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Abstract

This review article provides an overview of the problems pertaining to structural dynamics with bolted
joints. These problems are complex in nature because every joint involves different sources of uncertainty
and non-smooth non-linear characteristics. For example, the contact forces are not ideally plane due to
manufacturing tolerances of contact surfaces. Furthermore, the initial forces will be redistributed non-
uniformly in the presence of lateral loads. This is in addition to the prying loading, which is non-linear
tension in the bolt and non-linear compression in the joint. Under environmental dynamic loading, the joint
preload experiences some relaxation that results in time variation of the structure’s dynamic properties.
Most of the reported studies focused on the energy dissipation of bolted joints, linear and non-linear
identification of the dynamic properties of the joints, parameter uncertainties and relaxation, and active
control of the joint preload. Design issues of fully and partially restrained joints, sensitivity analysis to
variations of joint parameters, and fatigue prediction for metallic and composite joints will be discussed.
r 2003 Elsevier Ltd. All rights reserved.

1. Motivation

The design of structural systems involves elements that are connected through bolts, rivets, and
pins. Joints and fasteners are used to transfer loads from one structural element to another. In
composite structures, there are two types of joints commonly used, namely, mechanically fastened
joints and adhesive bonded joints. Fastened joints include bolts, rivets, and pins. The design of
adhesive joints depends on the size of the parts to be joined and the amount of overlap required to
carry the load. Adhesive joints are often acceptable for secondary structures, but are generally
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avoided in primary structures on account of their strength, chemical interaction effects, and
reliability. Bolted joints are still the dominant fastening mechanism used in joining of primary
structural parts for advanced composites.
The complex behavior of connecting elements plays an important role in the overall dynamic

characteristics, such as natural frequencies, mode shapes, and non-linear response characteristics
to external excitations. The joint represents a discontinuity in the structure and results in high
stresses that often initiate joint failure [1]. The stresses and slip in the vicinity of contact regions
determine the static strength, cyclic plasticity, frictional damping, and vibration levels associated
with the structure. The need for developing methodologies for constructing predictive models of
structures with joints and interfaces has recently been discussed in a white paper by Dohner [2].
Modern mechanical design and analyses are based on deterministic finite element (FE) and

multi-body dynamics computer codes. The main objectives of these codes are to estimate the
system eigenvalues, system response statistics, and probability of failure. However, these codes do
not address the scatter or uncertainty in structural bolted joints. In addition, the system’s inherent
geometric and material non-linearities will result in difficulties in predicting the response under
regular external loading. Deterministic single-point evaluation of the response may result in an
over-designed and excessively conservative system without addressing the crucial aspect of
parameter uncertainties. There are numerous classes of mechanical problems where the influence
of scatter of structural parameters, initial and boundary conditions dictate a stochastic approach
[3–5]. In particular, the stochastic finite element method (FEM) is considered a powerful tool for
structural mechanics analysis. Recently, fuzzy set theory has been combined with FE algorithms
to analyze structural systems with uncertain parameters. Furthermore, some systems are very
sensitive to small parameter variations and thus experience significant qualitative dynamic
changes known as bifurcation. It is known that bifurcation takes place in certain non-linear
systems when the control parameter experiences small and slow variation.
The purpose of this article is to present an assessment of the role of joint uncertainties

and relaxation in the design and dynamic behavior of structural systems. In view of joint
uncertainties and relaxation, energy dissipation is one of the prime factors in the value of
transmitting loads from one structural element to the next connected element. The treatment of
joint uncertainties may be described using the theory of fuzzy sets, which will be briefly defined
and demonstrated by some examples. The dynamic analysis of non-linear structures with joint
relaxation will be presented for random and sinusoidal excitations. The article will address the
identification problem of linear and non-linear joints. The reader is encouraged to understand
the bolting technology and design aspects that are well documented in several references such as
Refs. [6–12]. Basic considerations in the design of joints of composite structures are discussed
by Agarwal and Broutman [13]. Some basic terminology and nomenclature are defined in
Appendix A.

2. Energy dissipation in bolted joints

The study of energy dissipation in bolted joints deals with sources and mechanisms of the joint
slip regimes in addition to the models and governing factors of friction in the joint. Both
phenomenological and constitutive models have been studied extensively in the literature.
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2.1. Slip regimes

Structural joints are regarded as a source of energy dissipation between contacting surfaces
undergoing relative motion. The friction force in a joint arises from shearing and torsional forces
between the parts, and is governed by the tension in the bolt and the friction coefficient. As a
result, wear and energy losses occur. Ungar [14,15] studied the influence of joint spacing, joint
tightness, flange material, and surface finish on the energy dissipation. He found that each
mechanism of the energy dissipation rate depends non-linearly on the amplitude of the applied
force. The bolt tension generally decreases with time depending on the joint geometry, surface
properties, and the induced tensile stress in the bolt. Relaxation of the bolt preload asymptotically
reaches 5–6% according to Refs. [16–18]. Chesson and Munse [17] indicated that most of the loss
occurs within a day after bolting up. Under these conditions, the coefficient of friction will not be
constant because the surface properties change during slip. Since there is a decrease of the
clamping pressure with the distance away from the bolt, the frictional stress drops in regions away
from the bolt hole. In those regions, microslip develops first. As the tangential load increases,
microslip develops closer and closer to the hole. Herrington and Sabbaghian [19,20] studied the
factors affecting the friction coefficients between metallic washers and composite surfaces.
In many applications such as vibration of beams, frame structures, gas turbines, and aerospace

structures, it is beneficial to increase the structural damping created by joints. Energy dissipation
resulting from slip in bolted joints has been the subject of many studies [21–27]. For example,
Jezequel [26] proposed an algorithm for calculating the energy loss due to slip in bolted or riveted
joints of plates. It was found that the joint friction exhibited viscous-like damping characteristics
when the normal force was allowed to vary with the relative slip amplitude [28–35]. However,
Beards [36–40] indicated that relative motion between contact surfaces should be avoided because
it may result in a reduction of the structure’s stiffness and create corrosion of the joint interfaces.
Space structures include complex joints. The influence of joint characteristics on the overall

dynamics of the structure is important particularly when the structure becomes ‘‘joint-dominated’’
rather than being simply a perturbation of a linear continuous system. Lee [41] adopted simple
modelling of joints represented by flexible connections with linear stiffness and linear damping,
which results in a linear system with non-proportional damping. To enhance the inherent passive
damping in structures, a number of joints were proposed by Prucz et al. [42] and Prucz [43] using
viscoelastic materials. Bowden [44] and Bowden and Dugundji [45] considered linear and non-
linear analyses of a simple three-joint beam model to examine the influence of joints on the
dynamics of space structures in weightlessness. In the linear analysis, they showed that increasing
joint damping would increase resonant frequencies and result in an increase in modal damping up
to a point at which the joint became ‘‘locked up’’ by damping. This behavior is different from that
predicted by modelling joint damping as proportional damping. Furthermore, the maximum
amount of passive modal damping achieved from the joints was found to be greater for low-
stiffness joints and for modal vibrations where large numbers of joints were actively participating.
In their non-linear analysis, they calculated the forced response of the three-joint model with
discrete non-linearities located at the joints and showed the manner in which the non-linearity is
spread to all degrees of freedom of the system.
It is reasonable to assume that the clamping pressure decreases with the distance away from the

bolt hole, and thus the shearing frictional stress also drops with this distance. Groper and
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Hemmye [46,47] indicated that, ‘‘the magnitude of slip in regions away from the bolt hole is larger
than in regions closer to the hole circumference. If the applied tangential load is not large enough
to establish slip in an adjoining annulus to the bolthole, there is some slip in regions of the contact
surface, but the joint does not fully slip. As the applied tangential load is increased, the joint might
slip completely’’. Accordingly, two stages of loading can be defined for high strength friction grip
bolted joints. These are:

* Microslip, which takes place when the regions away from the hole experience slip while those
close to the hole do not slip.

* Macroslip, which occurs for tangential loading that results in slip over the entire contact
surface.

Under dynamic loading, bolted joints may slide and produce energy dissipation. The slip
cannot be large since the bolt holes are not much larger than the bolt diameter. Thus, some bolts
may be sheared at the beginning of the full-slip stage of loading. Groper [48] developed analytical
modelling for the friction force and slip in the partial slip and full slip stages of loading. He
concluded that if the joint is designed such that the magnitude of slip is at the border between
partial slip and full slip, the joint might dissipate a large amount of vibrational energy.

2.2. Friction models and governing factors

The basic models of friction for bolted joints are classified into phenomenological and
constitutive [49]. Phenomenological models represent the friction force as a function of the
relative displacement. These models include static friction described by signum-friction models,
elasto-slip models represented by a set of spring-slider elements in parallel (known as Jenkins- or
Masing-element), the LuGre (Lund–Grenoble) model represented by elastic bristles sliding over
rigid bristles, and the Vanalis model, which accommodates local microslip and macroslip in one
model. Constitutive models establish relationships between stress and displacement fields. They
include joint description by contact mechanics with statistical surface roughness description, and
fractal characterization of surface roughness in joints. Various aspects of frictional damping in
joints have been discussed in previous review articles [49–52].
Structural elements joined with high-strength friction grip bolts are tightened such that a large

clamping pressure is realized at the contact surfaces. Thus, the elements transmit the load by
friction. Andrew et al. [53] indicated that vibration normal to the joint surfaces is generally
undamped. On the other hand, only tangential components of vibrations can be damped out by
the high-strength friction grip joint [54]. It was found that the energy loss per cycle in high-
strength friction-grip bolted joints depends on surface finish, the magnitude of the cyclic peak
load, and the prior load history [55]. In all cases considered in their studies, the energy loss
was non-linearly dependent on the tangential load (raised to a power ranging from 2.4 to 3.2).
The damping factor estimated from recorded hysteresis loops was found to vary over from 5%
to 12%.
The energy dissipation in mechanical joints depends on the clamping pressure. High clamping

pressure causes greater penetration of asperities. Dekoninch [56] showed that relative motion due
to tangential loads causes plastic deformation of the asperities. Some researchers [15,57–59]
reported different mechanisms of energy dissipation that might take place depending on the
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clamping pressure. Under high pressure, the slip is small, while under low pressure the shear due
to friction is small. Maximum energy dissipation can be achieved somewhere between these two
limits. Beards [37] investigated damping of structural vibration by controlling interfacial slip in
joints and recognized an optimum joint clamping force exists for maximum energy dissipation due
to interfacial slip in the joint. Beards and Williams [60] in their experimental investigation of a
frame structure showed that a useful increase in damping could be achieved by fastening joints
tightly to prohibit translational slip, but not tightly enough to prohibit rotational slip. Beards and
Imam [61] found that the frictional damping of plate-type structures could be enhanced by using
laminated plates correctly fastened to allow controlled interfacial slip during vibration. In another
study Beards and Woodwat [62] experimentally examined the effect of controlled frictional
damping in joints on the frequency response of a frame under harmonic excitation. It was shown
that a large increase in damping can be produced by controlling the clamping force in joint and
that an optimal clamping force exists under which a joint dissipates maximum vibrational energy.
Dowell [63] and Tang and Dowell [64,65] considered the non-linear response of beams and

plates to sinusoidal and random excitations applied at a point close to one end, and with dry
friction damping due to slippage at the support boundaries. They studied narrow and wide band
random excitations and obtained the response statistics in terms of the normal load at the support
joints by using a statistical linearization method, numerical solution, and experimental tests. The
results revealed that the stick–slip and stick phenomena take place as the normal load increases.
When slip takes place, energy dissipation due to dry friction tends to vanish and the transverse
response amplitude becomes larger.
Shin et al. [66] examined the relationship between the bolt preload and system damping. They

considered the following three approaches to introduce damping: (1) varying the bolt preload
between joint interfaces via bolt torque adjustments; (2) damping associated with the addition of a
viscoelastic layer between the contact surfaces at the bolted joints; and (3) a combination of both
viscoelastic and varying bolt torque, to obtain an optimum joint damping.
Gaul and Nitsche [49] reviewed different approaches for describing the non-linear transfer

behavior of bolted joint connections and their analytical modelling. Segalman [67,68] considered
Jenkins-elements in parallel (each composed of a spring and slider) that are capable of
reproducing frictional joint properties. In an attempt to circumvent the difficulties of these models
he proposed reduced order models based on the original work of Iwan [69].
Esteban et al. [70] and Esteban and Rogers [71] presented an analytical approach to determine

the energy dissipation through joints at high frequency and its relation to the localized actuation-
sensing region surrounding an integrated piezoceramic (PZT) actuator. The structure consisted of
two beams connected with a bolted joint and each having free end boundary conditions. They
used a wave propagation approach together with a Timoshenko beam theory to model the inertia
and stiffness properties of the system. The energy dissipation in the joint was modelled linearly
using mass–spring–dashpot systems and non-linearly with application of friction clearance system
with a cubic spring joint. It was found that the wave incident on the joint was consistently larger
than the energy transmitted after the joint. This means that significant amount of energy of the
incident wave was dissipated after the joint. For example, Fig. 1 shows the amplitude (gain)-
frequency of the 19th bending mode, for which the bolted section has maximum deflection. The
figure shows analytical and experimental results for both tight and loose bolts. For loose bolts, the
amplitude is reduced at resonance due to the larger reduction in amplitude of the propagating
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wave as a result of energy dissipation through the bolted joint. The dependence of the energy
dissipation on the excitation frequency at the 19th mode is shown in Fig. 2. The dotted curve
represents the energy dissipation for bolts tightened at 25 KN; while the solid curve belongs to
loosen bolts at 22 KN; and reveals approximately double the maximum energy dissipation.
Loosely jointed structures are characterized by their bilinear dependence of the lateral

displacement on the lateral acting force [72]. Examples of structures with such joints are usually
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Fig. 2. Energy dissipation of the 19th mode for loose and tight bolts: - - - -, tight bolts; —–, loose bolts [71].
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temporary configurations such as multi-bay, multi-story scaffold with loose tube-in-tube
connecting joints.
Song et al. [73,74] determined the contact area of bolted joint interfaces using FEM and

experimental tests. Rothert et al. [75] developed a non-linear three-dimensional FE contact
analysis of bolted joints in steel frames. Iyer [76,77] found that the contact area, contact pressure
and tangential stress distributions in a pinned connection can be modified in a complex manner by
the pin-plate friction coefficient, material combination, and plate dimensions. Iyer reported that
the magnitude of the friction coefficient also directly reflects the magnitude of the effect of pin-
plate material dissimilarity.

3. Joint uncertainties and relaxation

Among the many factors affecting bolted joints and fasteners are friction, hardness, finish, the
relative dimensions of all interacting parts, and the creep of gaskets [8]. Each factor will vary from
bolt to bolt and joint to joint because of manufacturing or usage tolerances. As a result all joints
and jointed structures exhibit parametric uncertainty. The main problems encountered in the
analysis and design of bolted joints with parameter uncertainties includes random eigenvalues,
response statistics, and probability of failure. Paez et al. [78] studied experimentally and
analytically the natural frequency randomness induced by bolted joints of a cantilever beam. The
dependence of the natural frequency on the joint stiffness was found to be non-linear and
appeared to approach an asymptotic value from below as the stiffness becomes large. Major
progress has been achieved within the framework of linear (or linearized) modelling. However, the
design of such systems should take into account the influence of joint non-linearities as well as
structural geometrical and material non-linearities. The influence of non-linear boundary
conditions has been examined by Watanabe [79] and Lee and Yeo [80].
In tightening a bolted joint with a hydraulic tensioner, the most important factor is the

ratio of desired clamping force to the initial tension, known as the effective tensile coefficient.
This coefficient has been estimated using the FEM [81] and spring elements [82]. Fukuoka [83]
assumed that the major source of scatter in the effective tensile coefficient is due to interface
stiffness in the normal direction, and proposed a numerical procedure to predict the effective
tensile coefficient. The inclusion of such uncertainty improves the accuracy of applying hydraulic
tensioners.
In real applications, most of the boundary conditions are not ideal since one cannot achieve

infinite stiffness for clamped ends. For example, Wang and Chen [84] and Lee and Kim [85]
determined the parameters of non-ideal boundary conditions. Wang and Chen represented the
unknown boundaries of a slender beam by a boundary stiffness matrix in their FEM. The
boundary stiffness matrix was determined from the measured structure modal parameters. Lee
and Kim [85] adopted a different approach by representing the non-ideal boundary conditions by
frequency-dependent effective boundary transverse and torsional springs. The effective boundary
spring constants were determined from the measured frequency response functions (FRFs) in
conjunction with the spectral element method. This approach is referred to as the ‘‘spectral
element method’’, which relates the vector of forces and moments of the boundaries to the
displacement vector of the boundaries through the spectral element matrix.
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Bolted joints and fasteners have a significant effect on the damping and stiffness of the joint.
The damping is created by friction in the screw thread, gas pumping, or impact-induced damping
in local microgaps between joint surfaces, material damping in the asperities of contact surfaces,
and plastic deformation. The stiffness of the joint is affected by the hardness and roughness of
contact surfaces. In most cases, these parameters cannot be accurately modelled due to
uncertainties in the production, variability in the material properties, geometry parameters, and
the relaxation process. This section considers the uncertainties of bolted joints represented by
fuzzy sets or by random variables. Relaxation of bolted joints will be phenomenologically
represented based on experimental measurements.

