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Abstract

A variational equation is derived for the in-plane and out-of-plane motions of a configuration composed
of two rectangular and annular sector piezoceramic bimorph plates arranged in the shape of one half of a
single tuning fork. The required variational equation for the structure is obtained by means of a low order
expansion in the three-dimensional variational equation. The elements that connect any of the two bimorph
plates, which are at right angles with respect to each other, are modelled as rigid bodies in the continuity
conditions at the interface edges of the connected bimorphs.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The conventional angular-rate gyroscope, based on the conservation of angular momentum of
a spinning flywheel, is commonly used in vehicles where size is of little concern. However, for
many recent applications, such an angular-rate gyroscope is too expensive, too large, and has a
relatively short lifetime determined by the limited life of the rotating sensor devices that wear out
significantly faster than the associated electronics.

The concept of a vibratory angular-rate gyroscope was first developed in the middle of the 19th
century. In the mid-19th century Leon Foucault [1] developed the underlying theory of rotation
sensing, culminating in his pendulum, which calculates the rotation of the earth and thus the
period with amazing accuracy. In the middle of the twentieth century, the Sperry Gyroscope
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Company developed a two-arm tuning fork gyroscope called the Gyrotron as the first successful,
artificial vibrating angular-rate sensor [2]. The drive arm contains a magnetic actuator to which an
alternating current is applied, causing the material to change shape in an oscillatory manner. The
detection sensor is placed on the detection arm in the direction perpendicular to the drive arm.
Subject to a constant rotation-rate 2 about the longitudinal axis of the tuning fork, the Coriolis
force causes out of plane motion proportional to Q. This Coriolis force is detected by the detection
sensor, which produces a current or a voltage proportional to the angular velocity.

In the 1960s, General Electric replaced the magnetic actuation of the Gyrotron with
piezoelectric means in their VY RO [3], in which the in-plane opposing vibratory motion is used to
drive the system and the resulting out-of-plane opposing vibrational motion is picked up to
measure the angular-rate. Advancement of materials along with the improved manufacturability
of polarized ceramics in the 1980s initiated the miniaturization of sensor devices [4]. Watson [5]
invented a modification of the common rectangular cross-section tuning fork gyroscope, which
has separate driving and detecting tines oriented at right angles relative to each other on the same
leg, as treated in this work.

Kudo et al. [6] built and measured Watson’s tuning fork gyroscope [5] made of piezoelectric
material,' much as the configuration treated in this work.? In the same work, they also perform a
finite element calculation® and find a point of zero displacement for support. In addition they [7]
built and measured a more conventional double-ended tuning fork gyroscope made of
piezoelectric material (see footnote 1) and performed a finite element calculation (see footnote
3) and found a point of zero displacement for support. Ulitko [8] has provided an analytical
treatment of a vibratory gyroscope with bimorph beams in the shape of a tuning fork, even
though he refers to experimental work [6,7] that employs piezoelectric plates as tines. In the
analysis he uses classical Bernoulli-Euler beam theory for both the straight and curved parts,
from which he calculates the sensitivity.

In this work, a vibratory gyroscope with bimorph plates arranged in the shape of one half* of a
tuning fork composed of two cross-jointed bimorph plates connected to an annular sector plate is
analyzed. Although some good analytical work on the bimorph exists in the literature [9,10], it is
simpler and clearer to obtain the lowest order one-dimensional electrostatic equations for the
bimorph plates directly from the three-dimensional equations because the electric field points only
in the thin direction of the bimorph plates. The basic configuration of Watson’s tuning fork
gyroscope [5] is employed for the tines, which have two thin exciting and detecting piezoceramic
plates oriented at right angles on one tine. However, in the case treated here the piezoceramic
plates are bimorphs and the size is about one-sixth of that built and measured in Ref. [6]. Here a
semi-analytic treatment is employed, in which the vibrating bimorph elements are treated as
plates, which they are, rather than beams. However, it should be noted that the configuration of
the bimorph tuning fork gyroscope treated in this work has not, as yet, been fabricated.

"In both works [6,7], the authors do not specify the piezoelectric material or the placement of the electrodes.
However, it is likely that they used polarized piezoceramic bimorphs.

2The connecting base in the case of Watson’s configuration used in Ref. [6] is rectangular, whereas the equivalent
element in the case treated in this work is cylindrical.

3They make purely elastic displacement calculations and no electrical quantities are calculated in Refs. [6,7].
However, they do measure the appropriate electrical quantities.

