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Abstract

We present the formulation of the dynamic response of a master structure coupled with a locally
homogeneous and orthotropic structural fuzzy, with discrete attachment, composed of elastic continuous
fuzzy subsystems. As introduced by Soize, the master structure is the part of the coupled system which is
accessible by classical modeling, whereas the structural fuzzy represents systems connected to the master
structure, whose characteristics are imprecisely known. A deterministic formulation of the boundary
impedance of a general continuous structural fuzzy, which models its action on the master structure, is
derived: it is shown that the formulation is different from the solution proposed by Soize in the context of
the type I fuzzy law, established from the deterministic model of a linear oscillator excited by its support.
Finally, the general boundary impedance is applied to the special situation of a structural fuzzy composed
of elastic bars whose geometrical parameters are randomly defined, and numerical results are presented.
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1. Introduction

The problem under investigation in this paper is the dynamics of a ‘‘master’’ structure coupled
to elastic continuous attachments. A master structure is defined as a structure with known
geometrical and material characteristics, as well as boundary conditions and excitations. On the
other hand, it is assumed a priori that the attachments are imprecisely known and cannot be
described by a deterministic model. In the theory of Soize [1–3], the term ‘‘structural fuzzy’’ or
simply ‘‘fuzzy’’ refers to these complex subsystems, and a master structure coupled with a
structural fuzzy is then called a ‘‘fuzzy structure’’. Precisely, the study of fuzzy structures requires
to formulate the dynamic response of a mechanical system containing a part, the master structure,
which can be modeled using a deterministic model, and a part, the structural fuzzy, which is not
accessible to deterministic modeling due to its complexity and whose parameters are described
with uncertainties.
Soize initially suggested from experimental observations that when the fuzzy does not resonate

(low-frequency domain), its action on the master structure results in an added-mass effect;
however, when the fuzzy resonates (medium-frequency domain), the response of the coupled
master structure becomes considerably damped. As explained by Soize, this apparent damping is
due to the fact that mechanical energy is absorbed through the resonant fuzzy. Fundamentally,
Soize proposed to describe the effect of a structural fuzzy on a master structure from a
probabilistic boundary impedance, and suggested 2 types of fuzzy descriptions: type I fuzzy law
corresponds to a probabilistic model of the boundary impedance of a locally homogeneous and
orthotropic structural fuzzy and is constructed, at a given frequency, from the deterministic model
of the boundary impedance of a linear oscillator excited by its support [1–3]. Type II fuzzy law
corresponds to a probabilistic model of the boundary impedance of an orthotropic structural
fuzzy with continuous attachment effect and is constructed, at a given frequency, from the
deterministic model of the boundary impedance of a linear oscillator excited by its support, whose
stiffness and damping spatially vary [2,3]. A modeling of this type of fuzzy from a locally
homogeneous fuzzy has been adopted by Soize [2,3].
In the two cases, the parameters of the fuzzy (resonant mass, damping and eigenfrequency) are

randomly defined from mean parameters (mean resonant mass, mean damping and mean modal
density). The problem outlined by Soize is to identify these mean parameters, particularly the
mean resonant mass (that is, the dynamic contribution of the fuzzy), in the case of a fuzzy which is
not composed of linear oscillators, but generally of elastic and continuous substructures. An
identification method based on a statistical energy analysis (SEA) approach [4] has been proposed
by Soize in Ref. [2,5]: this approach assumes that the power flow from the master structure to the
structural fuzzy can be estimated from an SEA model.
The structural fuzzy theory of Soize has been validated numerically, first in the case of a locally

homogeneous fuzzy with discrete boundary (i.e. the connections of the fuzzy to the master
structure are discrete) composed of a large number of linear oscillators [3,5–7], and second in the
case of a fuzzy with continuous boundary (i.e. the connections of the fuzzy to the master structure
are continuous) composed of plates coupled with oscillators [8]. The dynamic response of a master
structure coupled with a homogeneous structural fuzzy, composed of a large number of linear
oscillators has also been studied by other investigators using other types of descriptions: The
study of a homogeneous fuzzy which is locally composed of a large number of linear oscillators,
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whose eigenfrequencies are different, has been proposed by Pierce et al. [9,10]. Weaver [11] has
proposed a formulation of the vibratory behavior of a rigid mass (master structure) coupled with
a large number of linear oscillators whose eigenfrequencies are randomly defined. A deterministic
model of the action of linear oscillators on a rigid mass has also been proposed by Strasberg et al.
[12].
Therefore, in the context of type I fuzzy law of the theory of Soize (the spatial memory effect