3.1. Uncertainty of bolted joints using fuzzy parameters

3.1.1. Basic definitions of fuzzy arithmetic

Parameter uncertainties of bolted joints can be mathematically represented by fuzzy sets. The
theory of fuzzy sets was originally introduced by Zadeh [86] who used this as a basis for the theory
of possibility. A possibility distribution is defined as a normal fuzzy set (at least one membership
grade equals 1). For example, all fuzzy numbers are possibility distributions. Fuzzy sets convey
the idea of ‘‘degree of belonging’’ as described by a membership function. The concept arises in
analyzing sets whose boundaries are vaguely defined such that the question of set membership
cannot be answered by ‘‘yes’’ or ‘‘no’’. There is a difference between the probability theory and
fuzzy logic. Probability measures the likelihood that an event will occur, while fuzzy logic deals
with the degree of membership of an event in a set. With fuzziness, one cannot say unequivocally
whether an event occurred, but one tries to model the extent to which an event occurred. When
one assigns a normal fuzzy set, this imposes an imprecise constraint on the value of the variable,
which is referred to as a possibility distribution because it specifies the degree of possibility for the
variable to take a certain value. Thus, possibility measures the degree of ease for a variable to take
a value. Possibility is distinct from probability, but the two concepts converge in the sense that a
possibility distribution constitutes a one-point coverage function of a random set. Consequently, a
possibility distribution can represent imprecision in a value.
Hanss et al. [87,88] represented the stiffness and damping of bolted joints by fuzzy-valued

parameters, which were identified on the basis of measured data. They expressed fuzzy sets by the
elements, x; of the set of real numbers, R; with a certain degree of membership mðxÞA½0; 1�: The
fuzzy sets are distinguished from crisp sets whose elements, x; are characterized by degrees of
membership that can only be equal to zero or unity. Accordingly, closed intervals and crisp
numbers of the form shown in Fig. 3 are, e.g.,

½a; b� ¼ fx j apxpbg; c ¼ ½x j x ¼ c�; xAR: ð1a;bÞ

These can also be expressed by their characteristic function (also known as membership
functions):

m½a;b� ¼
1 for apxpb;

0 for other values:

(
ð2aÞ
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mc ¼
1 for x ¼ c;

0 for other values:

(
ð2bÞ

On the other hand, fuzzy numbers are defined as normal convex fuzzy subsets over the universal
set R with membership functions mðxÞA½0; 1�; and where mðxÞ ¼ 1 is true only for a single value
x ¼ %m: By convex fuzzy sets we mean that as the level of membership increases, the associated
interval of membership never increases. The subset A is convex if and only if

mAðla þ ð1
 lÞbÞXminfmAðaÞ;mAðbÞg ð3Þ

for all a; bAR and 0plp1:
Symmetric fuzzy numbers of a quasi-Gaussian shape may be defined by the membership

function

mðxÞ ¼
e
ðx
 %mÞ2=2s2 for jx 
 e
ðx
 %mÞ2=2s2 jp3s;

0 for x > %m þ 3s or x > %m 
 3s;

( )
; ð4Þ

where %m is the mean value and s is the standard deviation of the Gaussian distribution.
It is informative before proceeding further to summarize the standard fuzzy arithmetic

operations. With reference to Fig. 4, a fuzzy number can be represented by a discrete fuzzy
number or decomposed into a number of intervals ½aðjÞ; bðjÞ� or cuts, aðjÞpbðjÞ; such that, e.g.,

mj ¼
j

m
; j ¼ 0; 1;y;m: ð5Þ
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Fig. 4. Membership functions showing the a-cut; the uncertain parameter *pi is decomposed into intervals [88].
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For demonstration sake, consider two fuzzy numbers *p1 and *p2 decomposed into the sets P1

and P2; of m þ 1 intervals, of the form

P1 ¼ f½að0Þ
1 ; bð0Þ

1 �; ½að1Þ
1 ; bð1Þ1 �;y; ½aðmÞ

1 ; bðmÞ
1 �g;

P2 ¼ f½að0Þ
2 ; bð0Þ

2 �; ½að1Þ
2 ; bð1Þ2 �;y; ½aðmÞ

2 ; bðmÞ
2 �g: ð6Þ

Note that if mj increases the interval of confidence (i.e., the interval of values whose membership
is greater than or equal to mj) never increases (convexity). An interval of confidence is one way of
reducing the uncertainty of using lower and upper bounds. The coupling between the level mj and
the interval of confidence at level mj defines the concept of an uncertain number or a fuzzy number.
The elementary binary operations *p1 þ *p2; *p1 
 *p2; *p1 � *p2; and *p1= *p2 can be defined in terms of
standard interval arithmetic

½aðjÞ1 ; bðjÞ1 � þ ½aðjÞ2 ; bðjÞ2 � ¼ ½ðaðjÞ
1 þ a

ðjÞ
2 Þ; ðbðjÞ1 þ b

ðjÞ
2 Þ�; ð7Þ

½aðjÞ1 ; bðjÞ1 � 
 ½aðjÞ2 ; bðjÞ2 � ¼ ½ðaðjÞ
1 
 b

ðjÞ
2 Þ; ðbðjÞ1 
 a

ðjÞ
2 Þ�; ð8Þ

½aðjÞ1 ; bðjÞ
1 �:½aðjÞ

2 ; bðjÞ2 � ¼ ½minðM ðjÞÞ;maxðM ðjÞÞ�; ð9Þ

where M ðjÞ ¼ fa
ðjÞ
1 a

ðjÞ
2 ; aðjÞ

1 b
ðjÞ
2 ; bðjÞ

1 a
ðjÞ
2 ; bðjÞ1 b

ðjÞ
2 g; and

½aðjÞ
1 ; bðjÞ

1 �=½aðjÞ2 ; bðjÞ2 � ¼ ½minðDðjÞÞ;maxðDðjÞÞ�; ð10Þ

DðjÞ ¼
a
ðjÞ
1

a
ðjÞ
2

;
a
ðjÞ
1

b
ðjÞ
2

;
b
ðjÞ
1

a
ðjÞ
2

;
b
ðjÞ
1

b
ðjÞ
2

( )
; provided 0e½aðjÞ2 ; bðjÞ2 �:

Hanss and Willner [89] and Hanss [90] showed that the application of standard fuzzy arithmetic
[91–93] to the simulation of system uncertainties does not always reflect the real results of the
system. For example, the standard fuzzy arithmetic may give different results for the same
problem depending on the form of the selected solution procedure. This defect motivated Hanss
[90,94] to propose a transformation to implement fuzzy arithmetic to analyze systems with
uncertain parameters. The transformation was shown to lead to the proper fuzzy-valued result
independent of the selected solution procedure.

3.1.2. Uncertain boundary conditions
Finite element methods (FEMs) have been used to analyze the problem of stochasticity of

structural systems. The solution of such problems has been carried out using perturbation
techniques and Monte Carlo simulation. The stochastic nature of uncertainty arises from
measurements or instrumentation errors involved in experiments as well as random distributions
associated with manufacturing errors and natural variability. The uncertainty represented by
fuzzy sets, on the other hand, results from the fact that a designer has subjective preference to
select estimated data of the system parameters [95]. Generally, FEMs can handle system
uncertainties of the two classes, namely, stochastic and fuzzy. Shinozuka and Yamazaki [96]
outlined the basic idea of treating structural response variability due to spatial variability of
material properties under static deterministic loads. Ghanem and Red-Horse [97] used the spectral
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stochastic FEM to solve for the modal properties of a space-frame with localized system
uncertainties. The fuzzy FEM has been developed and adopted for static and dynamic response
problems of flexible structures [98–105]. Shimizu and Hiroaki [106] developed an algorithm to
generate FE meshes using fuzzy sets. Lallemand et al. [107] and Plessis et al. [108] extended fuzzy
set theory to a dynamic FEA of structures with uncertainties in material properties.
The ideal assumption of clamped end of structural elements such as beams or rods cannot be

realized in practice. In most cases, there are non-zero displacements and slopes that are uncertain
in nature. Cherki et al. [109,110] considered the problem of sensitivity to uncertain boundary
conditions by representing the uncertainties as fuzzy parameters with assumed membership
functions. They considered a structure to be sensitive to uncertainties of prescribed displacements
if it propagates these displacements by amplifying them at another location of the structure.
The equilibrium equation for static problems with prescribed displacements may be written in

the form [96],

Kaa Kab

Kba Kbb

" #
Ua

Ub

( )
¼

Fa

Fb

( )
; ð11Þ

where Ua represents the unknown displacement vector, Ub is the imposed (known) vector
displacement, which is modelled as fuzzy, Kaa is the stiffness matrix associated with the
displacement vector Ua; Fa is the vector of applied forces corresponding to the unknown
displacements, and Fb is the vector of the unknown reaction forces. Eq. (11) may be divided into
two equations:

KaaUa ¼ Fa 
 KabUb ¼ Ga; ð12Þ

Fb ¼ KbaUa þ KbbUb: ð13Þ

Note that the right-hand side of Eq. (12) involves mixed or non-homogeneous terms since one
of them, KabUb; is fuzzy and the other is crisp. It is possible to make a fuzzy representation for the
crisp part and Eq. (12) may be written in the form

Kaa
*Ua ¼ *Ga; ð14Þ

where tilde denotes the fuzzy representation of Eq. (12).
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Cherki et al. [110] solved Eq. (14) by discretizing the membership function associated with the
fuzzy coefficients in a-cut levels as shown in Fig. 5. The lower and upper bounds of the joint
displacement *UbðiÞ; indicated by UbðiÞ

0
L and UbðiÞ

0
R; respectively, characterize uncertainties on the

prescribed displacements for cases in which insufficient information is available to define a
probability distribution. For an imperfectly clamped joint, these displacements are not zero in
general. The fuzzy linear system is substituted into a set of interval linear systems, which give the
interval solution for each a-cut. This is followed by generating the unknown displacements *Ua

using this set of intervals. Once the displacement vector *Ua is determined it is then substituted into
Eq. (13) to determine the support reactions, Fb:
Cherki et al. [110] considered three cantilevered truss structures and estimated the sensitivity

coefficient, which was defined as the ratio of the surface of the fuzzy number of the end point of
the structure to the surface fuzzy number of imperfect clamping node. The surface of the fuzzy
number represents the area bounded by the membership function. Their numerical results
revealed that the three structures could have different behaviors when uncertainty is prescribed for
the boundary conditions. Chen and Rao [95] developed a fuzzy FE approach for free vibration
analysis of a 3-stepped bar and a 25-bar space truss.
Under fuzzy excitation, Wang and Liou [112] studied the response of a single-degree-of-

freedom system with crisp system parameters. Yue et al. [113] outlined the analytical treatment of
dynamical systems subjected to fuzzy excitations and systems with variable coefficients. They
introduced the general theory of fuzzy stochastic dynamical systems and the basic properties of
fuzzy linear systems. Cristea [114] estimated the degree of confidence and sensitivity of the non-
linear dynamic response of elasto-plastic frame structure with fuzzy parameters. The dynamic
response of machine tool structures with fuzzy parameters and fuzzy excitation was investigated
by Fansen and Junyi [115].
In the perturbation-based stochastic FE [96,111] both *Ua and *Ga are represented by their mean

values %Ua; and %Ga; and deviatoric parts DUa and DGa: In this case, Eq. (14) takes the form

Kaaf %Ua þ DUag ¼ f %Ga þ DGag: ð15Þ

This equation implies

Kaa %Ua ¼ %Ga; and KaaDUa ¼ DGa: ð16a;bÞ

These equations can be solved for %Ua and DUa; i.e.,

%Ua ¼ K
1
aa

%Ga; and DUa ¼ K
1
aa DGa: ð17a;bÞ

3.2. Uncertainty of boundary conditions and material properties

Lindsley et al. [116,117] studied the non-linear aeroelastic flutter of panels with uncertain
boundary conditions and spatially variable material properties. The boundary conditions were
modelled as pinned, fixed, or rotational spring, with the pinned and fixed boundary conditions
being limiting cases of rotational springs on the boundary, which possess zero and infinite stiffness
respectively. The boundary value problem was described by coupling the von Karman plate
equations for in-plane and out-of-plane deflections with piston theory aerodynamics. The in-plane
equations were time independent and linearly coupled in the in-plane displacements, u and v; and
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non-linearly coupled with the transverse displacement, w: They could be solved once they have
been spatially discretized. The second order transverse equation of motion was written as two first
order equations,

@s

@t
¼ 


ms

MN

s þ
@w

@x

� �
þ

@4w

@x4
þ r2

@4w

@x2@y2
þ r4

@4w

@y4

þ Nx0
@2w

@x2
þ 2rNxy0

@2w

@x@y
þ r2Ny0

@2w

@y2

� �
þ 6 2

@u

@x
þ 2rn

@v

@y
þ
@w2

@x
þ r2n

@w2

@y

� �
@2w

@x2

þ 6 2r2n
@u

@x
þ 2r3

@v

@y
þ r2n

@w2

@x
þ r4

@w2

@y

� �
@2w

@y2
þ 12ð1
 nÞ r2

@u

@y
þ r

@v

@x
þ r2

@w

@x

@w

@y

� �
@2w

@x@y
; ð18aÞ

@w

@t
¼ s; ð18bÞ

where w ¼ Lx %w=h2 is non-dimensional transverse plate deflection, t ¼ Lx %t=UN; is non-
dimensional time scale, UN is the free stream velocity, ms ¼ r

N
Lx=ðrshÞ is the air-to-plate mass

ratio, MN is the Mach number, h is the plate thickness, rs is the plate density, rN is the density of
air stream, r ¼ Ls=Ly is the ratio of plate lengths in x; and y respectively, n is the Poisson ratio,
Nx0 ¼ L2

x
%Nx0=ð12DÞ; Ny0 ¼ L2

x
%Ny0=ð12DÞ; Nxy0 ¼ L2

x
%Nxy0=ð12DÞ; are scaled in-plane pre-stress

forces, and D ¼ Eh3=½12ð1
 n2Þ�: Note all linear elasticity and pre-stress terms were multiplied by
l=ms; while non-linear terms were multiplied by l=ðh2msÞ; where l is a non-dimensional parameter
that reflect the ratio of the dynamic pressure to the stiffness of the panel, i.e., l ¼ 12r

N
U2

N
L3

xð1

n2Þ=ðEh3Þ:
Consider the boundary conditions for a panel with rotational spring stiffness, Ki; i ¼ 1;y; 4:

The bending moment and spring reaction moment are specified to be in equilibrium along the
selected edge:

@2w

@x2
¼

K1

D

@w

@x

����
0;y

;
@2w

@x2
¼ 


K2

D

@w

@x

����
1;y

;
@2w

@y2
¼

K3

D

@w

@y

����
x;0

;
@2w

@y2
¼ 


K4

D

@w

@y

����
x;1=r

: ð19Þ

The spatial discretization of the boundary conditions utilized ‘‘ghost’’ points ðx
1; ynÞ;
ðxMþ1; ynÞ; ðx
1; ynÞ; and ðxn; y
1Þ along the edges. Any member ðxm; ynÞ of the set of points along
the boundary path ½ðx1; y1Þ; ðx1; yNÞ; ðxM ; y1Þ; ðxM ; yNÞ� was forced to satisfy the ghost point
relations

w
1;n ¼ b1w1;n; wMþ1;n ¼ b2wM
1;n; wM;
1 ¼ b3wm;1; wM;Nþ1 ¼ b4wm;N
1; ð20Þ

where 1pmpM and 1pnpN are the flow indices for ðxÞ and ðyÞ; respectively, 
1pbp
 1þ
dbP; 0pbP{1 specify b values in the neighborhood of the pinned condition ðK-0Þ; and 1

dbFpbp1; and 0pbF{1 specify b in the neighborhood of the fixed condition ðK-NÞ: b is
defined by the expressions:

bi ¼
KiDx

2D

 1

� 	

KiDx

2D
þ 1

� 	
; bj ¼

KjDy

2D

 1

� 	

KjDy

2D
þ 1

� 	
; ð21Þ

where i ¼ 1; 2 along the edges parallel with the y-direction and j ¼ 3; 4 along the edges parallel
with the x-direction.
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Parametric uncertainty was examined by modelling variability in Young’s modulus Eðx; yÞ and
the boundary condition parameter b: The aeroelastic model described by Eq. (18) was combined
with a two-dimensional random field model to simulate the influence of spatially correlated
variability in Young’s modulus on the occurrence of limit cycle oscillation. The random field was
modelled as second order, homogeneous, and isotropic, so that it could be completely represented
by a single-variable spatial autocorrelation function or spectral density function. The variability in
the boundary conditions was restricted to a single value along the plate boundary edges for each
realization. Results were obtained for a square panel, and for the parameters h=L ¼ 0:003; n ¼
0:3; ms=MN ¼ 0:04 and MN > 2:0: The scaled dynamic pressure ratio l=MN was selected as the
bifurcation parameter and was varied between 860 and 980. The panel was discretized with either
a 31� 31 or 47� 47 grid. Young’s modulus was specified with a mean value taken as 1:0� 107 psi
and a coefficient of variation of 1% or 10%. The spatial variability was assumed to have an
exponential covariance function with correlation length between 0:1L and 0:3L:
The stochastic panel response was estimated using Monte Carlo simulation. Fig. 6 shows the

dependence of the response limit cycle amplitude on the dynamic pressure parameter l=MN for a
47� 47 grid. The deterministic backbone curve is bounded by the upper and lower values of the
observed limit cycle amplitude along with estimated probability density (pdf). It was reported that
for l ¼ 860; which is slightly above the deterministic bifurcation point, spatial variability in
Young’s modulus produced more than 50% of realizations with no significant limit cycle;
however, the other realizations produced limit cycle amplitudes that were often much greater than
the deterministic value.
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Fig. 6. Stochastic panel response amplitude in the presence of spatial uncertainty of Young’s modulus; 47� 47 grid

[117]; correlation length CL ¼ 0:10L:
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Fig. 7 shows a three-dimensional plot of the dependence of the plate limit cycle oscillation
amplitude, w=h; on the dynamic pressure parameter and the boundary condition rotational spring
stiffness parameter, b: It is seen that for values of the dynamic pressure are in the deterministic
limit cycle oscillation range, the variability in b affects the plate deflection in an essentially linear
manner. However, for values of dynamic pressure in the neighborhood of bifurcation point, the
relationship is non-linear. Variation in b results in a softening effect of the clamped panel, and
thus induces an increase in the amplitude of plate oscillations. At l=MNE850; the global
response is sufficiently sensitive to b that small changes in b can induce limit cycle oscillations.
Fig. 8 shows a three-dimensional estimated pdf plot as function of the boundary condition
variability parameter b; and the amplitude of the limit cycle oscillation. The projection of the pdf
on the plane of b-amplitude is shown as contours of equal levels of pdf. Note that the estimated
pdf includes the influence of the Young’s modulus variability as well; thus, it summarizes the
stochastic behavior of the response at a given dynamic pressure.

3.3. Relaxation of bolted joints

3.3.1. Mechanism of relaxation and loosening

Bickford [8] provides an extensive description of several factors that affect joint relaxation. A
fastener subjected to vibration will not lose all of its preloads immediately. First there will be a
slow loss of preload caused by some of the relaxation mechanisms. Vibration will increase
relaxation through wear and hammering. After sufficient preload is lost, friction forces drop
below a critical level and the nut actually starts to back off and shake loose. In this case, the joint
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Fig. 7. Response surface to variability in boundary condition parameter b 
 1pbp
 1þ dbP; 0pbPp1; pinned
condition; 1þ dbFpbp1; 0pbF{1; clamped condition [116,117].
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will not resemble the ideal boundary conditions but will involve uncertainties. With higher initial
preload, longer or more severe vibration is required to reduce preload to the critical point at which
back-off occurs. In some circumstances, if the preload is high enough to start with, nut back off
will never take place. Usually, safety-wires, coatings and inserts, thread-locking adhesive, and
spring-washers are used to prevent loosening [118]. These devices, however, have their limitations
and do not necessarily prevent relaxation. Schmitt and Horn [119], and Horn and Schmitt [120]
studied the relaxation process in bolted thermoplastic composite joints.
According to Bolt Science [121], the common causes of the relative motion in bolted joint

threads are:

1. Component bending that results in forces being induced at the friction surface. If slip occurs,
the head and threads will slip, which can lead to loosening.

2. Differential thermal effects caused by either differences in temperature or differences in
clamped materials.

3. Applied forces on the joint that can lead to shifting of the joint surfaces and eventually to bolt
loosening.

Relaxation effects cause time-dependent boundary conditions and depend on the level of
structural vibration. In other words, we have uncertainties in the boundary conditions in addition
to a random field due to system parameter uncertainties. Under static loads, the design of such
systems is governed by the random field alone while under dynamic loads the designer must take
into account the temporal fluctuations of the boundary conditions and the random field. During
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Fig. 8. Three-dimensional pdf plot and its projection on the amplitude. B.C. uncertainty plane showing the contours of

equal pdf [116].
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an operating period, the non-linear random response can generally change the joint mechanical
properties and hence create new self-induced uncertainties. Yost [122] reported a series of random
vibration tests on structural blocks with bolted joints to determine whether bolts and studs
tightened to various degrees will loosen when subjected to the space shuttle main engine random
vibration criteria. Daadbin and Chow [123] modelled the elastic and damping characteristic of the
thread interface of a simple bolt model and showed that the contact forces fluctuate because of
surface asperities, variations in temperature, and surface chemistry.
The mechanism of vibration-induced loosening of threaded joints is attributed to a reduction in

friction, which results in slip at the thread and head interfaces, and a reduction in clamping forces
[124–132]. Hess [130] provided a chronological review of the research activities made toward
understanding vibration- and shock-induced loosening. Early work [133] was based on static tests
in tensile test machines. Sakai [126,127] and Harnchoowong [134] analyzed the static force and
torque balance during the relaxation process. Dynamic tests provided the dependence of the
tension in the bolt on time or number of cycles. Phenomenological preload plots could be used in
developing analytical models of elastic structures [8]. A series of experimental studies were
conducted to study the influence of transverse vibration on the self-loosening of fasteners
[124,135–140]. Fig. 9, taken from Finkelston [137], shows the dependence of the average vibration
life on preload for different values of initial preload, thread pitch, and prevailing torque. In Fig.
9(a) one can see that the initial preload increases the friction forces in the joint and this in turn
results in an increase in its vibration resistance. Fine thread nuts endure more vibration cycles
than those of coarse thread nuts, as demonstrated in Fig. 9(b). The third plot, Fig. 9(c), shows the
effect of the prevailing torque in reducing the rate of loosening.
Recent studies reported experimental observations and measurements of axial harmonic

excitation of threaded fasteners [141–145]. They observed that significant relative twisting motion
could occur both with and against the weight of the cap screw. Hess and Davis [142] observed that
for the frequency range 780–1130 Hz; the nut moved down the screw, and for the range
370–690 Hz it moved up. They attributed the observed behavior to the non-linear dynamic
interaction of the vibration and friction, and the resulting patterns of momentary sliding, sticking,
and separation between threaded components. Later, Hess and Sudhirkashyap [146,147] and
Basava and Hess [148] examined the dynamics of preloaded single-bolt assemblies subjected to
axial vibration. Specifically, they studied the effect of vibration level and initial preload on
clamping force. They found that the clamping force could remain steady, decrease, or increase
depending on preload and vibration levels. As the preload decreases or the vibration level
increases, first loosening and then tightening of the assembly took place. They developed an
analytical model, which predicted a reduction of 52.9% in the clamping force due to axial
vibration. Loosening of threaded fasteners due to dynamic shearing was examined experimentally
and numerically by Pai and Hess [149,150]. Kasai et al. [151] and Jiang et al. [152] considered the
early stage of self-loosening of bolted joints. Under transverse impact, the thread loosening was
examined in references [153–155].

3.3.2. Structural dynamics involving joint relaxation

Vibration-induced loosening results in a system with time-dependent boundary conditions.
Under stationary excitation one would expect the response to be non-stationary. Qiao et al. [156]
developed an analytical model of an elastic beam bolted at both ends. This system is described by
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the partial differential equation

@Uðx; tÞ þ mðxÞ
@2Uðx; tÞ

@t2
¼ 
mðxÞ

@2Y ðtÞ
@t2

ð22Þ

subject to the following boundary conditions at x ¼ 0 and x ¼ L; respectively:

EI
@2Uð0; tÞ

@x2

 a1ðtÞ

@Uð0; tÞ
@x

¼ 0; Uð0; tÞ ¼ 0; ð23a;bÞ

EI
@2UðL; tÞ

@x2
þ a2ðtÞ

@UðL; tÞ
@x

¼ 0; UðL; tÞ ¼ 0; ð23c;dÞ

where Uðx; tÞ is the transverse vibration, Y ðtÞ is the transverse support random motion, @ is a
non-linear integro-differential operator, mðxÞ is the mass per unit length of the beam, and a1 and
a2 represent the torsional stiffness of the joints [157], which are considered as random variables in
the static case and random processes in the dynamic case. E is Young’s modulus, and I is the area
moment of inertia about the bending axis. Note that Eqs. (23a–d) are equivalent to Eqs. (19) in
the panel limit cycle problem with uncertain boundary stiffness.
Uncertainty in the slope due to the relaxation effect and vibration loosening in joints and

fasteners may also be considered. Note that when the end slopes @Uð0; tÞ=@x ¼ @UðL; tÞ=@x ¼ 0;
or a1ðtÞ ¼ a2ðtÞ ¼ N; one will have the case of a purely clamped–clamped beam. On the other
hand, simple supports require a1ðtÞ ¼ a2ðtÞ ¼ 0: In real situations, both a1ðtÞ and a2ðtÞ do not
satisfy these ideal conditions: their values are very large for clamped supports, or very small for
simple supports. In order to convert these conditions into autonomous form, the following
transformation of the response co-ordinate Uðx; tÞ was introduced:

Uðx; tÞ ¼
x

L

� �2
þ2g1ðz1; z2Þ

x

L
þ g2ðz1; z2Þ

� 	
uðx; tÞ ¼ jðx; z1; z2Þuðx; tÞ; ð24Þ

where the non-dimensional parameters ziðtÞ ¼ EI=ðLaiðtÞÞ; i ¼ 1; 2; represent the ratio of the
bending rigidity to the torsional stiffness of the joints, and the coefficients g1 and g2 are chosen to
render the boundary conditions autonomous. This was achieved by substituting transformation
(24) into the boundary conditions (23). In this case, the equation of motion takes the form

@ðjuÞ þ mðxÞ
@

@t
j
@u

@t

� �
þ mðxÞ

@2Y ðtÞ
@t2

þ mðxÞCðzi; ’zi; .ziÞu ¼ 0; ð25Þ

where Cðzi; ’zi; .ziÞ is a function of the boundary condition uncertainties and their time derivatives.
The boundary value problem described by Eq. (25) was transformed into a system of ordinary
non-linear differential equations involving uncertain parameters.

3.3.2.1. Joint stiffness as random variables. The uncertain parameters z1 and z2 were considered
first as random variables independent of time, in which case their time derivatives ’z1; ’z2; .z1 and .z2
vanish. By substituting Eq. (24) into Eq. (25) and applying Galerkin’s method by representing the
response uðx; tÞ in terms of the first mode shape,

uðx; tÞ ¼ U1ðtÞ sinðpx=LÞ; ð26Þ

the equation of motion of the first mode was

.U1ðtÞ þ 2zo ’U1ðtÞ þ b1ðzÞo2U1ðtÞ þ b3ðzÞb½U1ðtÞ�3 ¼ b0ðzÞxðtÞ; ð27Þ
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where o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEI=L4mÞ

p
p2; and b ¼ EA=L4m: Eq. (27) is a Duffing oscillator subjected to the

random external excitation xðtÞ; with coefficients, b0ðzÞ; b1ðzÞ; and b3ðzÞ that depend on the
uncertainty parameter z: Klosner et al. [158] obtained an exact solution of the response
probability density function of the special Duffing oscillator with zero linear stiffness and with
uncertain non-linear coefficient. Alternatively, the random excitation xðtÞ can be numerically
generated such that it has a zero-mean and a constant spectral density over a wide frequency band
that exceeds the system natural frequency. The dependence of the response center frequency on
the uncertain parameter z ¼ z1 ¼ z2 is shown in Fig. 10. The limiting values of the beam’s natural
frequency with zero uncertainty (i.e., clamped) and simply supported case are indicated by the
values 3.5607 and 1.5708 respectively. Fig. 11 shows the dependence of the mean square response
on z:

3.3.2.2. Joint stiffness as time-dependent. A fastener subjected to vibration will experience a slow
loss of preload caused by relaxation mechanisms. Based on this trend the torsional stiffness
parameters a1 and a2 must be functions of time, i.e., ai ¼ aiðtÞ: Consider the torsional stiffness
parameters to be function of the number of vibration cycles n ¼ nðtÞ;

%aiðnÞ ¼
aiðnÞL

EI
¼

1

ziðnÞ
; ð28Þ
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Fig. 11. Response mean squares on the boundary condition uncertainty [156].

Fig. 10. Dependence of the response central frequency on the boundary condition uncertainty [156].
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where the over-bar denotes that the parameter is dimensionless. An explicit expression for the
parameters %aiðnÞ can be obtained based on experimental curves, similar to those shown in Fig. 9.
An appropriate elementary function that describes this type of behavior may be selected in the
form

%aðnÞ ¼ A þ B tanh½
kðn 
 ncÞ�; ð29Þ

where the subscript i has been dropped, and nc is a critical number of cycles, indicating the
center location of the step with respect to the origin, n ¼ 0: The parameter k is associated with the
slope of the curve at n ¼ nc: The constants A and B are given in terms of the initial and final values
of the stiffness parameter, %að0Þ and %aðNÞ: The explicit dependence of n ¼ nðtÞ is based on the
average number of cycles of the random vibration process and can be estimated as n ¼ nðtÞ ¼
/oSt=2p; where /oS is the mean value of the response frequency and can be taken as the center
frequency.
Taking into account expressions (28) and (29), one can write the explicit expression

zðtÞ ¼ Z0ZN Z0 
 ðZ0 
 ZNÞ
1þ tanhð
lðt 
 tcÞÞ

1þ tanhðltcÞ

� 	
1
; ð30Þ

where l ¼ ð/oS=2pÞk; Z0 ¼ zð0Þ; and ZN ¼ zðNÞ:
Under random excitation of the first mode, the resulting non-linear differential equation (27)

was solved using Monte Carlo simulation for three values of the relaxation slope parameter,
l ¼ 0:05; 0:1; and 0.15. Each response was found to display temporal variation of the torsional
stiffness parameter aðtÞ: The response mean square revealed two levels corresponding to the two
extreme values of the torsion stiffness parameter. As the relaxation slope parameter increases, the
mean square response switches to a higher level at an earlier time. The corresponding correlation
function resembles the case of modulated narrow band random process possessing two frequency
components as reflected in the response spectra. The evolution of the response spectral density
with time was obtained by dividing the response time history record into 30-s small segments, as
shown in Fig. 12. The influence of the relaxation process is reflected in moving the response
central frequency to the left as the time increases. Obviously the response process is non-
stationary even though the excitation is stationary. The source of the non-stationarity is the
relaxation in the joint.
In order to explore the influence of the excitation level, the Monte Carlo simulation is carried

out for relatively large excitation levels. Figs. 13 and 14 are obtained for excitation spectra
Sx ¼ 200 and 2000, respectively. It is interesting to observe occasional spikes in the time history
records indicating that the kurtosis is greater than 3 and the response becomes non-Gaussian. The
second important observation is that the bandwidth of the response spectra increases as the
excitation level increases. This observation is reflected in both the correlation and power spectral
density functions. The third observation is that the response tends to be more stationary in the
mean-square as the excitation level increases.
Ibrahim et al. [159] extended the work reported in reference [160] and Qiao et al. [156] to

examine the influence of relaxation of boundary conditions on the modal natural frequencies and
limit cycle amplitudes of aeroelastic panels subjected to supersonic air flow. The dependence of
the real and imaginary parts of the modal eigenvalues on the dynamic pressure l and relaxation
parameter z is shown in Figs. 15(a) and (b) by three-dimensional diagrams for a damping
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Fig. 13. Time history response and response statistics for slope parameter l ¼ 0:1 under excitation spectral density

Sx ¼ 200: (a) response time history record, (b) response autocorrelation function, (c) response power spectral density

function, (d) response mean square [156].