4Only half of the tuning fork need be treated because of the symmetry of the configuration.
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The procedure used in this work employs a modification of Hamilton’s principle within the
framework of two-dimensional plate theory, for both out-of-plane and in-plane motions of
rectangular and annular sector plates, from which appropriate variational equations are obtained.
The free flexural vibration problem for a thin elastic® cantilever plate has been treated [11] using
the variational approximation procedure employed in this work. In the variational approximation
procedure used in Ref. [11], the differential equation and edge conditions on both sides of the
width are satisfied exactly and the edge conditions at the free and fixed edges are satisfied
variationally. Since the variational equation for plates in which all conditions, i.e., those of both
natural and constraint type, arise as natural conditions is not readily available, we first derive the
two-dimensional variational equation with all natural conditions for the flexural vibrations of thin
plates from the existing three-dimensional formulation. This is done by making a low order
expansion of the displacement in the thickness co-ordinate and integrating through the thickness
in the manner of Mindlin [12]. The exact solution of the differential equations and free edge
conditions on opposite faces yields dispersion curves. We take up to a certain number of these
solutions represented by the dispersion curves in what remains of the variational equation with all
natural conditions to obtain a system of linear inhomogeneous algebraic equations, from which
calculations are performed. By means of the same type of variational approximation procedure,
the free vibration problem of cantilevered rectangular plates in-plane stress has been treated [13]
for the in-plane motion of the plate. In essentially the same manner, the free vibration problem of
the cantilevered annular sector plate has been treated for the flexural motion [14] and in-plane
motion [15].

2. Development of variational equations
2.1. Three-dimensional variational equation for a linear piezoelectric continuum

For a holonomic system [16], Hamilton’s principle can be stated as follows [17]:
t t
5/Ldz+/5Wdz:O, (D)
to to

where L is the Lagrangian given by L=T —V and oW is the virtual work done by
the non-conservative forces, T and V represent the kinetic and the potential energies of the
system, respectively. It has been shown that the variational equation of linear piezoelectricity for
infinitesimal strain in a volume V" bounded by a surface S may be written in the form [18]

Ny + N, =0, (2)

>Since the bimorph is thin, it is shown in Section 2.5 that the purely elastic solutions obtained in the earlier work on
free vibrations apply to the piezoelectric case treated in this work provided only that the flexural constants are modified
by the influence of the piezoelectric coupling as shown in Egs. (43), and (43);. In the case of in-plane motion the
influence of the piezoelectric coupling cancels in the bimorph. This is a consequence of the fact that the electric field
points only in the thin direction between electrodes, which enables the electrical portion of the variational equation to
be ignored in this work.
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where ¥, and ¥, denote, respectively, the mechanical and electrical parts of the variational
equation, and are defined by

t
N— / dz |:/ (‘C,‘j",' — piij)éuj dVv + /(fj — n,-r,-j)éuj dS:| , (3)
o |4 S
t
Ne = / dt |:/ D[’[éq) dv — /(O_' + n,D,)éq) dS:| , (4)
to V S

in which we have introduced indicial notation and employed the conventions that repeated tensor
indices are to be summed, and a comma followed by an index denotes partial differentiation with
respect to a space co-ordinate and the symbols p, u;, 7, f; and n; denote the reference mass density, the
mechanical displacement vector, the stress tensor, the prescribed surface traction vector and the unit
outward normal vector, respectively, and the symbols D;, ¢ and & denote the electric displacement
vector, the electric potential and the prescribed surface charge, respectively. In Eq. (3) we have
introduced the convention that a dot over a variable denotes partial differentiation with respect to time.

In addition, the strain—displacement relations, quasistatic electric field—electric scalar potential
relations, and the linear piezoelectric constitutive equations required in this description may be
written in the form

e = Sury + urg),  Ex = —oy, (5,6)
E s
Ty = Cgekl — eriE,  Di = et + ey Ex, (7,8)

where Ej is the electric field. As a consequence of footnote 5, the electrical portion of the
variational equation need not be treated in this work. Consequently, only the mechanical portion
of the variational equation for the bimorph plate is treated in the subsequent sections. Since the
electric field points only in the thin direction between the electrodes of the bimorph, the electrical
behavior is treated directly in the differential equations in Sections 2.5 and 2.6.