inside the fuzzy is not included), as well as in other work [9–12], it is supposed that the dynamics
of the structural fuzzy can be described in a deterministic sense from the model of a linear
oscillator excited by its support; however, the application of this description to the case of a fuzzy
which is not composed of linear oscillators remains difficult in the sense that the identification of
the mean parameters of the fuzzy is not trivial and requires an SEA model of the fuzzy.
In this paper, we propose a formulation of the dynamical response of a master structure

coupled with a locally homogeneous and orthotropic structural fuzzy, with discrete boundary (i.e.
with discrete attachments), composed of elastic and continuous fuzzy subsystems. The aim is to
extend the Soize’s framework to the case of a fuzzy which is composed, in the general case, of
elastic and continuous subsystems. A general description of the dynamics of the fuzzy, which takes
its modal behavior into account, is derived. It appears that the formulation proposed in this paper
is slightly different from the deterministic solution of Soize developed in the context of type I
fuzzy law. The general formulation is applied to the special situation of a fuzzy which is composed
of elastic bars, whose lengths and cross-sectional areas are randomly defined.
2. Problem description

The objective of this work is to evaluate the dynamic response of a master structure, subject to
harmonic excitations under steady state conditions, coupled with a structural fuzzy (see Fig. 1).
We recall that the master structure represents the part of the fuzzy structure (coupled system)
whose characteristics are exactly known, while the structural fuzzy represents the part of the fuzzy
structure which is described with uncertainties.
Fig. 1. Illustration of a master structure, coupled with a structural fuzzy, excited by a distributed force fex, a point force

Fex and a point moment Mex.



ARTICLE IN PRESS

J.-M. Mencik, A. Berry / Journal of Sound and Vibration 280 (2005) 1031–10501034
As introduced by Soize [1], the following mechanical assumptions are used: (1) the fuzzy is
elastic and has a linear behavior; (2) there are no excitation sources inside the fuzzy, i.e. it is only
excited at the coupling surface; (3) the fuzzy is composed of weakly damped mechanical systems;
(4) the mass of the fuzzy is small compared to the mass of the master structure. Furthermore, it is
supposed that the master structure is elastic, has a linear behavior and is weakly damped.
We suppose that the fuzzy is coupled to the master structure on a coupling surface G: In the

general case, it is assumed that the fuzzy is composed of independent fuzzy substructures,
continuous over coupling surfaces Gj � G; such that G ¼

S
jGj: The action of the fuzzy on the

master structure is then described for each coupling surface Gj: at the frequency o/2p; this action
is locally modeled from a boundary impedance Z [1,3]:

fðx;oÞ ¼
Z
Gj

ioZðx;x0;oÞuðx0;oÞdsðx0Þ on Gj; (1)

where f represents the surface force applied to the fuzzy (that is, �f is the surface force applied by
the fuzzy to the master structure), u is the displacement on Gj; and ds is the surface area element.
In the general case, the vectors f(x,o) and u(x,o) at a point x 2 Gj are described in a local
orthonormal basis {w1,w2,w3} related to Gj (Fig. 2).
Following the approach proposed by Soize, it is assumed that the structural fuzzy is

homogeneous on Gj ðZðx; x0;oÞ ¼ ZðoÞ 8ðx; x0Þ 2 Gj 	 GjÞ; and orthotropic on Gj ðZikðx;x0;oÞ ¼
dikZiðx; x0;oÞ 8ðx;x0Þ 2 Gj 	 GjÞ relatively to the local basis {w1,w2,w3}. It is also assumed that the
fuzzy is locally homogeneous and orthotropic on G, that is, it is homogeneous and orthotropic on
each coupling surface Gj ðG ¼

S
jGjÞ:

Fundamentally, these conditions represent a fuzzy which is continuous on a coupling surface
Gj: However, we can further define a homogeneous and orthotropic fuzzy on Gj with discrete
Fig. 2. General description of a coupling surface Gj � G between a master structure and a continuous fuzzy sub-

structure.
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boundary (in this case, the connections of the fuzzy to the master structure are supposed to be
discrete) is if we consider the following assumptions:
(H1)
Fig. 3.

subsys
On Gj; the fuzzy is composed of a large number of identical and independent fuzzy
subsystems, uniformly distributed and coupled in a similar manner over Gj:S
(H2)
 The surface Gj can be discretized into coupling subsurfaces Sk, i.e. Gj ¼ kSk; of identical
area S, such that, on each coupling subsurface Sk, the master structure is coupled with one
single fuzzy subsystem (fuzzy subsystem k).
(H3)
 The displacement u is constant on each subsurface Sk.