Fig. 12. Response spectra estimated over short interval of time history record of duration 30 s each: (a) t ¼ 0–30 s;
(b) t ¼ 30–60 s; (c) t ¼ 60–90 s; (d) t ¼ 90–120 s; (e) t ¼ 120–150 s [156].
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parameter z ¼ 0:01; and a mass parameter z ¼ 0:1: It is seen that the real parts are always negative
up to a critical value of the dynamic pressure, depending on the value of the relaxation parameter
z; above which one real part crosses to the positive zone indicating the occurrence of panel flutter.
Note that the value z ¼ 0 corresponds to clamped–clamped panel and the corresponding critical
dynamic pressure is greater than any case with za0: For equal modal viscous damping
coefficients, damping is known to stabilize the panel [160].
The panel experiences flutter above those critical values of dynamic pressure and relaxation

parameter. The inclusion of non-linearities in the panel equations of motion causes the flutter to
achieve a limit cycle. However, due to relaxation the panel response experiences non-stationary
limit cycle oscillations as shown in Figs. 16(b, c). The FFT shown in Fig. 16(d) reveals that the
frequency content of the first mode includes one spike at zero frequency, due to the static in-plane
load, and another band limited response covering a frequency band ranging from nearly 5.8 to 6.8
(dimensionless frequency). This frequency band reflects the time variation of the panel frequency
with time. This is demonstrated by using the spectrogram technique. The time evolution of the
frequency content represented by the spectrogram in Fig. 16(e) demonstrates the correlation
between the variation of the frequency with the relaxation process given in Fig. 16(a). It is seen
that the response frequency increases as the joint passes through relaxation. This perhaps
surprising result can be explained as follows: on the one hand, the relaxation causes a decrease in
the frequency. On the other hand, the non-linearity of the panel has hard spring characteristics. It
appears that the non-linearity overcomes the softening effect of relaxation. Figs. 17(a) and (b)
show the dependence of the limit cycle amplitudes on the dynamic pressure for different discrete
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Fig. 14. Time history response and response statistics for slope parameter l ¼ 0:1 under excitation spectral density

Sx ¼ 2000; (a) response time history record, (b) response autocorrelation function, (c) response power spectral density

function, (d) response mean square [156].
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values of the relaxation parameter z: The two ideal cases of purely simple–simple and
clamped–clamped boundary conditions are plotted by solid curves. The limit cycles occur as
supercritical Hopf bifurcations. Note that the relaxation results in moving the bifurcation point to
lower values of dynamic pressure and the limit cycle amplitude is very sensitive to the boundary
stiffness.
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Fig. 15. Dependence of the panel eigenvalues on the dynamic pressure l and relaxation parameter z for damping ratio

z ¼ 0:01 and air to panel mass ratio 0.1: (a) real part, (b) imaginary part [159].

Fig. 16. (a) Relaxation parameter, (b) first mode time history response, (c) second mode time history response, (d) first

mode FFT, and (e) spectrogram of the first mode [159].
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4. Identification of joint properties

4.1. The need for joint identification

The main purpose of joint identification is to estimate the joint parameters that minimize the
difference between the measured assembly response characteristics, such as frequency response
functions (FRFs), and those predicted analytically or numerically. Identification of joint
properties is an important task in predicting the dynamic characteristics of mechanical systems
such as machine tool dynamics [161–163], aerospace structures [164–167], and many other
structural systems.
The numerical techniques used for structural dynamic problems, such as FEM, often give

different results from those measured experimentally. For a converged mesh, discrepancy is
believed to be due in large part to the uncertainty of FE models such as unmodelled variability in
joint properties and boundary conditions, and also unmodelled non-linearities. In an attempt to
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Fig. 17. Bifurcation diagrams for different values of relaxation parameter: (a) first mode, (b) second mode [159].
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improve the numerical results, various techniques have been proposed in which experimental data
are integrated with a corresponding FEM [168–170]. Bolted joints are considered as a source of
parameter uncertainties, which result in mismatch between finite element analysis (FEA) and
experimental measurements. The main parameters considered in structural dynamics are stiffness
and damping properties of a joint. Several studies have been conducted to extract joint properties
from measured data.

4.2. Joint identification approaches and difficulties

There are several approaches that have been utilized to identify joint parameters. These
approaches rely on the experimental measurements of FRFs. Yoshimura [171,172] conducted a
series of experimental investigations to measure dynamic characteristics and quantitative values of
the stiffness and damping of a bolted joint, welded joint, and representative joints in machine tool
structures. Measured modal parameters have been used in several studies to identify joint
structural parameters [173,174]. For example, Inamura and Sata [175] proposed a joint structural
parameter identification approach based on the use of the complete mode shapes and eigenvalues.
Yuan and Wu [176] and Kim et al. [163] used a condensed FE model and incomplete mode shapes
to identify joint stiffness and damping properties. These methods require accurate modal
parameters, which are difficult to extract especially in cases of closely coupled or heavily damped
modes.
In order to overcome the difficulties encountered in extracting accurate modal parameters,

some methods based on FRFs for determining joint properties have been proposed in the
literature [177–180]. Mottershead and Stanway [180] proposed an algorithm for obtaining
structural parameters from FRF measurements. In theory, it can be applied to the identification
of joint parameters; however, it may not be practical for cases where measurements are not
possible for certain locations. Other attempts were made to identify joint properties from the
substructure FRFs and the joint-dependent FRFs of the whole structure [177,181,182]. This
method also has some difficulties when the FRF measurement at a joint is not possible. Yang and
Park [183] combined the incomplete measured FRFs with the substructure FE model, which
excludes undetermined joint properties. The unmeasured FRFs were estimated by solving an
over-determined set of linear equations derived from measured FRFs and the substructure FE
model. By assuming a model of the joint, the joint structural parameters were extracted from
measured and estimated FRFs by an iterative output error algorithm.
Arruda and Santos [184,185] treated the problem of FE model updating of structures that

consist of substructures connected through mechanical joints whose stiffness and damping
properties are unknown. The model was updated by estimating the mechanical joint parameters
via curve fitting of measured FRFs using a non-linear least-squares scheme. Joint parameters can
be experimentally determined from the FRFs measured with and without the joints
[112,177,182,186,187]. Hwang [187] employed the FRFs for each discrete frequency so that the
connection properties could be estimated for each frequency and averaged using statistical
methods. This approach may not be convenient when some joints are not accessible for
instrumentation.
Alternatively, model-based techniques that involve a hybrid of experimental data and FE model

results have been widely used in the literature. For example, one class of the model-based
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techniques is referred to as direct methods in which the joint parameters are determined by solving
a set of characteristic or dynamic (impedance) equations [84,165,176,178,181,188]. These
equations consist of the stiffness and mass matrices generated from a FE model and the
measured frequency response data. Theoretically, joint stiffnesses can be determined from the
characteristic equation by using only one set of complete modal data (natural frequency and
modal vector). Another class is known as penalty techniques, which are based on minimizing
errors or residuals that are used to assess the discrepancies between the FEMs and experimental
measurements. The corrections to the model parameters can be related to the prediction errors of
the FEMs through a sensitivity (Jacobian) matrix. The sensitivity matrix typically involves the
derivatives of the stiffness, damping, and mass matrices with respect to each of the model
parameters to be updated. The bolted joint may simply be treated as a lumped element in the
model [183,185,189–191]. Li [192] reported that the penalty techniques are usually more flexible
and versatile than the direct methods in that various constraints are readily imposed on the model
parameters. Li [192] introduced a so-called reduced order characteristic polynomial defined in
terms of the measured natural frequencies. This polynomial was then used for updating or
identifying joint stiffnesses. Ahmadian et al. [193] proposed a generic element approach to model
some quite complicated joints. Various other computer models have been developed for metal and
composite fasteners [194–196].
The dynamic properties of a joint are difficult to model analytically. An alternative approach

for establishing a theoretical model for a joint is to use an experimental approach. For example,
Burdekin et al. [197,198] established a mathematical joint model by measuring the response and
force at a joint. Unfortunately, in many cases the response or force at the joint is not measurable,
so one must use one of the joint identification techniques, such as those proposed in references
[112,177,179,199–203]. Ren and Beards [188] outlined an alternative approach for establishing a
theoretical model of a joint by extracting the model parameters from experimental data using joint
identification techniques. Their work was based on the identification of linear joints using FRF
data. The basic strategy of most FRF joint identification methods is to measure the properties of
the structure without joints (referred to as the substructure system) and the structure with joints
(referred to as the assembled system). The difference between the dynamic properties of the two
cases is caused by the joints. In real applications, this difference cannot be attributed to the joint
properties alone because it may include measurement errors and parameter uncertainties in the
two systems. Furthermore, many of the identification procedures assume that the identified
parameters are deterministic. Therefore, updating a model based on measurements from one
structure may still leads to apparent discrepancies when the model is used to simulate a different
but nominally similar structure.

4.3. Identification of linear joints

4.3.1. Identification of joint damping and stiffness

In many procedures, the joint properties are extracted from the measured receptances of
structures without introducing mathematical models of the mass, damping, and stiffness matrices.
Tsai and Chou [177] proposed an identification method for bolt joint properties based on a
synthesis method originally developed by Bishop [204]. In Bishop’s formulation, the interface
serves to enforce kinematic consistency between the substructures. Consider two substructures I,

ARTICLE IN PRESS

R.A. Ibrahim, C.L. Pettit / Journal of Sound and Vibration 279 (2005) 857–936884



and II joined at interface, b: Substructure I consists of regions a; and b; while substructure II
consists of regions c; and b: The relationship between the displacement vectors and force vectors
for the two substructures are given in terms of the receptance as

Xð1Þ
a

X
ð1Þ
b

( )
¼

Hð1Þ
aa H

ð1Þ
ab

H
ð1Þ
ba H

ð1Þ
bb

" #
fð1Þa

f
ð1Þ
b

( )
;

Xð2Þ
c

X
ð2Þ
b

( )
¼

Hð2Þ
cc H

ð2Þ
cb

H
ð2Þ
bc H

ð2Þ
bb

" #
fð2Þc

f
ð2Þ
b

( )
; ð31a;bÞ

where X
ðiÞ
j is the displacement vector on region j for substructure i; H

ðiÞ
jk is the receptance matrix

between regions j and k for substructure i; and f
ðiÞ
j is the force vector on region j for substructure i:

Using Eqs. (31) and the equilibrium state at the joint, f
ð1Þ
b þ f

ð2Þ
b ¼ 0; in the compatibility

condition, X
ð1Þ
b ¼ X

ð2Þ
b ; gives

f
ð1Þ
b ¼ H
1

B fHð2Þ
bc f

ð2Þ
c 
H

ð1Þ
ba f

ð1Þ
a g; ð32Þ

where HB ¼ H
ð1Þ
bb þH

ð2Þ
bb : Using Eq. (32) in Eqs. (31) gives

Xð1Þ
a ¼ ½Hð1Þ

aa 
H
ð1Þ
abH


1
B H

ð1Þ
ba �f

ð1Þ
a þH

ð1Þ
abH


1
B H

ð2Þ
bc f

ð2Þ
c ; ð33Þ

Xð2Þ
c ¼ ½Hð2Þ

cc 
H
ð2Þ
cb H


1
B H

ð2Þ
bc �f

ð2Þ
c þH

ð2Þ
cb H


1
B H

ð1Þ
ba f

ð1Þ
a : ð34Þ

For a single bolted joint, Tsai and Chou [177] assumed that its mass is very small compared
with the neighboring structure, and its dynamic properties are dominated by the stiffness and
damping. The interface force vectors f

ð1Þ
b and f

ð2Þ
b acting on substructures I and II are assumed

equal in magnitude and opposite in direction. However, the interface displacement vectors X
ð1Þ
b

and X
ð2Þ
b are not equal but are related to the interface forces through the compatibility condition

X
ð2Þ
b 
 X

ð1Þ
b ¼ Hjtf

ð1Þ
b ; ð35Þ

where subscript jt stand for joint. Substituting Eqs. (31) into Eq. (35) gives

H
ð2Þ
bc f

ð2Þ
c þH

ð2Þ
bb f

ð2Þ
b 
H

ð1Þ
ba f

ð1Þ
a 
H

ð1Þ
bb f

ð1Þ
b ¼ Hjtf

ð1Þ
b : ð36Þ

In view of the equilibrium condition, f
ð1Þ
b þ f

ð2Þ
b ¼ 0; Eq. (36) may be written in the form

f
ð1Þ
b ¼ ½HB þHjt�
1fH

ð2Þ
bc f

ð2Þ
c 
H

ð1Þ
ba f

ð1Þ
a g: ð37Þ

Now the relationship between the displacement and force vectors of the assembled structure is
written in the form

Xð3Þ ¼ Hð3Þfð3Þ; ð38Þ

where

Xð3Þ ¼
Xð1Þ

a

Xð2Þ
c

( )
; fð3Þ ¼

fð1Þa

fð2Þc

( )
; ð39a;bÞ

Hð3Þ ¼
Hð1Þ

aa 
H
ð1Þ
ab ½HB þHjt�
1H

ð1Þ
ba H

ð1Þ
ab ½HB þHjt�
1H

ð2Þ
bc

H
ð2Þ
cb ½HB þHjt�
1H

ð1Þ
ba Hð2Þ

cc 
H
ð2Þ
cb ½HB þHjt�
1H

ð2Þ
bc

" #
: ð39cÞ

Eqs. (38) and (39) of the assembly are exactly the same form as Eqs. (33) and (34) of the
substructures, except that Eqs. (38) and (39) include the receptance of the joint.
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Alternatively, Eq. (39c) can be written in the form

HðgÞ ¼ HðaÞ½HB þHjt�
1HðbÞ; ð40Þ

where

HðgÞ ¼ Hð3Þ 

Hð1Þ

aa 0

0 Hð2Þ
cc

" #
; HðaÞ ¼


H
ð1Þ
ab

H
ð2Þ
cb

" #
; HðbÞ ¼ ½Hð1Þ

ba 
H
ð2Þ
bc

�:

By measuring the receptance of the substructures and the assembled structure, one can extract
the dynamic properties of the joint, Hjt; from Eq. (40). By neglecting the mass of the joint, the
joint can be represented by linear damping, C; and stiffness, K; matrices. Under harmonic
excitation of frequency O; the joint model can be written in the form

½iOCþ K�½Xð2Þ
b 
 X

ð1Þ
b � ¼ f

ð1Þ
b ; ð41Þ

where i ¼
ffiffiffiffiffiffiffi

1

p
: Comparing Eq. (35) with Eq. (41) one can write the joint receptance as

Hjt ¼ ½Kþ iOC�
1: ð42Þ

Note that the number of unknowns, C; and K; in Eq. (46) are 2� n2; where n is the number of
degrees of freedom on the substructure interface. All other quantities in Eq. (40) can be measured.
By taking inverses on both sides of Eq. (40), one writes

HðcÞ ¼ HðaÞ½Kþ iOC�HðbÞ; ð43Þ

where HðcÞ ¼ ½HðgÞ
1 
HðbÞ
1HBH
ðaÞ
1 �
1:

If the measured FRFs are inertances instead of receptances, the joint properties should be
identified from

HðcÞ ¼ 

1

O2
HðaÞ½Kþ iOC�HðbÞ: ð44Þ

For each O Eq. (43) or Eq. (44) constitutes 2� n2 unknowns, and if there are m frequencies the
total number of equations is 2� m � n2; therefore the number of equations exceeds the number of
unknowns and the least-squares method may be used to solve for the unknowns. Eq. (44) was
used to identify the joint properties for different frequency ranges. Tsai and Chou [177] found that
the identified values vary with the selected frequency range. Accordingly, it was recommended to
use the identified properties only for the frequency range that is applied on the system in practice.
Hanss [90] also applied fuzzy arithmetic to simulate and analyze the friction interface between

the sliding surfaces of a bolted joint. The friction interface was represented as a contact between
bristles involving seven uncertain parameters described by symmetric fuzzy number of quasi-
Gaussian shape. The frictional moment was expressed in terms of the relative angular sliding
velocity at the friction interface and an internal variable. The seven parameters were coefficients in
the governing equation of the model but Hanss [90] commented that their exact definition could
not be extracted. It was shown that the influence of three of seven parameters was significant.

