ð22Þ
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with r; c ¼ 1;y; n þ 1 and where the operator Son is defined as

Son ¼
XNf

f¼1

Gðof Þon
f ð23Þ

with Gðof Þ ¼ jWkðof Þj
2 for the matrices CH

k Ck; Gðof Þ ¼ jWkðof ÞHkðof Þj
2 for the matrices UH

k Uk

and Gðof Þ ¼ jWkðof Þj2Hkðof Þ for the matrices CH
k Uk: Based on the Hermitian symmetry of CH

k Ck

and UH
k Uk; it is sufficient to compute and store the elements of the first row and last column

(i.e., ð2n þ 1Þ instead of ðn þ 1Þ2 summations) in order to reconstruct the complete matrix. The
same is true for the submatrices CH

k Uk; which however are not Hermitian symmetric but only
because of the sign of the elements in the lower triangular part. Taking the matrix structure into
account, the normal matrix formulation requires OðnNoNiNf ) flops, i.e., similar to the number of
flops for the Jacobian formulation, whereas the explicit product JHJ is OððNoNiÞ

3n2Nf Þ:
However, for a continuous-time model, Eq. (7) become numerically ill-conditioned for high

order systems. This is certainly the case for complex mechanical systems with a high modal
density. Normalization (scaling) of the frequency axis by a factor os ¼ ðoNf

� o1Þ=2 can improve
the numerical conditioning to a certain extent [10]. Nevertheless, in practice, a model order of
n ¼ 20 (i.e., 10 modes in the case of real coefficients) often appears to be a limit for preserving an
acceptable numerical conditioning.

Fig. 4 shows a synthesized FRF for the normal matrix based Weighted LS (WLS) formulation
using a frequency-scaled continuous-time model with real (top) and complex (bottom)
coefficients.

As can be derived from Table 1, the bad numerical conditioning and low rank of the compact
matrix D; result in important estimation errors. It can be seen that the higher frequencies are over-
emphasized, typical for this type of model. Nevertheless, the model obtained is completely wrong
for both cases. For the case of the slat track, reasonable results could only be obtained with this
parameterization by analyzing small frequency bands with Nm not higher than 5.

5.2.2. Continuous-time domain—orthogonal polynomials
The numerical conditioning of the Jacobian or normal matrix can be significantly improved by

decomposing the numerator and denominator polynomials of each transfer function model
#HkðOf ; yÞ for k ¼ 1;y;NoNi into a well-chosen basis of orthogonal polynomials

#HkðOf ; yÞ ¼

Pn
j¼0 ukjpkjðiof ÞPn

j¼0 vjqjðiof Þ
; ð24Þ

where pkjðiof Þ and qjðiof Þ are the sets of orthogonal polynomials evaluated at the angular
frequency of ð f ¼ 1;y;Nf Þ and where h are the new (real) coefficients to be estimated

h ¼ ½u10; u11; u12;y; u1n; u20;y; uNoNin; v0;y; vn�T: ð25Þ

In the domain of modal analysis, Richardson and Formenti [11,12] used this approach in order to
improve the numerical conditioning of their so-called global rational fraction polynomial (GRFP)
method, which was also extended to a MIMO method (OPOL) by Van der Auweraer [13]. To
obtain a better conditioning of the normal matrix in Eq. (7), Forsythe polynomials can be
used. Orthogonal Forsythe polynomials can be generated through a recursive scheme presented in
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Refs. [14,13]. The OPOL estimator, for example, uses the Forsythe polynomials to obtain unity
matrices for the block matrices on the diagonal of the normal matrix improving the numerical
conditioning of this matrix as well as allowing a reduction of the computation time and required
memory. Recently, yet another SISO approach was presented, for which the submatrices Rk and
Tk are diagonalized into unity matrices and Sk are zero [15].