2.2. Description of the gyroscope in the shape of half of a tuning fork

Consider a system consisting of three bimorph structures with mutually orthogonal
orientations, in which each of the bimorph elements is fully covered with infinitesimally thin
electrodes on top and bottom surfaces, and at the interface between the two layers of the bimorph.
The tuning fork contains the following three elements: one end of an annular sector plate is fixed
at a rigid wall and the other end is attached to one end of a rectangular plate, which is the sensing
plate of the system, by means of a connecting piece, which is employed to ease the stress
concentration at the junction. On the other end the rectangular plate is attached to another
rectangular plate, which is the actuating plate, with a 90° difference in orientation by means of
another connecting piece. Fig. 1(a) shows the schematic three-dimensional shape of this tuning

(n)
fork system where the geometric symbols V', n=1,2 and 3, represent the volume of the nth

element, 2/,2b and 2h represent the length, width and thickness of the rectangular plates,
respectively, R;, R, and ¢, represent the inner and outer radii of the annular sector plate and the
thickness of the connecting pieces, respectively. Fig. 1(b) shows the three local co-ordinate systems
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Fig. 1. Three-dimensional view of tuning fork systems: (a) with geometric symbols, (b) with local co-ordinate systems.

located at the center of each part. In Fig. 1(b) we have employed a cylindrical co-ordinate system

IRONE . .
(&f,&ﬁ,ﬁ%) = (r,0,z) for the annular sector plate and rectangular Cartesian co-ordinate system

(()rcnl), ()?2), ()?13)), m = 2, 3 for the rectangular plates. The useful motions of the rectangular plates are
in the thin directions of the plate. Hence, in accordance with Fig. 1(b) and the diagram of the
rotating frame, the ()242) and ()?3) directional motions in the rotating frame A will, respectively, be
mentioned as the actuating motion and the sensing motion hereafter.

2.3. Mechanical part of the variational equation for the actuating motion of the system without
superposed angular velocity

The form of the variational principle for the configuration shown in Fig. 2 is given in Eq. (6.44)
of Ref. [19], which is reproduced here for completeness:

t 2 (m) (m)
/ 'y /) <r(,?}fk -9 u,) 3% AV + /m) ( [ — 32”,3%";3) 3% ds
to m=1 V

Sy
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Fig. 2. Diagram of a bounded region containing an internal surface of discontinuity.
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where Sy, S¢ denote the portion of the mth surface on which natural- and constraint-type

(d)
conditions are prescribed, respectively, S stands for the surface of discontinuity separating region

. (d) . . .. .
1 from region 2, and r;k denotes the unit normal to the surface of discontinuity directed from

region 1 to region 2. Since the gyroscopic system shown in Fig. 1 is composed of three elements
with two interface surfaces of discontinuity, Eq. (9) will be extended and specialized to obtain the
variational equations required for the description of the system.

For the convenience of the derivation, the symbols for the displacements of the elements are
denoted differently depending on the numbering of the elements 1, 2, 3 and direction of vibration:

The symbol (%) (m = 2, 3) denotes the displacement of the flexural motion of the rectangular plate

@ ©

m in the ()rcny,) direction, u(10),u(20) stand for the displacements of the in-plane motion of the

. 2 2) . . . 1
rectangular plate 2 in the gc]) and §c§ directions, respectively, and the symbol (v) denotes the

displacement of the flexural motion of the annular sector plate 1 in the §§§ = ((?) direction. Here,
each element can be identified from the superscript located at the top-middle of each symbol. In
the sequel the symbols M and J with a two-numbered superscript enclosed in the parenthesis
located in the middle of each symbol, respectively, stand for the connecting pieces’ masses and the
mass moment of inertia about two principle axes in the plane of the plate and J;, the mass moment
of inertia about the principle axis normal to the piece. In this work, as in the earlier works [11,
13-15] the two thin plates and the annular sector plate are very accurately treated in classical
flexure for the out-of-plane motion and in-plane stress for the in-plane motion. Since the three
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thin plates are treated as stated and are joined at right angles through relatively stiff connecting
elements, the continuity conditions at the junction must be taken as single point conditions on the
average of the flexural and plane stress quantities over each plate at each junction. On account of
this, the relatively stiff connecting pieces are automatically modelled as rigid bodies. To represent
an equivalent single point quantity a carat (") is placed over each symbol. It is to be noted that
since the plate equations are employed before the averages at the interfaces are taken, Kirchhoff’s
integration by parts for the twisting moment addition to the shear equation and the corner
condition have been obtained and are retained as part of the interface point condition.

From Eq. (16) of Ref. [11] and Eq. (9), the mechanical part of the variational equation for the
actuation motion may be written in the form

T4+ T3 + T4 =0, (10)

where
(D 1)

t O D10 0| .aq
y / dr %) ds {0 + =L _oppp 5%
o S r

rzr

(11) 1) 1)
) ( ) ’Eﬁ}) B T(l) ) (1

+ rg,l)ﬁ- 00 4 o — 19 35ul)
r r
(11) 1 (}) (1)l (13 (11)
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((2)) (23 (28
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S
3 NG
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in which we employ the convention that [ f (x)];‘éiz = f(b) — f(a), [9(x)],—, = g(a), the symbol A
represents the Lagrange multipliers, and