4.3.2. Identification of joint mass and stiffness

In some cases, when the joints are rigidly connected and slip cannot take place, one may ignore
the joint’s damping and consider only its inertia and stiffness parameters. Ren and Beards
[201,205,206] generalized the FRF joint identification technique for systems involving rigid and
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flexible joints. In their formulation, the co-ordinates on the assembly are divided into joint and
non-joint regions with subscripts, j; and n respectively. For the substructure systems the co-
ordinates are also divided into joint and non-joint regions with subscripts a and b respectively.
The joint system is represented by subscript c: The relationships between the displacement vectors
and the force vectors for the assembly is

Xn

Xj

( )
¼

Hnn Hnj

Hjn Hjj

" #
fn

f j

( )
: ð45Þ

The relationship for the substructures is

Xa

Xb

( )
¼

Haa Hab

Hba Hbb

" #
fa

fb

( )
: ð46Þ

The characteristics of the joint are described by the dynamic stiffness matrix Zj;

ZjXc ¼ fc: ð47Þ

Compatibility conditions require that the non-joint displacements on the substructure system
and the assembly to be identical, i.e.,

fb ¼ fn; Xb ¼ Xn: ð48a;bÞ

Compatibility and equilibrium conditions at the joint co-ordinates are

fb þ fc ¼ f j; Xj ¼ Xb ¼ Xc: ð49a;bÞ

Multiplying both sides of the equation for Xb; formed by the second row of Eq. (46), by Zj; and
using the identity (49b) gives

ZjXc ¼ fc ¼ ff j 
 fbg ¼ ZjHbafa þ ZjHbbfb: ð50Þ

Rearranging, Eq. (50) can be written in the form

fb ¼ ½Iþ ZjHbb�
1ff j 
 ZjHbafag: ð51Þ

Substituting Eq. (51) into Eq. (46) and using the identities (48) and (49b) gives

Xn

Xj

( )
¼

½Haa 
Hab½Iþ ZjHbb�
1ZjHba� Hab½Iþ ZjHbb�
1

½Hba 
Hbb½Iþ ZjHbb�
1ZjHba� Hbb½Iþ ZjHbb�
1

" #
fn

f j

( )
: ð52Þ

Comparing Eq. (52) with Eq. (45) gives

Haa 
Hnn ¼ HnjZjHba; Hba 
Hjn ¼ HjjZjHba; ð53a;bÞ

Hbb 
Hjj ¼ HjjZjHbb; Hab 
Hnj ¼ HnjZjHbb: ð53c;dÞ

Eqs. (53) are used to identify the joint impedance matrix Zj ðN � NÞ and they have the general
form C ¼ AZjB and can be written as a set of linear equations ½E�fzg ¼ fgg; where fzg is a
frequency-dependent N2 � 1 vector whose elements are constructed from Zj; ½E� is the coefficient
matrix constructed from A and B matrices, and fgg is a coefficient vector constructed from matrix
C: Ren and Beards [201] introduced a linear transformation to convert fzg into a frequency
independent vector. If the joint is stiff, the matrix A becomes ill-conditioned and the linear
transformation is not be applicable.
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In practice, it is not always possible to measure Hnj : However, it can be calculated from the
relationship

Hnj ¼ Hab 
 ½Haa 
Hnn�Hþ
baHbb; ð54Þ

where Hþ
ba ¼ ½HT

baHba�
1HT
ba is the pseudo-inverse of matrix Hba:

The properties of an assembly can be predicted from the properties of its components through
coupling techniques [177,205,207]. The coupling process involves the coupling of two joint co-
ordinates. For example, if the ith and jth co-ordinates in the substructure matrix Hs are coupled,
the following relationship gives the receptance of the assembly matrix HA in terms of Hs [205],

HA ¼ Hs 

1

hii þ hji 
 2hij

ffhsjg 
 fhsiggffhsjg 
 fhsigg
T; ð55Þ

where hii; hij ; hji are elements at ith and jth columns in the substructure matrix Hs; the fhsig and
fhsjg represent the ith and jth columns in the matrix Hs: Since the effects of measurement errors
can be significantly magnified at resonance frequencies of substructures in the coupling process,
the FRFs at resonance frequencies of the substructures should not be used in the identification
process. Ren and Beards [187] indicated that the accuracy of joint identification could be
improved by using the coupling-identification approach outlined in Ren and Beards [205].
Wang and Liou [112,182] tried to identify the joint damping and stiffness from the noise

contaminated FRFs of the whole structure and the substructures. They suggested a noise
insensitive algorithm to calculate joint parameters by taking only the diagonal elements of FRF
matrices instead of taking the time consuming inverse of FRF matrices. Ratcliffe and Lieven [208]
showed that a joint identification procedure that calculates system matrix terms individually
results in a joint that has an incorrect connectivity, although it may reproduce the experimental
data successfully. They proposed some improvements to Ren and Beards [188] method that yield
significantly improved lower order modal properties. They also used generic element matrices in
conjunction with an optimization scheme to make adjustments to the system matrices that yield
correct connectivity. This approach does not include damping which is very important in bolted
joints.
Hanss et al. [88] estimated the stiffness and damping coefficient as an inverse fuzzy arithmetic

problem for the joint of two longitudinal rods (Fig. 18). The joint was modelled as a two-
parameter model Kelvin–Voigt element. The measured data involved the natural frequency, f ;
and damping ratio, z: Fuzzy numbers *f and *z were defined according to Eq. (4) to represent the
uncertainty in the measured data. From the analytical model, the damping coefficient, c; and
stiffness, k; are given by

c ¼
1

ImðsÞ
Im 


sðA1

ffiffiffiffiffiffiffiffiffiffi
E1r1

p
ÞðA2

ffiffiffiffiffiffiffiffiffiffi
E2r2

p
Þ

A1

ffiffiffiffiffiffiffiffiffiffi
E1r1

p
cothðsl2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=E2

p
Þ þ A2

ffiffiffiffiffiffiffiffiffiffi
E2r2

p
cothðsl1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r1=E1

p
Þ

( )
; ð56aÞ
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Fig. 18. Two-parameter joint model of two rods [88].
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k ¼ Re 

sðA1

ffiffiffiffiffiffiffiffiffiffi
E1r1

p
ÞðA2

ffiffiffiffiffiffiffiffiffiffi
E2r2

p
Þ

A1

ffiffiffiffiffiffiffiffiffiffi
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p
cothðsl2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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E2r2

p
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p
Þ

( )

 cReðsÞ; ð56bÞ

where s ¼ 
z=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 z2

p
oþ io; Ai; i ¼ 1; 2; are the cross-sectional areas of the two bars. Ei; ri;

and li are the Young’s modulus, densities, and lengths of the two bars, respectively. Fig. 19 shows
the membership functions of the fuzzy-valued model parameters *k and *c: It is seen that the
damping coefficient exhibits asymmetry implying non-linear behavior of the model.

4.4. Identification of non-linear joints

4.4.1. Sources of non-linearities
Structural joints are regarded as a potential source of non-linear behavior. An example of this

can be found in frame structures constructed from individual truss elements with pin joint in
which small play or looseness in the joints represents non-linear departures from ideal pin jointed
structures [164,165,209–214]. It is important to understand how the non-linear system parameters
change with amplitude and frequency when designing an active control system. Small amounts of
play in the joints could lead to chaotic dynamics in the response of the structure under periodic
excitation. Chaotic dynamics in space structures may impose some difficulties in the design of
active control systems to damp out transient dynamics [209]. Bolted joints also are non-linear due
to clearance and non-linear contact stiffness of the joint.
Another source of non-linearity in bolted joints is the prying load [8]. Usually it is assumed that

the resultant external load in bolted joints under tension load acts at some point along the axis of
the bolt. In reality, the tensile load is applied off to one side of the bolt as shown in Fig. 20, and
thus is called a prying load. Such load can drastically increase the amount of tensile and bending
stress produced in the bolt. A bolt subjected to prying must ultimately resist the full external load
Fe plus the full prying load Q; i.e., FBXFe þ Q; where FB is the bolt force. Note that FBXFe þ Q

does not include preload, since it defines that the bolt must ‘‘ultimately’’ resist. The bolt will not
carry the full external load plus prying load at low values of external load any more than it would
fully have a small axial tension load. Accordingly, it is always desirable for the stiffness ratio
between bolt and joint, KB=KJ ; to be small. The small stiffness ratio will reduce the percentage of
external load transmitted by the bolt (at least until joint separation). Thus, it improves the static
load capability and fatigue life of the joint. Fig. 21(a) shows that under purely axial load, when the
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Fig. 19. Uncertain (a) stiffness and (b) damping parameters of the joint model shown in Fig. 18 [88].
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external load starts to build up, there is only a small change in the bolt force, since most of the
newly applied external load will be absorbed by the flange. Once the external load reaches a
critical value, the bolt absorbs all additional external load. Fig. 21(b) illustrates the modification
of Fig. 21(a) for offset loading, as shown in Fig. 20. When the flanges are very thick, the prying
load will be created if the flanges are flexible enough. It starts along the same line it followed when
the flange was rigid, as demonstrated in Fig. 21(a). However, once the external load becomes large
enough to deform the flange and create prying action, the force within the bolt becomes greater
than that which would be produced by the same external load applied axially.
In Fig. 21(a), the bolt and joint behave linearly until joint separation. After separation, the bolt

follows a second, but still linear, path. In contrast, Fig. 21(b), the bolt load is a roughly S-shaped
function of the external load, not because the bolt itself has become a non-linear spring, but
becomes the mechanism by which the bolt is loaded in the system is non-linear. Note that upon
removing the external load, the bolt tension will return to the original preload along the original
curve. This means the system behavior is purely elastic and strongly non-linear [8]. The influence
of prying and shear in end-plate connections was studied in Refs. [215–217].
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Fig. 20. A schematic diagram showing a bolt subjected to prying [8].

Fig. 21. Dependence of the bolt force on the external force under (a) axial tension load; (b) prying load [8].
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4.4.2. Non-linear identification

In view of the inherent non-linearities of bolted joints, non-linear identification algorithms and
models should more accurately reflect the behavior of bolted joints than linear approaches do.
Masri and Caughey [218] and Masri et al. [219–221] proposed a non-parametric method to
identify non-linear joint properties. Their approach is based on the restoring-force method, which
fits a non-linear function to the restoring force, f ðx; ’xÞ; in the joint. They constructed a joint model
with the Chebyshev polynomials to take advantage of their orthogonality characteristics and
fitted the model with the time domain states of the joint co-ordinate (displacement, velocity, and
acceleration). The Chebyshev polynomials can, however, lose odd or even behavior and require
interpretation of data over a uniform grid as pointed out by Al-Hadid and Wright [222].
In the presence of locally strong non-linearities such as joints, simple load stroke or force–

displacement testing has been used by Soni and Agrawal [223]. As pointed by Crawley and
O’Donnell [167], such force–displacement testing yields only a partial state space representation of
the joint characteristics. This gives the force transmitted by the joint as a function of its
displacement, but the dependence of the force on the velocity or on the true memory effect in the
joint is not explicitly displayed. O’Donnell and Crawley [166], Crawley and Aubert [224], and
Crawley and O’Donnell [167] developed the ‘‘force-state mapping technique’’ for identifying
strongly non-linear properties of joints by expressing the force transmitted by the member as a
function of its mechanical state co-ordinates. This technique is very simple and effective if the
joint can be separated or isolated easily from the whole structure; however, this generally is not
the case. The method requires a large amount of data since it is based on the signal processing of
the time domain state to extract joint properties.
Kim and Park [225] extended the conventional force-state mapping technique for identifying

the non-linear properties of joints that connect linear substructures. Their approach is based on
estimating the entire substructure FRFs using the FEM or by using experimental modal analysis
techniques. This is followed by measuring the response signal at the joint degrees of freedom when
the whole structure is sinusoidally excited at an arbitrary point. The last step is to set up a non-
linear joint force model and fit the model using the joint degree responses and the substructure
FRFs. Lee and Park [226] proposed an efficient method to identify the position and type of non-
linear elements. They introduced a local identification method to identify joint properties using
the non-linear elements’ position information.
Tzou [227] studied the non-linear structural dynamics of jointed flexible structures with initial

joint clearance and subjected to external excitations. Tzou proposed a method of using
viscoelastic and active vibration control technologies (joint actuators) to reduce dynamic contact
force and to stabilize the systems. Dynamic contacts in an elastic joint were simulated by a non-
linear joint model comprised of a non-linear spring and damper. Space frame structures with pin
joints involve non-linearities due to very small gaps in the pin-joints. Such non-linearities can lead
to chaotic-like vibrations under sinusoidal excitation [209,228].
By controlling the normal force in the joint interface, one can improve the damping

performance in large structures. Ferri and Heck [229] proposed passively and actively controlled
joints. In each case, the normal force was allowed to vary yielding a connecting joint with
increased damping performance. Their results suggested that joints with amplitude or rate-
dependent frictional forces could offer substantial improvements. Gaul et al. [230] and Gaul and
Nitsche [231] studied the use of active control to vary the normal contact force in a joint by means
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of a piezoelectric element. Their model consisted of two elastic beams connected by a single active
joint as shown in Fig. 22. A friction model with velocity-dependent dynamics was used to describe
the friction phenomena. Control of the normal force is accomplished by placing a piezoelectric
stack disc between the bolt nut and beam surface such that any applied voltage at the stack disc
will result in thickening the piezoelectric material. This in turn causes an increase of the normal
force.
Cameron and Griffin [232] and Ren and Beards [206] developed different techniques for

predicting the steady state response of structures containing non-linear joints. Ren et al. [233]
proposed an identification method to extract dynamic properties of non-linear joints using
dynamic test data. The non-linear force at the joint was treated as an external force and the
principle of multi-harmonic balance was employed. This approach enables one to obtain the
force–response relationship of a non-linear joint. Ma et al. [234] treated the joint as a local force
operator in the structure’s equations of motion and used a Green’s function to solve for the
response by considering the joint as a pseudo-force. In one case, their model consists of clamped–
clamped beam, and in the other case, the beam was replaced by two half beams joined at their free
ends by a bolt. They considered the local dynamic effect of the joint to be the only difference
between a joint structure and non-joint structure. Experimentally, their approach is valid as long
as the supports of the two ends of the two structures are identical. If the ends are not identical
then their uncertainty and relaxation should be considered.
Several models were developed to describe the dynamic transfer behavior of an isolated joint by

Coulomb friction elements. These models can only describe the states of global stick or slip
(macroslip in the whole interface). Gaul and Bohlen [235,236] measured the dependence of the
reaction force of a bolted joint on the relative displacement of the joint and the results revealed the
dependence of hysteresis on the amplitude of the excitation force and the mean contact pressure.
Based on experimental measurements, it was concluded that the influence of gaps and viscous
damping can be neglected in the microslip regime. The joint stiffness and slip force of the elastic
Coulomb element were evaluated by minimizing the squared difference between the measured and
calculated dissipation work done per cycle. While there was no significant shift in the natural
frequencies, damping ratios were found to be significantly increased at higher excitation levels.
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Fig. 22. Active control to vary the normal contact force in a joint by means of a piezoelectric element [230].
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Gaul et al. [237] found that the actual normal contact pressure distribution in a dynamically
loaded lap joint is not constant in time on the interface. Depending on the transmitted load, the
interface may be divided into stick and slip zones. Lenz and Gaul [238] and Gaul and Lenz [239]
developed a three-parameter joint model that can describe the presence of stick and macroslip
condition. They designed two resonators to isolate bolted joints and measure their dynamical
transfer behavior in longitudinal and torsional motion. The dependence of the dissipated energy
per cycle of joint hysteresis on the relative displacements or rotations provided the means to
distinguish between microslip and macroslip regimes. A detailed FE model was developed to
estimate the dynamic response of assembled structures incorporating the influence of micro- and
macroslip of several bolted joints.