However, an important drawback of this parameter estimation approach is the necessity to
transform the estimated coefficients from the orthogonal basis back to the original power
polynomial basis in order to solve for the modal parameters. Even if frequency scaling is applied,
this again represents a numerically ill-conditioned problem. A solution to this problem is
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discussed in Refs. [10,15], i.e., the extension of the use of orthogonal polynomials to the complete
identification process. This includes the extraction of the roots of each numerator and the
denominator polynomial and hence the modal parameters by rewriting each characteristic
equation into a low order state space model and solving the eigenvalue problem of the so-called
orthogonal companion matrix of this model. This is a numerically well-conditioned matrix since it
has been formulated in the orthogonal basis as well. By doing so, it is possible to identify the
modal parameters of high order systems in a numerically stable way as demonstrated for SISO
systems in Ref. [10]. Nevertheless, in the case of MIMO systems, a different set of Forsythe
polynomials pkjðiof Þ has to be generated for each transfer function model #Hk explaining the high
computational involvement of this approach. The computation effort required for the
formulation of the normal equations OðNoNiNf n2Þ presents a major drawback for using such
estimation schemes for modal parameter estimation.

As an approximation to be applicable in the domain of analysis, the practical implementation
of the LS approach using Forsythe polynomials used the same polynomial basis for each transfer
function model, where the polynomials were orthogonal with respect to the weight Tðof Þ ¼ 1

XNf

f¼1

Tðof Þpiðof Þpjðof Þ ¼ dij : ð26Þ

Nevertheless, the gain in computation time is small since the explicit computation of all
entries of the submatrices Rk; Sk and Tk in Eq. (9) remains and is Oðn2Þ: The result is shown in
Fig. 5. Clearly, the use of orthogonal polynomials improves the results compared to the
Laplace domain, which is also indicated by the good condition number ðk ¼ 2E3Þ of the normal
matrix D:
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Table 1

Comparison of condition number and rank of compact normal matrix D for different parameterizations and a model

with 50 modes ðNm ¼ 50Þ

Cond k Rank

Continuous-time Laplace

Dð1 : n; 1 : nÞ – R 2.30E143 5

Dð1 : n; 1 : nÞ – C 3.10E75 3

Continuous-time Forsythe

Dð1 : n; 1 : nÞ – R 1.92E3 100

Continuous-time Chebyshev

Dð1 : n; 1 : nÞ – C 9.27E8 50

Discrete-time

Dð1 : n; 1 : nÞ – R 6.50E5 100

Dð1 : n; 1 : nÞ – C 7.35E4 50

The last row and column are omitted for the LS problem with an ¼ 1; where n ¼ 2Nm or n ¼ Nm for, respectively, real

and complex coefficients.
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The use of Chebyshev polynomials instead of Forsythe polynomials can reduce the
computation time and memory usage significantly. Using a similar approach as discussed in
Ref. [16] for SISO systems, the construction of the square ðn þ 1Þ submatrices Rk; Sk and Tk

(cf. Eq. (9)) boils down to the computation of 2n þ 1 entries (i.e., the entries of the first row and
last column). Indeed, the other entries can be computed as a sum from two of these 2n þ 1 entries,
since the product of two Chebyshev polynomials Ci and Cj is given as CiCj ¼ 1

2
ðCiþj þ Ci�jÞ:

Taking the specific properties of the Chebyshev polynomial basis and matrix structures into
account yields a fast formulation for the normal equations OðNoNiNf nÞ; which is similar to that
for the Laplace parameterization.

The result for slatrack data obtained by this approach is shown in Fig. 6. However, it can be
seen that, since a continuous-time model is used and Chebyshev polynomials are only
approximately orthogonal, the numerical conditioning ðk ¼ 9E8Þ is less good compared to the
Forsythe approach. Comparison with Fig. 5, shows that the results obtained by the normal-based
implementation using Forsythe polynomials is better in the band of 1500–3000 Hz; however at the
price of a significantly higher computation time.