(m) h o (m) N (m)
= [GHaR W=3 w me 12w,
. —h n=0

1 forj=1,2,

N = 12
2 forj=3, (12)

(1) 2 2
1 ! Vg ) Q) 2 .1 ((3)_ ((g) (31) (m) (m) (’ZE)))

- = P s = U,I’: :5 uz’l ulyz 5 t = W,z, w = U3 Py
® @
m=2,3, ¢ = (13)

and the notational conventions explained in Section 2 of Refs. [11,14] are employed and are to be

understood. In Eq. (11¢) virtual work terms have been introduced to account for the rigid body

behavior of the connecting pieces. Note that 7/4, T4 and T4 defined in Egs. (11a)—(11c¢) are the

terms of the variational equation for the large surfaces, free opposing edges and interface and

extreme edges of the structure for the actuating directional vibration in the absence of angular

velocity, respectively, where the edge conditions on the free opposing edges are satisfied exactly to
3 (3)

obtain dispersion relations in the treatment. Also note that the bending moments r(lll) and 1(212) for

the actuating flexural motion of the rectangular plate contain the forcing terms induced by the
externally applied voltage when the piezoelectric constitutive equations are introduced,® as
explained in detail in Section 2.5.

To determine the Lagrange multipliers in Eq. (11c¢), equivalent single point quantities should be
defined, which may be written in the form

R (6] (1)
0 1 1
/ d gcl) rf)o,) + ff)lr)r 0 (v)
R; - ’ o
XZ:@

®In the homogeneous case the dispersion curves are obtained from exact solutions of the differential equations and
free conditions on opposite edges for both in-plane and out-of-plane motions in each plate. Since the dispersion curves
represent the best solution functions, i.e., require the fewest in number, for obtaining a variational approximation to the
solution for the tuning fork bimorph in the inhomogeneous case, we employ these dispersion curves in obtaining the
variational approximation in the inhomogeneous case. Inasmuch as the inhomogeneous terms are transformed out of
the differential equations into the edge conditions, the differential equations remain homogeneous and, consequently,
have been satisfied exactly when the dispersion curves are used. Hence, all differential equation terms, i.e., all surface
area terms, in the variational equations vanish and only edge condition terms, i.e., line integral terms, remain. However,
since the conditions on the free edges are inhomogeneous, the amplitudes that were obtained from the solutions that
satisfied the free edge conditions exactly in the homogeneous case cannot be used to satisfy the conditions on the
opposite edges in the inhomogeneous case. In that case the amplitudes must be determined from the inhomogeneous
linear algebras obtained from the variational equations that contain only inhomogeneous edge and interface terms. The
calculations performed in Part 2 of this work show that extremely rapid convergence is obtained.
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where ry = (R, — R;)/2 represents the radius of the center of the annular sector plate. Note that
the first and the second terms in the right-hand sides of Egs. (14a) and (14f), respectively,
represent the functionals for the symmetric and antisymmetric modes of the annular sector plate 1
and rectangular plates 3, respectively, for the out-of-plane motion. As stated earlier, Kirchhoff’s
corner conditions are retained as part of the interface point conditions, and may be defined as
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single point quantities in the form

((11)) ) ((11)) ) (1) ()
T,g O U = |T,) 0D —i—r (r —79)0 g , (14h)
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where the first and the second terms in the right-hand sides of Egs. (14h) and (14j), respectively,
represent the functions for the symmetric and antisymmetric motions of the annular sector plate 1
and the rectangular plates 3, respectively.

Since Lagrange multipliers were used with constraint type conditions in the principle from
which Eq. (10) was derived [19], each variation in Eq. (10) is treated as unconstrained [20]. Hence,
all the coefficients of the variations in Eq. (10) vanish independently, from which the plate
differential equations, edge and corner conditions can be obtained. Substituting the above
definitions into the variational Eq. (10) and performing the indicated multiplications in Eq. (10)
while solving for the Lagrange multipliers, after utilizing the arbitrariness of the variations of the
single point displacements, slopes and rotations, enables us to obtain the equations for the
Lagrange multipliers. Note that the Lagrange multipliers are not unique because a single
Lagrange multiplier has two different identities on each side of the internal surface of
discontinuity. However, in order not to weight one side more than the other, the most appropriate
form of the Lagrange multiplier clearly must be obtained by taking the mean of the two Lagrange
multipliers on each side [19]. In view of this, the substitutions of Egs. (14a)—(14j) into Eq. (10)
yield the Lagrange multipliers in the form
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2.4. Mechanical part of variational equation for the sensing motion of the system without superposed
angular velocity

(€) 3)

The symbols u(lo) and u(20) are employed for the displacements of the rectangular plate 3 vibrating in

1n @
3
the gcf and x2 directions, respectively, and (), u(O) stand for the displacements of the in-plane motion

. 1 1 . . .
of the annular sector plate 1 in the gcl)(: r) and gc;(: 0) directions, respectively.