4.4.3. Force-state mapping technique

Crawley and O’Donnell [167] outlined the force-state mapping technique for a single-degree-of-
freedom non-linear damped oscillator. With reference to the transfer of the axial load through a
space truss joint, the spring and damper are properties of the joint, and the mass is the mass of the
adjacent truss element. Thus, the state of the joint is completely described in terms of the
displacement, x; and velocity, ’x; across the joint. The model can be described by the non-linear
differential equation

M .x þ Cðx; ’xÞ ’x þ Kðx; ’xÞx ¼ FðtÞ; ð57Þ

where M is the mass of the substructure, and Cðx; ’xÞ and Kðx; ’xÞ are the generalized damping and
stiffness of the joint, respectively, both of which are functions of the state. Note that the force
transmitted by the joint, FT ; is given by the expression

FT ¼ Cðx; ’xÞ ’x þ Kðx; ’xÞx ¼ FðtÞ 
 M .x: ð58Þ

The transmitted force depends on the state of the joint, x and ’x; and can be plotted for a
memoryless single-degree-of-freedom model in a three-dimensional diagram, which is referred to
as the force-state map. A typical force-state map of a general linear spring mass damper system is
shown in Fig. 23, which depicts an inclined plane whose slopes with respect to displacement and
velocity give the spring stiffness, K ; and damping coefficient, C respectively. If the surface of the
force-state map is not planar, the joint is non-linear. In this case, the force-state mapping will
display superposable non-linearities in which the transmitted force is a combination of linear and
non-linear force components. Crawley and O’Donnell proposed an expression describing the
transmitted force as

FT ¼ F0 þ K1x þ Knxn þ C1 ’x þ Cn ’x
n þ KDB þ CDB þ Ff signð ’xÞ þ gjxj signð ’xÞ; ð59Þ

where

KDB ¼

kDBðx 
 xDBÞ; xDBpx;

0; 
xDBpxpxDB;

kDBðx þ xDBÞ; xp
 xDB;

8><
>:
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and CDB ¼

cDBð ’xÞ; xDBpx;

0; 
xDBpxpxDB;

cDBð ’xÞ; xp
 xDB:

8><
>:

F0 is a constant preload, K1x; and C1 ’x are linear spring and damping forces respectively. Knxn and
Cn ’x

n are non-linear spring and damping forces, respectively, KDB and CDB are dead-band springs
and dampers, respectively, and the last two expressions represent classical Coulomb friction and
material hysteresis damping. Fig. 24 shows the force-state map of a typical non-linear joint that
includes a dead-band due to play in the joint and classical Coulomb friction between moving
surfaces.
For a small class of non-linearities that exhibit true memory effects, a higher order force-state

map can be created for memory effects linearly related to the state. For memory effects that are
not linearly related, system parameters can be obtained by testing at appropriate frequencies and
amplitudes. Curve fitting can be used to fit a surface to the force-state map and the system
parameters can be retrieved from the entire surface or a small operating region.
Kim and Park [225] extended the force-state mapping for multi-degree-of-freedom systems by

estimating the FRFs of substructures with the FEM or experimental modal analysis. Their
approach is based on measuring the response signal at the joint degrees of freedom and setting up
a non-linear joint force model to fit the model using the joint responses and the substructure
FRFs. The equation of motion of the kth substructure connected to m non-linear joints may be
written in the matrix form

M .Xþ C ’Xþ KX ¼ fðtÞ þ gðtÞ; ð60Þ
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Fig. 23. Force-state map of an ideal linear spring dashpot joint model [167].
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where M; C; K are the mass, damping and stiffness matrices of the kth substructure, fðtÞ is the
external force vector and gðtÞ is the joint force vector. The joint force vector has m joint forces and
zero values at other points, i.e.,

gTðtÞ ¼ f0; 0;y; 0; g1ðtÞ; g2ðtÞ;y; glðtÞ; glþ1ðtÞ;y; gmðtÞg: ð61Þ

The non-linear joint forces can be Fourier transformed by assuming a specific type of non-
linear joint force and adopting the idea of the harmonic balance. In this case, the Fourier
transform of Eq. (60) takes the form

½K
 o2Mþ ioC�XðoÞ ¼ fFðoÞ þGðoÞg: ð62Þ

The FRF matrix of the kth linear substructure is

HkðoÞ ¼ ½K
 o2Mþ ioC�
1: ð63Þ

The response amplitude may be written in the form

XkðoÞ ¼ HkðoÞfFðoÞ þGðoÞg: ð64Þ

The FRF matrix in Eq. (64) can be divided into two parts according to the joint and non-joint
states,

XðoÞ

XjðoÞ

( )
¼

H11 H12

H21 H22

" #
k

F1ðoÞ

F2ðoÞ þGðoÞ

( )
; ð65Þ

where fFðoÞgT ¼ ffF1ðoÞg
TfF2ðoÞg

Tg; fGðoÞgT ¼ ff0gTfGðoÞgTg:
The joint force vector GðoÞ can be determined from the equation that is generated from the

second row of Eq. (65), i.e.,

H22GðoÞ ¼ XjðoÞ 
H21F1ðoÞ 
H22F2ðoÞ: ð66Þ
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Fig. 24. Force-state map of an ideal dead-band spring with Coulomb friction [167].
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The joint force models connecting the joint forces with the joint states can be constructed by
first writing the joint force vector in the form

gðtÞ ¼

g11ðtÞy11 þ g12ðtÞy12 þ?þ g1n1ðtÞy1n1

g21ðtÞy21 þ g22ðtÞy22 þ?þ g2n2ðtÞy2n2

:::::::

gm1ðtÞym1 þ gm2ðtÞym2 þ?þ gmnm
ðtÞymnm

8>>><
>>>:

9>>>=
>>>;
; ð67Þ

where grsðtÞ are the components of the assumed joint force model and yrs are unknown
parameters. The parameters yrs are determined from the measured frequency domain joint degree
responses, i.e.,

grðtÞ ¼
Xnr

k¼1

XP

p¼0

XQ

q¼0

ypq
rky

p
rk ’y

q
rk; ð68Þ

where yrk ¼ ðxr 
 xkÞ and ’yrk ¼ ð ’xr 
 ’xkÞ; if rak; or yrk ¼ xr and ’yrk ¼ ’xr if r ¼ k: nr is the
number of non-linear joints connected to the rth co-ordinate. The Fourier transform of the joint
force vector may be written in the form

GðtÞ ¼

G11ðoÞy11 þ G12ðoÞy12 þ?þ G1n1ðoÞy1n1

G21ðoÞy21 þ G22ðoÞy22 þ?þ G2n2ðoÞy2n2

:::::::

Gm1ðoÞym1 þ Gm2ðoÞym2 þ?þ Gmnm
ðoÞymnm

8>>><
>>>:

9>>>=
>>>;
: ð69Þ

Substituting Eq. (69) into Eq. (66) results in 2m equations (m equations from the real parts and
m from the imaginary parts). The resulting algebraic equations are then solved for the point force
coefficients yrs: If the joint properties are frequency dependent, the model set of joint forces should
be solved uniquely at a given frequency and thus the number of equations required to obtain force
coefficients can be increased by selecting as many frequencies as needed.
This method is effective only for cases in which the joint properties are stationary with time.

However, due to preload relaxation and external environmental conditions the joint properties
will experience non-stationarity. In this case the FFT should be applied for discrete intervals to
observe how the joint properties are changing with time. More powerful techniques do exist such
as the spectrogram and wavelet transfer to reflect the non-stationarity in the time history records.

5. Design considerations

5.1. Fully and partially restrained joints

Conventional design and analysis of structural systems are based on the well-known two
extreme idealizations of joints; perfectly rigid (or fully restrained) and ideally pinned. However,
they are impractical, difficult to produce, and do not represent the real structural behavior as
reflected experimentally [8,240]. Rigid joints typically exhibit flexibility and sometimes are referred
to as semi-rigid. The importance of frame structures with partially restrained connections (e.g.,
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riveted joints) was recognized by Wilson and Moore [241] and the concept was introduced
to the American Institute of Steel Construction in 1946. The flexibility of joints has
been the subject of several studies [242–248]. Bjorhovde et al. [249] indicated that structural
connections exhibit semi-rigid non-linear response characteristics even when the applied loads are
very small.
Most structural connections exhibit non-linear moment–rotation ðM 
 fÞ characteristics,

where M ðin N mÞ is the applied moment, and f (in radian) is the relative rotation on the two
sides of the joint. The stiffness of a connection decreases as the load applied to the connection
increases. When the connection is unloaded, the ðM 
 fÞ curve normally follows an unloading
path parallel to the initial slope of the loading curve and therefore exhibits hysteresis. Several
experimental and numerical studies have been conducted to establish linear and non-linear
moment–rotation relationships that can be used for predicting the actual behavior of flexible
joints [243,245,250–253]. These studies have focused exclusively on joints in steel-frame structures.
Monforton and Wu [243] derived the stiffness matrix of a member with elastic restraints by
multiplying the stiffness matrix of a member with rigid connection by a correction matrix. The
elements of the correction matrix were given in terms of two-dimensional parameters, referred to
as fixity factors. Alternatively, another parameter, referred to as connection rigidity, has been used
to define the ratio of the moment the connection would have to carry according to the beam linear
theory and the fixed end moment of the girder.
Romstad and Subramanian [254] and Frye and Morris [245] presented other forms of modified

stiffness matrix. Wong et al. [255] modelled the bolted connection by a linear spring element,
which comprises both rotational and shear springs. Experimental results were used to identify the
stiffness of the connections. It was found that the rigidity of the connections obtained from static
load was lower than that obtained from the vibration impact test in a frame-type structure;
however, the value was very close to that in a cantilever beam. It was concluded that the
rotational stiffness estimated from static tests to determine the dynamic characteristics of a steel-
framed structure could not yield satisfactory results, particularly for higher modes. Rodrigues
et al. [256] modelled the semi-rigid joint by three fictitious springs that allow rotation, horizontal,
and vertical displacements. They used an iterative algorithm to predict the non-linear behavior of
the joint.
Under dynamic and cyclic loading, a tri-linear ðM 
 fÞ model was used by Moncarz and

Gerstle [257] whereas a bilinear model was employed by Sivakumaran [258]. However, these
models do not accurately represent the connection behavior since they do not reflect the
abrupt changes in connection stiffness as it moves from the elastic to plastic regime. In references
[259,260] a bounding-line model was proposed for the hysteretic moment–rotation ðM 
 fÞ
response that provides a smooth transition between the elastic and plastic regimes. Furthermore,
cyclic performance tests of 10 beam-column moment connections conducted by Tsai et al. [261]
indicated that the plastic moment capacities were somewhat erratic. Recently, Chan and Chui
[262] documented non-linear static and cyclic behavior of steel frames with semi-rigid
connections.
Non-linear behavior of joints under static loads has been accounted for by using iterative

analytical procedures. Chen and Lui [263,264] considered the flexibility of the connected frames
and included the non-linear behavior of the joint and the possible formation of plastic hinges in
the members. Pui et al. [265] obtained the following non-linear moment–rotation relationship for
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welded and bolted steel joints:

M ¼
ðS 
 SpÞf

½1þ jðS 
 SpÞf=M0jn�1=n
þ Spf; ð70Þ

where S is the initial slope of moment versus rotation curve, Sp is the slope of the asymptote for
large rotation, and M0 is a reference moment, and n is a power that defines the sharpness of the
curve. Liew et al. [266,267] showed that the power law given by relation (70) is accurate in
predicting the connection behavior. Pui et al. [265] adopted the values S ¼
21; 248 N m=rad; Sp ¼ 300:68 Nm=rad; M0 ¼ 88; 680Nm; and n ¼ 3 for the tested welded
joint; and S ¼ 20; 058Nm=rad; Sp ¼ 258:37Nm=rad; M0 ¼ 89; 660Nm; and n ¼ 1 for the
tested bolted joint. Sekulovic and Salatic [268] found that the influence of geometric non-linearity
increases with the applied load; furthermore, the influence is higher for semi-rigid type joints than
for fully rigid connections. It was found that the critical load and buckling capacity of the frame
structure significantly decrease as the flexibility of joints increases.
The static behavior of semi-rigid connected composite frames was studied in Refs. [269–274] to

determine the rotations of composite joints and their moment capacity. Li et al. [273,275]
predicted and measured the response of composite connections in frames. Li et al. [276] presented
the analysis treatment and design of composite frames involving semi-rigid and partial strength
connections. Their study revealed that the quasi-plastic approach originally proposed by
Nethercot [277] provides close estimation of actual behavior and was recommended for the design
of semi-rigid non-sway frames. Their measured connection moment capacities and stiffnesses were
found to be lower in the frame test than in isolated joint tests. This was largely due to the
inevitable unbalanced loads in the frame test, which implies that the connections in frames are
more prone to buckling.
Reliability analysis of two-dimensional William toggles, with non-linear flexible connections,

was studied by Haldar and Zhou [278] using stochastic FEM and Monte Carlo simulation. They
found that the flexibility of connections has a significant influence on the reliability of the
structure.
The design analysis of steel frames with semi-rigid joints has received extensive study (see, e.g.,

Refs. [279–284]). The purpose of these studies was to achieve an optimum design of frame
structures with semi-rigid joints. Optimum design studies involved the computation of design
sensitivities to constraints and the influence of inherent geometric non-linearities on the structure
response [285,286]. Given the significant influence of connection flexibility on structural reliability,
it is reasonable to suggest that optimum design of frame structures should explicitly recognize
variability in the connection properties.
Dynamic response analyses of steel frames with semi-rigid joints in the time and frequency

domains were reported in Refs. [287–292]. Deformations of the joints introduce additional degrees
of freedom. Suarez et al. [291] considered this by enforcing kinematic relationships between the
displacement co-ordinates of the joint and beam end. It was found that joint flexibility has the
most effect on the lowest natural frequency of the structure. Hsu and Fafitis [293] and Xu and
Zhang [294] considered the case of viscoelastic connections and connection dampers, while Shi
and Atluri [295] and Al-Bermani et al. [260] considered the case of non-linear flexible connections.
These studies showed that the connection characteristics greatly modify the dynamic properties of
the structure such as the eigenvalues and eigenvectors. The stiffness and damping characteristics
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of the connection can be tuned in a fairly large range; however, due to the inherent uncertainty in
the evaluation of the effective behavior of the joints, the design can lead to high-risk conditions.
This is particularly true when stiffness and damping coefficients are chosen in a range where a
small variation in the joint parameters produces a large variation in the response. The non-linear
dynamic response of steel frames with fully restrained and partially restrained connections was
studied in the time domain using FEM by Gao and Halder [296]. Reyes-Salazar and Haldar [297]
determined the non-linear seismic response of steel frames with fully restrained and partially
restrained connections.

5.2. Sensitivity analysis to joint parameter variations

The sensitivity of a jointed structure to parametric variations is among the most basic aspects of
structural design. Sensitivity theory is a mathematical field that investigates the change in the
system behavior due to parameter variations. The basic concepts of sensitivity theory are well
documented in several books (see, e.g., Ref. [298]). Sensitivity of a physical property of a
dynamical system to variations of different parameters can be determined by estimating the
corresponding partial derivatives at some fixed combination of the parameters. In many cases,
however, such a fixed combination of parameters cannot be selected since they vary according to
the system working regimes. Therefore, one may need a global investigation of the derivative
fields, which complicates visualization. In the case of two independent parameters, a geometrical
meaning of the level curves can be used for such a visualization of the sensitivity analysis. The
evaluation of the derivatives of the structural response with respect to the joint parameters such as
stiffness, mass, and damping is very useful for evaluating the parameter ranges over which the
system response is reduced and the parametric uncertainty thereby results in a low risk level due to
a small sensitivity of the response.

5.2.1. Sensitivity function
The sensitivity problem can be stated by defining the actual system parameters represented by

the vector, a ¼ fa1;y; ang
T; which differs from the nominal value a0 by a deviation Da: These

parameters are related to a certain vector x; which can be taken as the system response vector

’x ¼ Ax: ð71Þ

Let vi be the eigenvector associated with the eigenvalues li; it follows that

Avi ¼ livi: ð72Þ

Similarly, for the eigenvector wj of the transposed system wT
k one can write

wT
j ¼ ljw

T
k : ð73Þ

The eigenvectors vi and the adjoint eigenvectors wj are orthonormal, i.e.,

vTi wj ¼ wT
j vi ¼ dij; ð74Þ
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where dij stands for Kronecker delta. Taking partial derivatives of Eq. (72) with respect to a
parameter a gives

@A

@a
vi þ A

@vi

@a
¼

@li

@a
vi þ li

@vi

@a
: ð75Þ

Pre-multiplying Eq. (75) by the transpose adjoint vector wT
i gives

wT
i

@A

@a
vi þ wT

i A
@vi

@a
¼ wT

i

@li

@a
vi þ wT

i li

@vi

@a
: ð76Þ

Using Eq. (73) and i ¼ j; the sensitivity of the eigenvalue li with respect to a parameter a is
expressed in the form

Sli
a ¼

@li

@a
¼

wT
i ð@A=@aÞvi

wT
i vi

; i ¼ 1; 2;y; n: ð77Þ

Generally, a unique relationship between the parameter vector and the response vector is
assumed. However, this is not possible in real problems because they cannot be identified exactly.
It is a common practice in sensitivity theory to define a sensitivity function, S; which relates the
elements of the set of the parameter deviation Da; Da ¼ a 
 a0; where a0 is the vector of the
nominal values of the parameters, to the elements of the set of the parameter-induced variations
of the system function, Dx; by the linear relationship

DxESða0ÞDa: ð78Þ

This relation is valid only for small parameter variation, i.e., jjDajj{jja0jj � S: S is a matrix
function known as the trajectory sensitivity matrix, which can be established either by a Taylor
series expansion or by a partial differentiation of the state equation with respect to the system
nominal parameters. The sensitivity of eigenvalues to small changes in the system parameters is
given by the expression

Sli
aj
¼

@li

@aj

����
a0

: ð79Þ

This is known as the eigenvalues sensitivity parameter. Derivatives of the eigenvalues are very
useful in design optimization of structures under dynamic response restrictions. They have been
extensively used in studying vibratory systems with symmetric (i.e., self-adjoint) mass, damping,
and stiffness properties (see, e.g., Refs. [299–302]) and non-self-adjoint systems (see, e.g., Refs.
[303–305]). Baniotpolos and Abdalla [306] studied the sensitivity of joint properties of bolted steel
column-to-column connections.