5.2.3. Discrete-time domain—Z variable

Considering the common-denominator model (1) in the discrete-time domain, the generalized
transform variable Of is defined as Of ¼ eð�iof TsÞ: Since these complex polynomial basis functions
are implicitly orthogonal with respect to the unity circle, a well-conditioned Jacobian matrix J is
usually obtained, which also justifies the explicit calculation of the normal equations. It turns out
from past experience in modal analysis with discrete-time domain estimators that the numerical
conditioning of the normal matrix is not a major problem. The computation of the poles from the
estimated denominator coefficients is also well-conditioned.
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The submatrices CH
k Ck; CH

k Uk and UH
k Uk appearing in the normal equations (7) are structured

matrices of the following form:

Sz0 Sz1 Sz2 Sz3 ? Szn

Sz�1 Sz0 Sz1 Sz2 ? Szðn�1Þ

Sz�2 Sz�1 Sz0 Sz1 ? Szðn�2Þ

Sz�3 Sz�2 Sz�1 Sz0 ? Szðn�3Þ

^ ^ ^ ^ & ^

Sz�n Sz�ðn�1Þ Sz�ðn�2Þ Sz�ðn�3Þ ? Sz0

2
6666666664

3
7777777775
; ð27Þ

where the Szn operator is defined as

Szn ¼
XNf

f¼1

Gðof Þe�iof Tsn ð28Þ

with Gðof Þ ¼ jWkðof Þj
2 for the matrices CH

k Ck; Gðof Þ ¼ jWkðof ÞHkðof Þj
2 for the matrices UH

k Uk

and Gðof Þ ¼ jWkðof Þj2Hkðof Þ for the matrices CH
k Uk: Having entries that are constant along each

diagonal, this matrix has a so-called Toeplitz structure. Toeplitz matrices belong to the larger class
of persymmetric matrices and the inverse of a nonsingular Toeplitz matrix is persymmetric as well.
Based on the Hermitian symmetric character of the structured matrices CH

k Ck and UH
k Uk

(since Sz�n ¼ ðSznÞ� if Gðof Þ is real), it is sufficient to compute and store the elements of the first
row (i.e., ðn þ 1Þ instead of ðn þ 1Þ2 summations) in order to reconstruct the complete matrix. For
the matrices CH

k Uk also the first column is required, since these are not Hermitian symmetric and
hence 2n þ 1 elements must be stored. Taking the matrix structure into account, the normal
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matrix formulation now requires OðnNoNiNf Þ flops, similar to that for the Jacobian formulation,
while the memory usage is reduced by the smaller size of the normal matrix.

Moreover, if the frequencies are uniformly distributed (e.g., of ¼ fDo with Do ¼ 2p=NsTs),
then summations (9) can be rewritten as

½CH
k Ck�rs ¼

XNf

f¼1

jWkðof Þj
2ei2pðr�sÞf =Ns ;

½UH
k Uk�rs ¼

XNf

f¼1

jWkðof ÞHkðof Þj2ei2pðr�sÞf =Ns ;

½CH
k Uk�rs ¼ �

XNf

f¼1

jWkðof Þj
2Hkðof Þei2pðr�sÞf =Ns : ð29Þ

Instead of computing the summations explicitly, a fast computation of these matrix entries (27)
can be done using the Fast Fourier Transform (FFT) as discussed in Refs. [17,18] requiring
15NoNiNf log2ðNf Þ flops. As can be derived from Table 2, this results in a further reduction of the
computation time if 15 log2ðNf Þo32n; thus depending on the model order n and the number of
DFT frequencies Nf : In practice, this typically results in a further reduction of a factor 2–10.

The benefits from using complex coefficients can be seen by comparing the parameterizations
using a discrete-time model with real and complex coefficients, as shown in Fig. 7. In the case of
the real-valued coefficients, the numerical conditioning ðk ¼ 6:5E5Þ starts to have some effects on
the accuracy of the model for the 3 closely spaced modes around 1700 Hz (since the order of the
polynomial model is doubled), while for the complex coefficients the conditioning ðk ¼ 1:5E4Þ
does not has any effect for this high number of modes.
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Table 2