From Eq. (16) of Ref. [11] and Eq. (9), the mechanical part of the variational equation for the
sensing system may be written the form

TS + T + T3 =0, (16)

t M E(l))) M ((10)) M M

IS . 0 0 (0 0

T, =/tdt %)dS ﬁ,), 00 T 70— ) r—2phil® |5 u”
0

(D

0 (1) (1) M 0}

where

I 00,0 000 ’(g)' +Z T(0) —2ph u(O) 5u(0)
i 2. (4 %z) %
/2)dS a3a—2ph w OW+| Topy — T3 |0,
(2 ()] (@) (3) 3 3
ﬁ ds( <), —2phi |oul + /5 ds| <, —2pnil Jouy’| |, (17a)

m
M

! ol (D W X1=Ro
TgS = / de| |— / dx;|r r(O) 0 u(O) + ‘E(O) 0 u(O)
to —-O ()]

X]ZR,'
Xo=b
1 @ @ @ o]"
2 2
—/ngc) <<°)+ §‘31>5ﬂv)—f§2)59,

2

o=—b
D=b D=b
2 © @ @71 3) 3 0 B G717
— / d x (0) o u(o) Tgoz) 0 u(zo) / d x; 1,'21) 0 ugO) + T(O) 0 u(o) R (17b)
- ®) -/ 6)
X,=—b Xo=—b



J. Seok et al. | Journal of Sound and Vibration 280 (2005) 263-287

z B[00 o 0o
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@ @ @ "
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and

(18)

)

O W 0 R,
n 1|u, U @ o .l
G20 o M § =W, ) sy — ) ).

Note that 775, T and TS defined in Egs. (17a)~(17¢c) are, respectively, the terms of the
variational equation for the large surfaces, free opposing edges and interface and extreme edges of
the structure for the vibration in the sensing direction in the absence of angular velocity.

Following the procedure used in the earlier treatment for the actuating motion of the
configuration, the equivalent single point quantities for the sensing motion of the plates for both
out-of-plane and in-plane displacements and slopes can be written in the form

M (10) ) R, (0 )
/ dxi [ o u - / @ d 5*“’) , (192)
Ri Y-6 Ri Y-6
ol @ < G RO R @ )
/ dxi |t oul)” i/ o dxi-0ay) — / O — ro)dxlé . (19b)
R; .(’Clz)=@ R; R; )

X2=@
()] )] i Y AY, (2
2 2 2y @
/ d% <‘°’+ (112)2>5(w) - / <r§?+r§g{2> a9 5w] : (19¢)
-b i Egl):il L -b (71)7_‘_]
2 (2) ) ()
2 2
/ do Vs - / Wa%se| (19d)
b 19=4 /0 Sl=+1
ol @ 0 i
/ dx, |0 6u? = / 45540 , (19)
b G=xr L77P G=t
)] b 3
3 3 3 3
/ d% rl‘?csu“’) - / MU 5*‘” / O 4% (w : (196)
o_ —b —b O_y
o -
3 B b 3 (©)
3 3
/ 0| 06u®| = / MUY L) (19g)
-b o__ b O__

where the first and second terms on the right-hand sides of Egs. (19b) and (19f),
respectively, represent the functionals for the symmetric and antisymmetric motions
of the annular sector plate 1 and the rectangular plate 3, respectively, for the in-plane motion.
For the sensing motion, the single point quantities for Kirchhoff’s corner conditions may be
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@
1) (2)
(2) +IY2

written in the form

279

(19h)

Substituting the definitions of the equivalent point quantities (19a)—(19h) into the variational
equation (16) and solving for the Lagrange multipliers as was done for the actuating motion, we

obtain

12 1 R, () ’
i =1 [/ d()
2 R;

)
Xo—= e

12 R, () (1)
c=5|- [/ Ty dx +
R H=0
@) 1 Q
—b 2)
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23 1 b (2(; (%)
2 =5 [/b<“+ 1y, | dx2

% @ o
]+ i)
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@3 | b o e
As =5|- [/ t(lll)dxz + / 1(101) Xy dx)
—b o —b )

1=l X|=—

<2J~3) @) 3)
+=L 1| +|¥ . (20f)

2
2 (3)
x1=[ X|=—

2.5. Two-dimensional constitutive equations including coupling with electric properties for the
bimorph plates

The three-dimensional constitutive equations relating the elastic field tensors (stress tensor t;;
and strain tensor ¢;) and the electric field vectors (electric field £, and electric displacement D;)
can be expressed with the following pair of piezoelectric equations in compressed notation [21]:

_ E _ s
Tp = Cpybq — eipkr, Di= ejeq+ ey Ex, (21)

where the indices i, k range over 1,2,3 whereas p, ¢ range over 1,2, ...,6.
For the material having Cs,(6 mm) symmetry [21], the elastic and piezoelectric constants as well
as the dielectric constants as matrices can be written in the form

[E 0 000 0 0 0 0 e5 0

b E L& 0 0 0 ep=10 0 0 es 0 0f,
g s KL 0 0 0 es1 ey e 00 )
P 0 0 0 & o ol e, 0 0

0 0 0 0 c& o0 S=10 & 0],

(0 0 0 0 0 cg 0 0 &

ce = () — ¢f)/2,

where the piezoceramic material is polarized along the x5 direction. Note that the total number of
independent material constants for the Cg, class is 10. For convenience, Eqs. (21) with (22) are
written out here in the form

T = CﬁS] + Cﬁ&‘z + Cf?383 — ez B3, (23a)

Ty = cﬂsl + cﬁsz + cf383 —e31 E3, (23b)

T3 = cﬁs] + cﬂsz + 05363 — ez ks, (23¢)

T4 = 65:484 — 615E2, T5 = 6'5485 — 615E1, Te = C66E6, (23d—f)
D = ej565 + SflEl, D) = ejs5e4 + SflEg, (23g,h)

D3 = e31(e) + &) + e33e3 + 8§3E3. (231)
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Fig. 3. Cross-sectional view of a fully electroded bimorph plate.
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In the case of plane stress 73 = 0, we may solve Eq. (23c) for &3 with 73 = 0 and substitute into

Eqgs. (23a), (23b) and (23i) to obtain

E* 5 %

71 = ¢ (1 + Ve2) — €5, E3,
E* A %

Ty = ¢ (&2 + Ver) — €5, E3,

D3 = ¢t (e1 + &) + &5, Es,

where

E* _ E E> | E E* _ E E> ) E ~ _ E*, E*
=0 — 613/533’ Cip =Cp — ‘13/‘33’ V==~Cp/on

and

£ E E S S . 2 E
€3 = e31 — C3e33/c3;, £33 = &35 + €33/

(24)

(25)

(26)

(27a)

(27b)

Consider a bimorph plate with fully electroded surfaces normal to x; for each plate
on which electric potentials are prescribed. A cross-sectional view of the symmetric bimorph
plate with fully electroded surfaces is shown in Fig. 3. In this figure, the plate is polarized
along the x; axis, the total thickness is 2/ and total width is 2b, and infinitesimally thin
electrodes are attached to the top, bottom and inserted in the middle. Here, the superscripts
in the middle denote the layers, i.e., {1) for the upper layer and {(2) for the lower layer.
Since the thickness of the bimorph plate is assumed to be much thinner than the other dimensions,
it is convenient to write the equation of electrostatics for each piezoelectric portion of the bimorph
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in the form

{my {my {my
Di1+Dyp+D33=0, m=1,2. (28)

Since the bimorph is thin and there are complete electrodes on the horizontal surfaces mentioned,
we may take

{m) {m)
E1 = 0, E2 = 0, m = 1,2 (29)

throughout the bimorph. Since the shearing strain ¢4 and ¢s are neglected in classical flexure, from
Egs. (23g) and (23h) with Eq. (29), we have

{my — (m)
D1 = D2 = 0, m = 1,2 (30)

throughout the bimorph. From Egs. (28) and (30), we find that the equation of electrostatics for
the bimorph takes the form

<mp
D3,3 = 0, m = 1,2 (31)

An important consequence of Egs. (29)—(31) is that the purely elastic solutions obtained for the
orthotropic material in Refs. [11,13—15] are applicable to the piezoelectric case treated in this work
provided only that the flexural constants are modified by the influence of the piezoelectric
coupling as shown in Egs. (43),, (43); and (45) below. In the case of in-plane motion the influence
of the piezoelectric coupling cancels in the bimorph.
Since in classical flexure the three-dimensional strains ¢; and &, in Eq. (26) are linear functions
of x3, from Egs. (26) and (31), we find that F5 in the bimorph must be of the form
(m {(my (my
Ey = EQV 4 EY, m=1,2, (32)

{(m) (m)
where E§0) and Egl) are independent of x3. In quasielectrostatics, E; is given by

(m) (my

El =— 0 mzlsza (33)

oA

where <$> is the electric potential in the mth layer. From Egs. (32) and (33), we must have

s <y <m)
¢ =x30V 430, m=1.2, (34)

for each region of the bimorph since the lowest order expansion in electric potential is completely
adequate for the fully electroded piezoelectric bimorph.” Furthermore, from Egs. (29) and (34)

"Higher order expansions in electric potential may be obtained by including additional terms in Eq. (34), each of
which must vanish at each electrode. When this is done two-dimensional electrostatic plate equations are obtained by
means of the X, term in Egs. (2) and (4). Although it was implied in Section 2.1 that this would be done, it is not going
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{my {m
o and ¢® must be independent of x; and x».