5.2.2. Stochastic sensitivity
Under random excitation, one must deal with stochastic sensitivity. The stochastic sensitivity of

structures subjected to Gaussian random excitation was the subject of several studies [307–309].
Huang and Soong [310] and Huang et al. [311] extended the stochastic sensitivity analysis to
composite primary–secondary structural systems with the purpose of reducing the response of the
primary structure. Socha [307] considered stochastic sensitivity by studying the derivatives of the
response of the structure with respect to the system parameters such as stiffness, mass, and
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damping. Sensitivity analyses reported by Der Kiureghian and Ke [312] and Mahadevan and
Haldar [313] were used to reduce the number of basic random variables in structural joints.
Cacciola et al. [314] evaluated deterministic and stochastic sensitivity to characterize connection

parameters of dynamic response of multistory steel frames with viscoelastic semi-rigid
connections. They employed a FE consisting of an elastic beam having two Kelvin–Voigt
elements at its nodes and consistent mass, stiffness and damping matrices based on the work of
Xu and Zhang [294]. In order to allow the evaluation of the response sensitivity for large
structural systems, they adopted the same procedure formulated by Benfratello et al. [315], and
Muscolino [316] in conjunction with modal expansion of the response. Cacciola et al. [314]
modelled the joints in steel frames as rotational discontinuities between connected members as
shown in Fig. 25. The joint is represented by a torsional spring of stiffness kci ði ¼ 1; 2Þ with a
rotational dashpot of damping coefficient ci: The stiffness, mass, and damping matrices were
written in terms of the rigidity factor vi defined by the expression

vi ¼
1

1þ ð3EI=kciLÞ
; ð80Þ

where L is a characteristic length. This factor relates the rotational stiffness of the ith joint to the
flexural rigidity of the beam. Its value ranges from zero (pinned joint) to one (rigid joint).
Deterministic sensitivity analysis was extended to structures subjected to zero-mean white noise
excitations. The equation of motion of the structure in state vector form was written as

’xðt; aÞ ¼ AðaÞxðt; aÞ þGðaÞW ðtÞ; ð81Þ

where W ðtÞ is the ground acceleration, which is assumed to be a zero-mean white noise, and GðaÞ
is a matrix of system parameters.
Applying the It #o stochastic calculus (see, e.g., Ref. [317]) to determine the evolution of second

order moments in the modal space gives the second order stochastic sensitivity vector

S
ð2Þ
x;i ðt;a0Þ ¼

@

@ai

mð2Þ
x ðt;a0Þja0

¼E½fSx;iðt; a0Þg#fxðt;a0Þg� þ E½fxðt;a0Þg#fSx;iðt; a0Þg�; ð82Þ

where mð2Þ
x ðt;a0Þ is the second moment vector of the response state vector x which is function of

time and the nominal value of the parameter vector a0; E½::� denotes expectation, # is the
Kronecker product, which implies that every element of S

ð2Þ
x;i ðt; a0Þ is multiplied by xðt;a0Þ , and

S
ð2Þ
x;i ðt;a0Þ is the second order stochastic sensitivity. The evolution of the stochastic sensitivity of

the modal response in the state variables is given by the set of differential equations,

’S
ð2Þ
x;i ðt; a0Þ ¼ A2ða0ÞS

ð2Þ
x;i ðt;a0Þ þ A2iða0Þmð2Þ

x ðt; a0Þ þ 2pB2iða0ÞS0; ð83Þ
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Fig. 25. Beam element with torsional spring–dashpot joint modelling [314].
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where

A2ða0Þ ¼ Aða0Þ#Iþ I#Aða0Þ;

A2iða0Þ ¼
@AðaÞ
@ai

����
a0

#Iþ I#
@AðaÞ
@ai

����
a0

;

B2iða0Þ ¼
@GðaÞ
@ai

����
a0

#Gða0Þ þGða0Þ#
@GðaÞ
@ai

����
a0

;

mð2Þ
x ðt;a0Þ ¼ 
2pS0½A2ða0Þ�
1Gð2Þða0Þ;

S
ð2Þ
x;i ðt;a0Þ ¼ 
½A2ða0Þ�
1½A2iða0Þmð2Þ

x ða0Þ þ 2pS0B2iða0Þ�:

I is the identity matrix and S0 is the spectral density level of the white noise.
Fig. 26(a) shows the dependence of the second order moment response of the top story

displacement of an eight-story two-bay semi-rigid frame on the rigidity parameter v for undamped
and damped cases. Fig. 26(b) shows the dependence of the mean square response on the damping
value for three different values of the rigidity parameter v ¼ 0; 0:47; and 1. Derivatives of the
mean square response with respect to the damping and rigidity parameters are shown in
Figs. 27(a) and (b). It is seen from Fig. 27(a) that for the damping coefficient cc ¼ 9� 106 N s m
and values of v less than 0.7 the response mean square is very sensitive to the variation of the joint
damping coefficients of the first two stories only. For values of v close to 0.9 there is a significant
sensitivity to cci for every story, which results in large increment of the response. Fig. 27(b)
reveals that for cc greater than 5� 105 N s m the response is not sensitive to any variation of the
stiffness.

5.3. Metallic joints

In the design of bolted flanged joints, it is necessary to examine the contact stress distribution,
which governs the clamping effect on the sealing performance and the load factor. The load factor
is defined as the ratio of an increment in axial bolt force to the external force. When an external
load is applied to a joint, the contact stress distribution is changed and the axial bolt force is also
changed. Thus, it is important to know the relationship between the changes in the contact stress
distribution and the axial bolt force when an external load is applied to the joint.
Petersen [318] conducted an experimental investigation to study the effect of geometrical

imperfections of the contact surface in pre-stressed flange connections. He found that fatigue life
is not substantially affected by imperfections. However, another independent study by Schmidt
et al. [319], based on deterministic imperfection shapes, showed that geometrical imperfection
results in a significant increase in fatigue-relevant stress amplitudes. Bucher and Ebert [320] used a
stochastic FEM combined with Monte Carlo simulation to estimate the statistical properties of
the random ultimate load of bolted joints. They showed that the effect of imperfect contact can
considerably deteriorate structural performance.
Sawa et al. [321] addressed the problem of estimating the load factor for the external bending

moments in bolted circular flanged joints. The characteristics of circular bolted flanged joints
subjected to external bending moments (torque) were examined analytically and experimentally.
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By replacing a circular bolted flanged joint with a finite solid bar, the contact stress distribution of
the joint was determined using the three-dimensional theory of elasticity.
Zhao [322] analyzed the load distribution in a bolt–nut connector. Taniguchi et al. [323]

conducted experimental tests and argued that the well-known Ostrovskii’s equation of interface
stiffness holds up to a certain critical pressure pc: In this case, the displacement of interface z is
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Fig. 26. Dependence of the mean square response of the top floor on (a) the fixity parameter, and (b) the damping ratio

[314].
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related to the contact pressure by the simple equation

z ¼ cpm; pppc; ð84Þ

which is based on experimental data.
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Fig. 27. Sensitivity curves showing the derivative of the second order moment of the top story displacement with

respect to (a) the damping coefficient of the connections of the ith story versus fixity factor n for cc ¼ 9� 106 N s m;
(b) the fixity factor of each story versus damping coefficient for n ¼ 0:47 [314].
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The relationship between the maximum approach zmax and the sum of surface roughness is

zmax ¼ 0:25Rmt: ð85Þ

One of the design objectives in bolted joints is to reduce the portion of the external load carried
by the bolt such that the joint members carry a large portion of the external load. The calculation
of bolt and member stiffness has been considered in several FEM-based studies [324–330]. By
designing the bolted joint such that the joint members carry a large portion of the external load,
the joint strength can be much stronger than if the bolt were carrying the entire load. Norton [331]
concluded that this could be done by selecting a bolt that is stiffer than the members. Lehnoff and
Wistehuff [329] conducted FEA on different joint models and found that the bolt stiffness
decreased and the member stiffness increased for all models as the magnitude of the external load
was increased. This only takes place due to bending of the threads and the decrease in cross-
sectional area of the bolt when the threads are included in the FEA. Later, Lenhoff and Bunyard
[330] found significant differences in both bolt and member stiffness when the thread geometry is
included. The observed decrease in the bolt stiffness was explained by both the increased flexibility
of the bolt due to bending of the threads and the decrease in cross-sectional area of the bolt when
the threads are included. When the bolt preload is applied, the member stiffness increases due to
the resulting decrease in the initial member deflection.
The effects of surface roughness, compressional moment, and torsional angle on the torsional

moment were studied by Karamis and Selcuk [332] and Niisato et al. [333]. It was found that the
surface roughness plays a major role in the joint reliability. Higher values of surface roughness
resulted in loosening of the joint. As the surface roughness increases the critical sliding load,
above which the sliding stops, increases. The effect of thread pitch and friction coefficient on the
stress concentration in nut–bolt connections was studied by Dragoni [334]. The optimum position
of bolts in structures was the subject of many studies (see, e.g., Refs. [335–339]). Simulation of
non-linear dynamics of bolted assemblies revealed that fastener placement could be optimized to
reduce vibration-induced loosening [340].
The design of screw threads involves several geometric features and dimension characteristics

[341]. The mechanical performance of threaded components depends on material properties,
thread geometry, and environment conditions. The effect of thread dimensional conformance on
vibration-induced loosening was studied by Dong and Hess [342]. It was found that, when
compared with fastener combinations within conformance, resistance to vibration was
significantly degraded for the fasteners combinations with undersized pitch and major bolt
diameters or oversized pitch and minor nut diameter. Leon et al. [341] found that variations in
bolt pitch diameter would affect the yield and tensile strength by about an order of magnitude
more than variations in bolt major diameter or nut pitch and minor diameters.

5.4. Composite joints

Although this review focuses primarily on bolted joints, some basic issues in bonded composites
are provided here for comparison with bolted composite joints. There are many parameters
involved in the design of composite bonded joints. Some of these are the bond length, bond
thickness, and adhesive curing temperature. The design of mechanical fastening of plastics is
described in a book by Lincoln et al. [343], while the mechanical behavior of adhesive joints is well
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documented in Verchery [344]. Vinson [345] outlined some design factors of composite fasteners.
The modelling of bolted pretension in composite structures was developed by Stallings and
Hwang [346]. Rastogi et al. [347–349] studied the effect of these parameters on the failure loads of
a double-lap adhesively bonded joint. They found that a smaller bond length results in higher
magnitude of stresses in the joint along the bond length. Apalak and Davies [350] discussed a
number of design aspects of adhesively bonded corner joints. Lee and McCarthy [351] presented
an overview of composite-to-metal joints. Ogunjimi et al. [352], Bailey et al. [353,354] and
Hermann et al. [355] studied the role of critical thermal/structural parameters on the design of a
metal/composite joint. Wang et al. [356] presented an assessment of different design approaches
for bolted joints in laminated components.
The load distribution in single- and double-lap composite joints and multi-fastener joints was

determined in Refs. [357–367]. Highly loaded bonded joints for aircraft thin skins were analyzed
by Elsly et al. [368]. The stress distribution and load resistance in composite joints were estimated
by Prasad et al. [369] and Prabhakaran et al. [370]. Hamada et al. [371,372] estimated the strength
of quasi-isotropic carbon/epoxy joints and considered effects of stacking sequences. Ireman [373]
developed three-dimensional stress analysis of bolted single-lap composite joints.
Although utilized quite extensively, bolted joints in laminated composites are not well

understood. Experimental and statistically based investigations of ultimate strengths of bolted
joints for laminated composites were reported in Refs. [374–376]. Stress concentrations at hole-
edges in advanced composites can be as high as nine [377] and joint efficiencies are often as low as
50% [378]. Ankara and Dara [379,380] and Arnold et al. [381] applied optimization techniques for
composite bolted joints design. Ireman et al. [382] reported a number of design methods for bolted
joints in composite aircraft structures. Snyder et al. [383] and Shih [384] presented different
numerical approaches for the analysis of composite bolted joints. The behavior of joints under
central and eccentrically loaded bolted and welded joints was determined by Skalerud [385] and
Gattesco [386]. The design of composite fasteners subjected to transverse loads was considered by
Running et al. [387]. Rosner and Rizkalla [388,389] experimentally and analytically examined the
behavior of bolted connections in composite materials used for civil engineering applications. A
design procedure was introduced to account for material orthotropy, pseudo-yielding capability,
and other factors that influence bolted-connection behavior.
Different design approaches of multiple-row bolted composite joints under general

in-plane loading were considered in Refs. [390–394]. Chutima and Blackie [395] studied the
effect of pitch distance, row spacing, end distance, and bolt diameter on multi-fastened composite
joints.
Camanho and Matthews [396] presented an overview on the strength analysis of mechanically

fastened joints made from fiber-reinforced plastic (FRP). It was remarked that there is no
universally accepted strength design method for mechanically fastened composite joints
[381,397–399]. However, analytical and numerical methods have been widely used to determine
the stress and failure occurrence for an optimal joint design [400]. The case of multi-bolted joints
was considered by Hassan et al. [401–403]. Analytical and experimental studies pertaining to the
tensile response and failure of joints made from carbon fiber-reinforced plastic (CFRP) were
reported in Refs. [404–406]. They observed that the dynamic behavior of composite joints is much
more complicated than quasi-static behavior because of the involvement of strain rate and inertia
effects. The effect of clamping on the tensile strength of composite plates with a bolt-filled hole
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was studied in Refs. [407–412]. Erki et al. [413] addressed the factors affecting the design of glass-
fiber reinforced plastic (GRFP) bolted connections.

6. Failure and fatigue of structural joints

6.1. Metallic joints

In Section 3, the mechanisms of relaxation and vibration-induced loosening of joint structures
were discussed and assessed. The behavior of a bolted joint under dynamic loading is affected by
the type of load transfer in the connection. As mentioned earlier, depending on clamping pressure,
the applied load can be transmitted either by friction between contact surfaces, or by shear and
bearing of the bolts. Dynamic loading can cause fatigue and failure of the joint structure. In
general, the likelihood of a particular failure mechanism in the joint depends on the load and the
structural properties. The principal modes of failure of mechanically fastened joints are (1)
bearing failure of the material, (2) tension failure of the material, (3) shear-out failure of the
material, and (4) shear failure of the bolt.
Lazzarin et al. [414] and Atzori et al. [415] studied the fatigue modes of aluminum alloy bolted

joints. Their statistical analysis revealed that the clamping forces are not high enough to prevent
slipping into bearing and shear. With a high number of cycles of repeated loads, the friction-type
joints were slip resistant and fatigue cracks started in the gross section, in front of the first
boltholes. Fatigue cracks initiated outside the zone weakened by the holes near the external
diameter or at the interface of the contact surfaces. The dependence of the stress amplitude on the
number of cycles was found to be scattered within a band that is limited at the top by the yielding
properties of the materials.
In road vehicles subjected to impact loading, the structural collapse is controlled such that it

offers protection to the occupants. Birch and Alves [416] conducted a series of experimental tests
to study the dynamic failure of spot welded lap joints and bolted joints in thin sheet materials that
are used in road vehicles. Under pulling in-plane shear load, failure of the bolted joints first began
as rotation of the bolt and local out-of-plane buckling of the joint material, which were followed
by tearing and extension of the hole in the jointed plates. Final failure occurred either by a pull
out of the bolt, head or nut. Fig. 28 shows the dependence of the pulling load on the displacement
of 3- and 5-mm bolted joints under different values of pull velocity.
High-temperature turbine cylinders and valve covers are joined using studs or bolts. High-

temperature bolts are tightened either by thermal or mechanical means to an initial displacement
or stretch [417]. The initially high stress relaxes with time as the bolt creeps at the operating
temperature. Mantelli and Yovanovich [418] and Fukuoka et al. [419] analytically and
numerically studied the influence of thermal loading on the behavior of bolted joints. Ellis et al.
[420] developed and validated an analytical life prediction method for high-temperature turbine
and valve bolts. The failure criterion was an accumulated inelastic or creep strain limit of 1%. Life
assessment was based on the measured bolt length to calculate the accumulated creep strain. The
conversion of elastic strain by stress reduction into creep strain was given by the relationship



1

E

ds
dt

¼
dec

dt
; ð86Þ
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where s is the stress, t is time, and ec is the creep strain. For a time increment, the stress was held
constant and the increment of creep strain accumulated was calculated.