Comparison of number of flops for the formulation of the LS matrix equations for different parameterizations (with use

of complex coefficients) and the flops for possible LS solvers

Flops Slat track Norm. gain ð�Þ

Formulation LS equations

Form. J 12NoNiNf n 2.3E8 1

Explicit N ¼ JH � J 48ðNoNiÞ
3Nf n2 5.6E15 2.4E7

Form. NS 48NoNiNf n 9.1E8 3.9

Form. Nabasis
Forsythe 8NoNiNf nð15 þ 6nÞ 4.8E10 2.8E2

Form. N¼basis
Forsythe 48NoNiNf n2 7.6E9 3.3E1

Form. NChebyshev 48NoNiNf n 9.1E8 3.9

Form. Nsum
Z 32NoNiNf n 6.1E8 2.6

Form. NFFT
Z 15NoNiNf log2ðNf Þ 5.7E7 2.5E–1

LS solvers

Full QRðJÞ 32ðNoNiÞ
3Nf n2 3.8E15 1

Sparse QRðJÞ via [7] 32NoNiNf n2 3.0E10 7.9E–6

Full EIGðNÞ 32ðNoNinÞ
3 2.2E23 5.8E7

Compact EIGðDÞ 24NoNin
3 1.1E9 2.8E–7
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Fig. 8 shows the synthesized transfer function model with 80 modes compared with the FRF
data now measured in a band 0–8 kHz: This result illustrates that, even for a very high model
order of 80 modes, the normal matrix based LS implementation for a discrete-time model with
complex coefficients is very robust for a high number of physical modes present in the considered
analysis band. The data was analyzed in one step for the complete frequency band.

As discussed in Ref. [19] the assumption made with respect to the discrete character of the
measured data and the model used to represent the LTI system should be the same. The two most
commonly used assumptions are zero-order hold (ZOH) and band limited (BL). In practice, since
anti-aliasing filters are applied during the measurements, the measured signals have a limited
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Fig. 7. WLS implementation for a discrete-time model with real (top) and complex (bottom) coefficients.

Measurements (dotted line) and estimated transfer function model (solid line).
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bandwidth (BL). However, a discrete-time model implicitly assumes that the measured signals
remain constant between two consecutive samples (ZOH). Mixing the use of both assumptions
introduces modelling errors, which, however, by sufficient over-modelling remain significantly
small in practice as can also be concluded from the results shown in Figs. 7 and 8. Using a bilinear
transformation [20], it would be possible to model continuous-time systems exactly by means of a
discrete-time model wherefore a pre-distortion of the frequency-axis oDT ¼ ð2=TsÞarctanðoCT Þ is
required. However, due to this distortion, the complex exponential functions Of ¼ eð�iof TsÞ are no
longer orthogonal resulting again in a worse numerical conditioning. Moreover, the FFT
algorithm is not applicable anymore since this requires a uniform frequency grid, resulting in an
increase of the computation time.

5.3. Choice of parameter constraint

All previously shown LS solutions were found by fixing the highest order denominator
coefficient an to 1, in order to remove the parameter redundancy in model (1). However, varying
the parameter constraint results in different LS solutions. Comparing for example the LS estimate
in Fig. 7 (for an ¼ 1) with the mixed LS-TLS solution in Fig. 9 found for the norm-1 constraint
hH

AhA ¼ 1 clearly illustrates that the choice of the constraint has an important effect on the quality
of the estimated model. As can be seen from this result for higher model orders, a number
of mathematical poles are estimated as stable poles (in left part of Nyquist plane) when using a
norm-1 constraint.

Considering the same comparison now presented in a stabilization chart gives a better
understanding of this result. Based on the approach discussed in Section 4, Fig. 10 shows the
stabilization diagrams for the case of the slat track, when using the LS estimator with discrete-
time model and complex coefficients with the highest order coefficient an ¼ 1 (top) and a norm-1
constraint (bottom). The poles are plotted for an increasing model order, with (+) indicating
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stable poles, ð�Þ the unstable poles (i.e., positive real part) and the line is the averaged sum of all
FRF measurements. As can be seen from this result, a number of mathematical poles are
estimated as stable poles (in left part of Nyquist) for the higher modal orders ð> 30Þ when using a
norm-1 constraint. The effect of the choice of LS parameter constraint can also be observed in
Fig. 11, where a stabilization diagram is constructed by varying the LS constraint by fixing the
lowest a0 to highest an order denominator coefficient to 1, while the model order was now kept
constant n ¼ 40: This result indicates that the choice an ¼ 1 results in very clear stabilization
charts, in which the user can easily choose the stable poles.