From the electric boundary conditions shown in Fig. 3 and Egs. (34), we obtain

G 1 B G B
oV = | Va@O =@ |, o == | Va) = 2 0@ . (35)
The substitution of Eq. (34) into Eq. (33) yields
<n1> <Wl> <m>
E3 = - (P(l) _2x3 QD(Z)a m= 1, 23 (36)

in conformity with Eq. (32). Substituting Eq. (34) into Eq. (31), along with Egs. (26), (36) and the
first two of the flexural strain relations
g = X38(1 ), & = x33(2 ), g6 = X38(6), (37)
in Mindlin’s notation [12], we obtain
{m)y ) M o <m2>
Dy =éb () +ey) - 265 0P =0, m=1,2, (38)

which yield

{m) (1) (1)
&5 (¢ )
o = = =1,2. (39)
£33
Substituting Eqgs. (35) and (39) into Eq. (34), we obtain the electric potentials
1 Va(t) € e
G = L0 G L) b+ S o, (400)
h 285, 263,
2 V) &%
G = {0 - S0 o b 2+ ol (400)
h 2¢3;3 2e33
and from Eq. (33) the electric fields
<15 Va(t
o 10 6315*( OEPON . (Sm £D)xs, (41a)
h 2e3,
(2> Vat) &% e
E; = {_A() 315*( O 4 “))} — 36 + )i, (41b)
h 2¢3; 33

(footnote continued)

to be included in this work because it results in unwarranted additional complications in the description, all of which
will be excluded before any problem is treated since, as already noted in the text, the lowest order expansion in electric
potential is completely adequate for the fully electroded piezoelectric bimorph.
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The substitution of Egs. (41a) and (41b), along with Egs. (37), ,, into Eqgs. (24) and (25) yields the
bending moment and strain component relations in the form

) e 0 2y , 2 @ D
T = / T x3dx; + / 7] x3dx; = KVA(I) + D(Sl + Ve, ), (42a)
0 —h
1) " <15 02y o Ao, =)
T, = / Ty x3dx; + / Ty x3dx3 = KVy4(t) + D(ey " + V), (42b)
0 —h
where
A A 2h3 e *2 = 4 *9 *2 ,S*
R=eth D=2(cr i G 5otaitdn/e (43)
3 4633 dety + €5 /653

and we note that D and § are the flexural constants modified by the piezoelectric coupling. It
should be noted that Egs. (42) obtained for the bimorph are equivalent to the results presented in
Section 6 of Ref. [9] and Section 12 of Ref. [10]. In the case of in-plane motion, the expressions
equivalent to Egs. (41a) and (41b) when substituted in Egs. (24) and (25) reveal that the influence
of the piezoelectric coupling cancels in the bimorph.

(1 O]
2

As stated earlier, the bending moments 7, and 7, of the bimorph plate have the forcing terms

KV 4(¢) induced by an externally applied voltage in addition to the flexural terms, as can be seen in
Eqgs. (42a) and (42b).

From Egs. (23f) and (37);, we also obtain the relation between the twisting moment and strain
component in the form

h
= / roxs dxs = D, (44)
—h

where
D =2h’cg /3, (45)

which shows that the piezoelectric coupling has no influence on D.
The introduction of the strain—deflection relations (7) of Refs. [11] into Egs. (42a), (42b) and
(44) yields the moment—plate curvature relations for the rectangular bimorph plate in the form

T(lll) = KVa(1) - B(W,” + W), T(zlz) = KV (1) - 5(“&22 + w11, (46a)
&) = —2Drpw 1, (46b)
where _
rp=D/D. (47)
The substitution of Egs. (22),, (43),; and (45) into Eq. (47) simply yields
1-9
=422 (48)

since the material has hexagonal symmetry.
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Since the plate shearing strains are neglected in classical flexure, we may ignore the constitutive
equations for rfto) and 1(50) and use Eq. (17b) of Ref. [11] instead, i.c.,

Tg%) =) (49)

ab,a*

The substitution of Eqs. (46a), (46b), (48) and (49) into Kirchhoff’s strain—twist equations yields
@+, = —Diwin + Q= Dwint, T+ 15, = —Diwam + Q= Hwand,  (50)

in terms of the bimorph deflection.
For the flexural vibration of the annular sector plate with shorted electrodes, the stress
resultant—plate deflection relations given in Egs. (13)—~(15) and (19), (20) in Ref. [14] with