6.2. Riveted joints

The dynamic failure of structural joints is of great concern to automotive and aerospace
industries. Many parts of aircraft structure are joined by bolts and rivets and are subject to
spectrum fatigue loading [421]. The effect of rivet pitch upon the fatigue strength of single-row
riveted joints was studied by Seliger [422]. It was found that the fatigue strength per rivet increases
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Fig. 28. Load–displacement curves for (a) 3 mm bolted joint: specimen 46 under pull velocity 0:02 mm=s; 42 under

5:2 mm=s; 43 under 50:5 mm=s; and 44 under 500 mm=s; (b) 5 mm bolted joint 35 under 0:02 mm=s; 36 under

3:04 mm=s; 38 under 25:3 mm=s and 39 under 250 mm=s [416].
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with increasing rivet pitch. One of major problems of aircraft aging is the effect of fretting contact
stresses on crack nucleation in riveted lap joints and pinned joints [423–426]. Langrand et al. [427]
considered structural integrity issues in modelling riveted joints for numerical analysis of airframe
crashworthiness. The FE modelling included structural embrittlement due to the riveting process,
mechanical strength characterization, and simplified modelling of bonding.
Experimental studies by Terada [428–430], Terada and Okada [431,432], and Furuta [433]

discussed the influence of fastener type, fastener row, squeezing force, load value, and corrosion
on the fatigue performance of riveted lap joints. Their experimental results suggested that fatigue
behavior of a fuselage structure could be estimated by evaluating the largest principal stress under
complex stress conditions. One of the surprising findings was that overloads were effective to
extend the fatigue life of the constant amplitude tests of single lap joint. However, underloads (or
compression load) resulted in considerable out-of-plane deformation. The difference between
corrosion fatigue and fatigue of corroded joints could be substantial in view of the relation
between tightness and load transmission.
The creep behavior of an aircraft structure due to aerodynamic heating may result in excessive

deformation and creep rupture during the design lifetime of riveted joints [434,435]. It was
reported that the creep of a joint could be considerably greater than the tensile creep of an
unriveted sheet. Furthermore, the correlation between the creep of a joint and the tensile creep of
an unriveted sheet was questionable [434], but the correlation was found to exist later [435].
Simple methods were described to estimate the time to rupture, mode of rupture, and deformation
of structural joints in creep under constant load and temperature conditions. The temperature
distribution pattern in a heated structural joint of a given geometry was found to
change considerably due to the joint interface. The degree of such change depends on the value
of interface thermal conductivity. Barzelay and Holloway [436,437] found that any
change in temperature distribution results in a different deformation pattern. Wright and
Johnson [438] studied the effect of thermal aging on the bolt bearing behavior of highly loaded
composite joints.
Fretting in riveted joints arises from microslip associated with small-scale oscillatory motion of

nominally clamped structural members. Farris et al. [425] and Wang et al. [439] indicated that
fretting is the main mechanism for creating multiple site damage at fastener holes. Multiple site
damage in riveted lap joints was reported by Silva et al. [440]. Beuth and Hutchinson [441], M .uller
[442] and Piascik and Willard [443] conducted experimental investigations to characterize multi-
site damage in fuselage structures and indicated that fretting is the cause for crack nucleation in
lap joints. Harish et al. [444] and Harish and Farris [426] used FEA to determine the effects of
various parameters such as the magnitude of normal and tangential forces transferred, interface
friction and rivet patterns on local contact stresses and crack nucleation life. Fig. 29 shows a
comparison of contact stresses estimated by FEM and Mindlin theory for a load transfer ratio
(LTR) of 0.4. LTR is defined as the ratio of the load carried by the rivet to the total applied load.
The contact normal pressure, p; shear traction on the rivet interface, q; and tangential stress
around the fastener hole on the skin, sh; are non-dimensional with respect to the remote applied
stress s0: Fig. 30 shows the life to failure for a lap joint with different values of the squeeze force
used during the riveting process. The total life to failure was measured by the number of load
cycles at 10 Hz with stress ratio smin=smax ¼ 0:01: It was reported that the failure initiated along
the 90o direction, i.e., normal to the applied load along the in-plane.
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Fig. 29. Comparison of contact stresses for load transfer ratio of 0.4 and friction coefficient m ¼ 0:5: —, FEM; - - -,

Mindlin theory with added effect of bulk stress [426].

Fig. 30. Life to failure for lap-joint for different values of squeeze force F : \; F ¼ 2500 lb; W; F ¼ 3500 lb; J;
F ¼ 4250 lb; }; F ¼ 5000 lb [426].
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6.3. Composite joints

Failure and fatigue of composite joints depends on the type of the joint. For example, adhesive
bonded joints exhibit high stress concentration near the ends of the joint. Such stress
concentration in the adhesive layer results in high stresses in the adjacent plies of the adherend
laminates. Accordingly, failure may be initiated in these plies. An effective way of reducing the
local high stresses in the plies is to interleave the plies of the adherend laminates so that adhesion
takes place in many layers. It has been agreed that the allowable loads on a joint are those at
which micromechanical damage first occur. This type of damage will eventually lead to
macromechanical damage. Dickson et al. [445] developed a comprehensive linear analysis for
bonded joints in composite structures. Schulz et al. [446,447] considered the tension-mode fracture
model in studying bolted joints in laminated composites.
Bonded joints have been used in aerospace applications for highly loaded structures, but

generally are not used in primary load paths because of the variability in the ultimate strength and
the difficulty of non-destructively evaluating their strength. Seven modes of micromechanical
damage at bonded joints were discussed in detail by Agarwal and Broutman [13]. Maximum stress
criteria and the fracture mechanics criteria, which deal with failure by crack initiation and
propagation, are commonly used in composite structures to predict the location for damage
initiation. Crack propagation is unstable when it causes the total energy to decrease or remain
constant. There are three basic modes of crack loading and extension: (1) crack opening mode
(Mode I), (2) shear mode (Mode II), and (3) anti-plane strain or tearing mode (Mode III). More
complex stress states lead to mixed mode crack extension. Chiang and Rowlands [448] developed
a FE analysis to analyze the mixed-mode fracture of bolted composite joints. The bearing failure
of bolted composite joints was experimentally characterized by Wang et al. [449]. Forte et al. [450]
examined the influence of adhesive reinforcement on the Mode I fracture toughness of a double
cantilever beam specimen. They developed a plane strain axisymmetric damage model to
determine the energy release rates for mid-plane cracking in aluminum bonded specimens with
varying amounts of adhesive reinforcement. They found that the fracture behavior became less
brittle upon the addition of fibers in the bond-line. Gilchrist and Smith [451,452] reported some
results pertaining to the development of fatigue cracks in t-peel joints.
The long-term behavior of composite-to-composite joints in severe environments is a difficult

problem currently under research in the composite structure community. Creep is one of the main
characteristics of composite joints. Su and Mackie [453] developed a two-dimensional creep
analysis of adhesive joints. A series of experimental and analytical studies were conducted
[454–458] to predict the progressive failure in an adhesively bonded composite-to-composite
double-lap shear specimen. Other studies [459–462] estimated the fracture load and the fracture
parameters for adhesive joints. For unidirectional adherends, Roy and Donaldson [456]
experimentally observed that the crack front profile appeared to be uniform across the width
of the specimen, indicating that the free edge fields along the sides of the specimen do not
significantly influence the crack front.
FEM and boundary element method have been used to determine the stress and strength of

composite joints (see, e.g., Refs. [346,463–471]). These studies have focused primarily on the
physics of the problem but have not formally addressed the observed variability in the mechanical
properties of composite joints. Richardson et al. [472], and Bogdanovich and Kizhakkethara [454]
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carried out three-dimensional FEA for double-lap shear joints with unidirectional outer
adherends and an aluminum middle adherend and found that the side edges of the specimen
had little effect on the stress field. Later, Bogdanovich and Yushanov [473] conducted a 3-D
progressive failure analysis utilizing the strain energy release to predict various scenarios of
cohesive, adhesive or interlaminar crack propagation in bonded composite joints. In a series of
studies, Iarve [474–476] developed 3-D stress analyses of composite fasteners. Edlund and
Larbring [477] and Edlund [478] determined the damage behavior of adhesive joints using
geometrically non-linear models.
Fatigue damage of composite bolted joints has been phenomenologically characterized for

different structures [404,479–488]. Other studies included deterministic analyses and predictions of
fatigue of bolted joints [489–494]. Ko et al. [495] considered the influence of material non-linearity
on fatigue behavior of composite bolted joints. The influence of uncertainty and geometric
variabilities were studied through probabilistic approaches by Chamis et al. [496], Minnetyan et al.
[497], and Tong [498]. The evolution of pull-through failure of composite laminates was studied
experimentally and analytically by Banbury and Kelly [488], and Banbury et al. [494]. The fracture
mechanics of double cantilever adhesive joints was analyzed in Refs. [499,500]. The case of
composite-to-metal lap joints was reported by Reedy and Guess [501].
Cooper and Turvey [502] studied the effects of joint geometry and bolt torque on the

performance of single bolt joints in pultruded glass reinforced plates (GRP). Turvey [503]
presented an assessment of research activities on single-bolt tension joints in structural grade
pultruded (GRP) and reported some experimental results. Details were given of 54 tests on single-
bolt joints in which the angles between the pultrusion and tension axes (the off-axis angle) and the
joint geometry were varied. Ultimate strength, initial stiffness, initial bolt slip and bolt
displacement at failure data were presented as functions of the joints’ principal geometric ratios.
The reported joint failure modes showed that for off-axis anglesX30�; bearing failure (a relatively
benign failure mode) did not occur. Instead, tension mode failure predominated and cracks
tended to propagate diagonally across the width of the joint.
Saunders [504] and Galea and Saunders [505] studied the generation of fatigue damage around

fastener holes in thick bolted joints. Galea et al. [506] presented a non-destructive evaluation of
composite-to-metal joints. Ramkumar and Tossavainen [507] studied the dependence of the load
ratio R ¼ smin=smax on the fatigue life of AS1/3501-6 graphite/epoxy joints. For tension–tension
loading, R ¼ 0; the failure mechanism was partial or total shear-out. At 85% of the quasi-static
failure stress run-out was observed. The quasi-static strength was slightly higher in compression
than in tension. For tension-compression loading, R ¼ 
1; the failure mode was hole elongation.
Xiong [508] developed a complex variational approach for the failure prediction of composite
joints involving multiple fasteners. Destuynder et al. [509], Park and Alturi [510], and Persson and
Eriksson [511] studied the fatigue of multiple-row bolted joints in lap joints and carbon/epoxy
laminates. The joint’s failure strength and failure mode were predicted using the results of the
joint stress analysis along with the point stress failure criterion originally proposed by Whitney
and Nuismer [512]. Ryan and Monaghan [513] used FEM to study the effect of panel material,
laminate stacking stiffness and rivet forming load on the stress distribution with both the fiber
metal laminate (FML) and the 2024-T3 riveted joints subjected to external loads. It was found
that if the rivets were installed in the same manner as in a monolithic aluminum panel, localized
delamination was predicted to occur in the FML panels during rivet forming. Allix [514] analyzed
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the damage of delamination around a hole. Li et al. [406] observed combined failure modes
(bearing/pull-out, bearing/cleavage) in riveted joints made from CFRP. Other failure modes, such
as bending-induced cross-section failure and rivet cap penetration failure, were identified in
tension tests.
Sch .on and Nyman [515] and Starikov and Sch .on [516] investigated the spectrum fatigue life and

the local fatigue behavior of CFRP bolted joints. They observed that fatigue degradation of the
fastener system involved washer failure, reduction in bolt pre-stress, and fatigue damage at bolt
holes. Bolt movement was found to increase measurably during fatigue testing. Changes in the
bolt behavior were reported to occur very early in the fatigue life of bolted joints and reflected
rapid changes in the damage state of the fastener system and the adjacent composite.

7. Concluding remarks and recommendations

Mechanical joints and fasteners are essential elements in joining structural components in
mechanical systems. The dynamic characteristics and reliability of built-up structures depend to a
great extent on the dynamic properties of the joint. However, it is not possible to guarantee that
all joints are subject to the same load conditions and there is a degree of uncertainty in the preload
in each joint. In addition, there is also relaxation in the preload due to environmental conditions
once the system is placed in service. The literature has focused on estimating the energy
dissipation in bolted joints associated with microslip and macroslip regimes. The problems of joint
uncertainties and relaxation have been studied to determine the random eigenvalues and damping
in the joints using fuzzy sets, stochastic FEM, Monte Carlo simulation, and special co-ordinate
transformations. The identification of linear and non-linear joint properties, such as damping,
stiffness and inertia, has occupied a substantial amount of research activity. Design considerations
and fatigue and failure modes in metallic and composite joints also have received extensive
attention. Based on the white paper by Dohner [2] and the work reviewed in this article, the
following are recommended future research avenues:

* There is a need for additional sinusoidal and random excitation tests to measure the evolution
of the dynamic characteristics of joints. These studies should focus on variability in mechanical
properties of joints to facilitate rigorous modal validation. They should be conducted for
various values of preload, and different excitation conditions. The test duration should be long
enough to exhibit qualitative variations of the dynamic characteristics of the joint model.
Owing to joint relaxation associated with non-linear prying loads, response statistical
parameters will be both non-Gaussian and non-stationary. They should be estimated for
specified intervals of time.

* The influence of joint preload uncertainty on natural frequency and damping ratio should be
experimentally measured. It is important to conduct sensitivity analysis to identify the critical
regions of joint conditions that result in significant changes in the system dynamic behavior.

* There is a need to develop analytical models of structural elements with joint uncertainty
represented by both fuzzy and random parameters in the differential equations of the systems.
Furthermore, the connection between the types of uncertainty in the properties of joints and the
chosen uncertainty model (e.g., fuzzy or random) must be more explicit. This will allow
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researchers to properly employ measured data to evaluate these models and will also help
experimentalists to design laboratory specimens and sensor installations to better support
validation studies. The sensitivity of the dynamic characteristic of structural systems to
variations of joint parameters is very important to their safety and integrity. The models should
take into account such non-linear sources as prying loading, friction forces, and relaxation
effects.

* It is important to study the influence of bolted joint uncertainties and relaxation on the first
passage problem. This should be conducted analytically, numerically, and experimentally for
simple one-dimensional models to aid in the generation of physical intuition.

* Stochastic models of bonded joints are needed to support quality-control efforts that are
directed towards substantially decreasing the observed variability in the strength of bonded
joints. Models that incorporate many potential sources of variability will help to guide test
designers and manufacturing specialists in choosing the most effective parameters for
improving the robustness of bonded joints.
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Appendix A. Common terminology

The purpose of this appendix is to provide the common terminology used in discussing bolts
and bolted joints.

Basic bolt geometry and dimensions (see Fig. 31)

Lc total length of fastener, including head
Lt total length of threads on fastener
LB unthreaded length ¼ L 
 Lt

LG grip length
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D nominal diameter
DB diameter of bolt head or washer (diameter of contact with joint members)
DH diameter of bolt hole (not shown)
HH bolt head height
HN nut length

Faying surfaces: Surfaces subjected to friction developed between the joint surfaces in a shear
joint.

Prying load: Usually it is assumed that the resultant external load in bolted joints under tension
load is acted at some point along the axis of the bolt. In reality, the tensile load is applied off to
one side of the bolt and thus is called a prying load. Such load can drastically increase the amount
of tensile and bending stress produced in the bolt. Fig. 20 shows a schematic diagram in which the
tension loads on the joint are offset from the axis of the bolts.

Slip-resistant (or friction-type) joint: Joints in which friction is responsible for shear resistance,
see Fig. 32.

Stress area ðAsÞ of standard thread is estimated based on the mean pitch and root diameters.
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