(H4)
 Relatively to each subsurface Sk, each fuzzy subsystem k is excited in a same direction.

(H5)
 The surface force f and the surface displacement u are collinear at each coupling point.
A structural fuzzy with discrete attachment, which verifies assumptions (H1)–(H5), is illustrated
in Fig. 3.
Assumptions (H1)–(H4) imply that the fuzzy is homogenous on Gj ‘‘relatively’’ to subsurfaces

Sk, and assumptions (H1), (H2) and (H5) imply that the fuzzy is orthotropic on Gj relatively to
subsurfaces Sk. From assumptions (H1)–(H5), the action of the fuzzy on the master structure is
then easily modeled as

fkðoÞ ¼ ioZðoÞukðoÞ on Gj ðk ¼ 1; . . . ;NÞ; (2)

where fk represents the resulting mean surface force applied on the fuzzy subsystem k, uk

represents the motion of the coupling subsurface Sk, N is the number of fuzzy subsystems on Gj:
In the following, the fuzzy is referred to as homogeneous and orthotropic on Gj; which implicitly
assumes that assumptions (H1)–(H5) are verified.
Finally, the dynamics of the master structure (defined by the domain O) is obtained by solving

the classical linear elasticity equations. The response of the master structure coupled to a locally
homogeneous and orthotropic fuzzy, with discrete boundary, is found by the principle of virtual
works of the external forces applied to the master structure and the coupling forces over the
Illustration of a structural fuzzy with discrete attachment, which is composed of identical and independent fuzzy

tems over the coupling surface Gj :
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coupling surface. The principle of virtual works for a virtual displacement du results inZ
O
ð�o2rðxÞduðx;oÞduðx;oÞ þ eTðduÞCðxÞeðuÞÞdx

¼

Z
G

duðx;oÞdð�fðx;oÞÞdsðxÞ þ

Z
@O\G

duðx;oÞdfexðx;oÞdsðxÞ

þ
X

r

duðxr;oÞdFexðxr;oÞ þ
X

s

ðr 	 duðxs;oÞÞdMexðxs;oÞ: ð3Þ

Here, qO is the boundary of the domain O, r is the density, e and C are the strain tensor and the
tensor of the elastic constants, respectively, fex represents a distributed external force, Fex andMex

are external point forces and point moments (see Fig. 1), ds and dx are the surface area element
and the volume element, respectively. Using Eq. (2), Eq. (3) becomesZ

O
ð�o2rðxÞduðx;oÞduðx;oÞ þ eTðduÞCðxÞeðuÞÞdx

¼ �
X

j

ioZjðoÞ
Z
Gj

duðx;oÞduðx;oÞdsðxÞ þ

Z
@O\G

duðx;oÞdfexðx;oÞdsðxÞ

þ
X

r

duðxr;oÞdFexðxr;oÞ þ
X

s

ðr 	 duðxs;oÞÞdMexðxs;oÞ: ð4Þ

The subscript j has been introduced to emphasize the fact that the boundary impedance can
vary between coupling surfaces Gj:
3. Deterministic formulation of the boundary impedance of the structural fuzzy

In this section, a new deterministic formulation of the boundary impedance of the structural
fuzzy is proposed for a continuous, elastic fuzzy. The proposed formulation is not constructed
from the model of a linear oscillator excited by its support, as suggested by Soize in the context of
type I fuzzy law, but is rather the dynamic equilibrium of a continuous elastic fuzzy. The
formulation however remains subject to assumptions (H1)–(H5) in Section 2.
We consider a coupling surface Gj on which the fuzzy is homogeneous and orthotropic:

according to assumption (H2), the coupling surface Gj can be discretized into subsurfaces Sk

(k ¼ 1; . . . ;N) of identical area S, such that, on each coupling subsurface Sk, the master structure
is coupled with one single fuzzy subsystem (fuzzy subsystem k). At the frequency o/2p; the
principle of virtual works applied to a given subsystem k, coupled on Gj; through a virtual
displacement du results inZ

V k

ð�o2rðxÞduðx;oÞduðx;oÞ þ eTðduÞCðxÞeðuÞÞdx

¼

Z
Sk

duðx;oÞdfðx;oÞdsðxÞ; ð5Þ
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which is associated with the following homogeneous boundary condition:

eðukÞ ¼ 0 in Vk: (6)

Here, Vk is the domain occupied by the subsystem k and uk is the rigid-body motion
(uk represents the constant displacement of the subsurface Sk). Finally, f is the surface
force applied to the fuzzy on Sk. We recall that the function x 7!fðx;oÞ is defined at any
point of Sk and at x 2 Sk; �f(x,o) is the surface force applied by the fuzzy to the master structure
(Fig. 3).
By choosing duðx;oÞ ¼ ukðoÞ 8x 2 Vk; Eq. (5) becomesZ