R =1,T =1, and with the respective replacements of D, 9 with D, 3, take the form

= \;) v 2| = 1 v
Tf’i) = _D{U,rr“‘_(vm +ﬁ)}’ Tg)ll)) = _D{‘A}U,i'r‘i‘_(U,r‘i‘ﬁ)}, (51)
r r r r
1 A =
rgg) =-—-D(1 — v)(v/r)’,,g, (52)
100 = U, Uy U 2-79) v
(0) 0 __ ) T ,00 ,00
T,, -I-;W— _D{U’”‘r_r_2+7_r_3+r72<v’r%_7>}’ (53)
a’[(]) I r 2 = rr 2 2 r
W)+ = = D %—M‘F_(Un‘(-}‘i‘%)_o b S50 00 (54)
z or 3 P2oor\’ r? r r r?

Furthermore, with R = 1 and with the respective replacements of ¢¥,, ¥, with &5, ¢, Egs. (3),
(4) in Ref. [13] can also be used for the in-plane motions of the rectangular plate:

0 * . (0 ~ (0 0 *. (0 ~ (0
Ty = 2hefy G} + W), 75y = 2hef (g + ), (55)
0 0 0
) = 2hege(u + ul) (56)

and Egs. (12)—(14) in Ref. [15] for the in-plane motions of the annular sector plate:

W0 =2 {4 L a0 b =2 {6
(0) 0)
0 Uro u
‘c£0) = 2hceg % + r(%) . (58)
Na

Egs. (46a), (46b), (50) and (55), (56) are, respectively, the stress resultant—deflection relations
required for flexural vibrations and in-plane stress—displacement gradient relations for the
rectangular bimorph plates, and Egs. (51)-(54) and (57), (58) are, respectively, the stress
resultant—deflection relations required for the flexural vibrations and in-plane stress—displacement
gradient relations for the annular sector bimorph plate.
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2.6. Relations between electric current and plate deflections

Through the use of Egs. (26), (41a) and (41b), we obtain the electric displacement in the x3
direction at the top and bottom surfaces in the form

(1 1 o et h?
D = 3|5 ¥a(0 - S + ). (599)
2> [ & et h?
Ds(-hy= {gg; Va(t) — 317(85” + & } . (59b)

Using Egs. (59a) and (59b), after introducing the strain—displacement relations described in
Eq. (7) of Ref. [11], we obtain the relations between the electric current, the applied voltage and
the deflection of the plate with the result

(m) <1 (2>
Iy = —/ Dsy(h)dS = Ds3(=h)dS
Sa Sa
: % 72
- [859; VS, + S (W11 + w22) dS], m=1,2, (60)
h 2 Js,
where S is the surface area of the actuating plate and we have followed the convention of Ref.
[22]. Note that the first term in the right-hand side of Eq. (60) represents the current due to the
applied voltage and the second term represents the current due to the mechanical motion.
If the subscript 4 in Eq. (60) is changed to S, the equation holds for the sensing plate. If in the
resulting equation Vg is set equal to zero, the short-circuit current is obtained in the form

<m) <> 2>
Is = —/ D3(h)dS:/ D3 (—h)dS
SS SS

. eNh
=io—= [ Wi +wn)dS, m=12. (61)
2 Jss
It should be noted that Egs. (60) and (61) give the same result as in Section 6 of Ref. [9].
For future usage, we define the sensitivity S here in the form

{mp / {m)

Is 1,
It is important to note that both the actuating and the sensing plates have been treated as passive
elements in this description.

. m=12. (62)

3. Implications of analysis

In this work, a dynamic analysis for a resonator arranged in the shape of one half of a single
tuning fork with polarized piezoceramic bimorphs has been presented. Since the geometric
configuration is very complex, simplification of the modelling procedure needs to be taken into
account. We have developed a variational approximation procedure for the dynamic analysis of
the tuning fork shown in Fig. 1. Since the thin plates are joined at right angles, equivalent point
quantities have been defined at the junctions in order to obtain the interface conditions. This
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modelling procedure provides a convenient means of investigating the dynamic characteristics of
the complicated resonator configuration treated in this work.

This modelling effort represents the first attempt to describe the tuning fork gyroscope system
considered in this work, which is a very complicated configuration and is coupled to the electrical
properties. The analytical method presented is very useful for obtaining the solutions for the free
and forced vibrations of the foregoing tuning fork. The superposed angular velocity is included in
the companion paper [23], along with detailed calculations.
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