However as can be noticed from these results, the LS formulation for an ¼ 1 indicates the pole
at 1870 Hz as unstable, while a fairly consistent behaviour of this solution can be seen for the
increasing model order. The mode at 1870 Hz was not well excited since the input location
appeared to be close to a nodal point of this mode. The mixed LS–TLS diagram, shows this pole
as a stable solution. This indicates that, although the LS implementation leads to clear
stabilization diagram, it can sometimes happen that a physical pole is estimated as unstable,
however with a real part very close to zero and caution is needed.

6. Comparison of numerical properties

Concerning the numerical properties for the different possible parameterizations two important
numerical aspects were considered:

* Matrix condition number and rank: Gives an indication for the numerical robustness of the
parameterizations for a high model order. Depending on the choice of generalized transform
variable, the accuracy of the transfer function estimate will deteriorate, once the condition
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number of the compact normal matrix D becomes too high. At the same time, the rank of this
matrix indicates the maximum number of modes that can be identified by the number of linear
independent rows or columns in the matrix D:

* Number of flops: Gives a first indication of the computational speed of the different possible
parameterizations. The number of flops is found by counting each sum or product as one single
floating point operation (flop) according to the ‘‘new’’ definition of flops given in Ref. [21].

These quantities are summarized in Tables 1 and 2 for the practical case of the slat track, where
No ¼ 352; Ni ¼ 1; Nf ¼ 1075 and Nm ¼ 50:
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Table 1 compares the condition number and rank of the compact normal matrix D (cf. Eq. (12))
for the different studied parameterizations, where the last row and column are omitted for the LS
problem with an ¼ 1: These results obviously indicate the numerical problems related to the use of
the Laplace variable ðO ¼ iof Þ: Besides the extremely high condition numbers, the rank of the
matrices is not higher than 10, which explains that only a single or few modes are more or less
found for the high frequencies in Fig. 4. The reason for the bad numerical conditioning originates
from the poor orthogonality of the basis functions Of ¼ iof in the Laplace domain as was also
extensively described in literature, e.g., Refs. [11,10].

The use of Forsythe polynomials clearly improves the numerical conditioning, while the
parameterization using Chebyshev polynomials in this case still suffers from the fact that these
polynomials are not perfectly orthogonal. Chebyshev polynomials generally result in a less good
overall synthesis compared the Forsythe, although most of the physical modes are still identified
since the normal matrix is still of full rank. Finally, the use of the discrete-time generalized
transform variable Of ¼ eð�iof TsÞ yields a very good numerical behaviour. Since these complex
polynomial basis functions are implicitly orthogonal with respect to the unity circle, a well-
conditioned Jacobian matrix J is obtained, which also justifies the explicit calculation of the
normal equations. The computation of the poles from the estimated denominator coefficients is
also well-conditioned. Although, the condition number for the normal matrix using real
coefficients is somehow higher, one can conclude that an implementation based on discrete-time
model is characterized by good numerical properties, combining both the benefits of accuracy and
computation speed. Possible small modelling errors introduced in the case of a discrete-time
model can be minimized by sufficient over-modelling. This does not harm the numerical
conditioning while clear stabilization charts easily distinguish between the physical and
mathematical poles introduced by over-modelling.
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In terms of computation speed (cf. Table 2), the important gain of the optimized algorithms can
be seen from the normalized gain and is achieved both on the level of the formulation of the LS
equations and the solver that is used to compute an estimate for the polynomial coefficients h:

Considering the formulation of the Jacobian matrix as a reference, the explicit computation of
JHJ would certainly not be applicable in practice given its increase in flops of OðNoNiÞ

2; which in a
typical modal analysis example of the slat track would mean Oð1E7Þ: However, taking the sparse
structure of JHJ as well as specific symmetry and pre-defined structures of its submatrices into
account, it is shown that for both the Laplace, the Chebyshev and the discrete-time
parameterizations similar computation effort is required as for the Jacobian matrix formulation.
For the case of the slat track example ðNf cnÞ; an additional gain of a factor 10 can be noticed
when using the FFT algorithm for the computation of the entries of the submatrices. On the
contrary, the use of Forsythe polynomials significantly increases the computational load with two
orders of magnitude.

Besides the choice of LS equations formulation approach, the use of an optimized solver clearly
reduces computation time as can be seen for both the cases of a Jacobian or normal matrix LS
approach. The fast solvers based on an elimination/back-substitution approach reduce the
number of required flops with OððNoNiÞ

2Þ; while an additional gain of a factor 5–10 is typically
achieved for the normal matrix approach since generally Nf cn (cf. Table 2).

7. Conclusions

In the first part of this paper, a least squares problem formulation based on the normal matrix
equations is introduced. Since a common denominator transfer function model is estimated, a fast
solver based on an elimination/backsubstitution approach can be applied, which is suited to deal
with extensive datasets, typical for modal testing. At the same time a fast computation of a
stabilization diagram is possible.

Next, a comparative study for different possible choices for the parameterization resulted in an
optimal methodology for a frequency-domain weighted LS estimator suited for high order
transfer function identification, with modal analysis as specific application. The results of this
study can be summarized as follows:

* The use of the normal equations has the advantage, compared to the Jacobian-based LS
formulation, that these equations can be constructed in a computational efficient way, while the
size of the normal matrix is also smaller. When using a discrete-time domain model, this normal
matrix has a block structure with the submatrices having a predefined Toeplitz structure, while
these submatrices can be computed using the FFT algorithm. In addition, a good numerical
conditioning of the normal matrix is preserved. The elimination of the numerator coefficients
in order to first identify the system poles (i.e., resonance frequencies and damping ratios) results
in an important gain of computation efficiency. The numerator coefficients (i.e., mode shapes)
can be found by means of back-substitution.

* Although classically real-valued coefficients are estimated, the use of complex coefficients is
preferable with respect to both the numerical conditioning and the computational performance.
For complex coefficients the order of the denominator polynomial equals the number of modes
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that can be presented by the common-denominator model, while this model order is doubled in
the case of real-valued coefficients. For modal analysis applications, this number of modes can
be high (a typical number is 50–100 modes).

* The choice of the generalized transform variable O is an important factor with respect to the
numerical properties of the LS implementation. Using a discrete-time model with complex-
valued coefficients, models with 100 modes or more can be estimated without any numerical
problems. Although, small modelling errors are introduced by this type of model, a sufficient
over-modelling allows minimization of these errors. Given the robustness for high model
orders, this over-modelling does not introduce numerical problems. In the case that the
modelling errors become too large, a continuous-time model might be preferred. However, this
requires the use of orthogonal basis functions in order to preserve a good numerical
conditioning. Chebyshev polynomials offer a possible solution since they enable a fast
formulation of the structured matrices, which makes it still possible to derive a fairly fast
implementation. Although, since the Chebyshev polynomials are only orthogonal in
approximation, a deteriorating numerical condition can appear once the model orders become
high. On the contrary, Forsythe polynomials yield a very robust formulation for a continuous-
time model identification, however at the price of an important increase of the computation
time and for this reason a MIMO implementation is considered too slow for practical use in
modal analysis.

* The parameter constraint has an important effect as well on the quality of the estimated model.
Fixing the highest order coefficient to 1, generally yields better results than the mixed LS-TLS
(norm-1 constraint), although some caution is needed since the poles for very lightly damped
physical modes are sometimes estimated as unstable poles for this constraint.

As a final conclusion, also referring to Fig. 8, a frequency-domain linear LS estimator using a
normal matrix formulation for the identification of a discrete-time common denominator transfer
function model with complex coefficients yields a very robust and numerically efficient
methodology for modal parameter estimation.
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