Sk

ukðoÞdfðx;oÞdsðxÞ ¼ �o2
Z

Vk

rðxÞukðoÞduðx;oÞdx; (7)

which reduces to

ukðoÞdfkðoÞS ¼ �o2
Z

Vk

rðxÞukðoÞduðx;oÞdx; (8)

where S is the area of Sk, fk is the resulting mean surface force applied to the fuzzy subsystem k on
Sk (we recall that according to (H5), the vectors f(x,o) and uk(o) are collinear at any point
x 2 Sk):

fkðoÞ ¼
ukðoÞ

ukðoÞ
�� ���� ��2S

Z
Sk

ukðoÞdfðx;oÞdsðxÞ; (9)

where kukðoÞk2¼ukðoÞ � ukðoÞ:
Eq. (5) is expanded over the vibration modes of the fuzzy subsystem k clamped on Sk.
Since the displacement uk is constant on Sk (assumption (H3), which means that the quasi-static

displacement field [13], i.e. the static response of the system to the displacement of the subsurface
Sk, is supposed to be constant in the domain Vk), the displacement u of the subsystem k can be
approximately expressed from the displacement u� of the subsystem k clamped on Sk (u

�(x,o)=0

on Sk):

uðx;oÞ ¼ ukðoÞ þ u�ðx;oÞ in Vk: (10)

The displacement u� can be expanded over eigenfunctions fX pgpX1 associated with the clamped
subsystem Sk ðXpðxÞ ¼ 0 onSk; 8pÞ;

u�ðx;oÞ ¼
X1
p¼1

fpðoÞXpðxÞ in Vk; (11)

where ffpg are the complex modal displacements. By choosing a virtual displacement duðx;oÞ ¼
XpðxÞ ðx 2 VkÞ in Eq. (5) and using orthogonality properties of the modes Xp(x), the dynamic
response of the subsystem k for a specific mode p is given by

fpðoÞ
Z

Vk

ð�o2rðxÞ XpðxÞ
�� ���� ��2 þ eTðXpÞCðxÞeðXpÞÞdx

¼ o2
Z

Vk

rðxÞXpðxÞdukðoÞdx: ð12Þ
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We introduce the modal mass Mp and the modal stiffness Kp:

Mp ¼

Z
Vk

rðxÞ XpðxÞ
�� ���� ��2 dx 8k 2 f1; . . . ;Ng; (13)

Kp ¼

Z
Vk

eTðXpÞCðxÞeðXpÞdx 8k 2 f1; . . . ;Ng; (14)

which are independent on the considered subsystem according to assumption (H1). Eq. (12)
therefore takes the form

�o2Mpð1� ðOp=oÞ
2
ð1þ iZpÞÞfpðoÞ ¼ o2

Z
V k

rðxÞXpðxÞdukðoÞdx; (15)

where Op is the angular natural frequency of the mode p, O2p ¼ Kp/Mp: In Eq. (15),
dissipation phenomena are taken into account via a modal structural damping Zp:
Finally, from Eqs. (10), (11) and (15), the right-hand side term of Eq. (8) takes the following
form:

ukðoÞdfkðoÞS ¼ � o2
Z

Vk

rðxÞ ukðoÞ
�� ���� ��2 dx

�
X1
p¼1

o2
R

Vk
rðxÞukðoÞdXpðxÞdx

� �2
�o2Mpð1� ðOp=oÞ

2
ð1þ iZpÞÞ

: ð16Þ

The boundary impedance Zk of the fuzzy subsystem k is defined by

fkðoÞ ¼ ioZkðoÞukðoÞ: (17)

By introducing the rigid-body mode (X0)k, such that ðX0ÞkðoÞ ¼ ukðoÞ= ukðoÞ
�� ���� ��; Eq. (16) takes

the form:

ioZkðoÞ ¼ �
o2

S

Z
Vk

rðxÞdx

�
1

S

X1
p¼1

o2
R

Vk
rðxÞðX0ÞkðoÞdXpðxÞdx

� �2
�o2Mpð1� ðOp=oÞ

2
ð1þ iZpÞÞ

: ð18Þ

In Eq. (18), the boundary impedance of the fuzzy subsystem k is the sum of a static
component (defined from the mass per unit area of the subsystem), and a dynamic
component.
An extension of Eq. (18) from the coupling surface Sk to the coupling surface Gj requires that

ZkðoÞ ¼ ZðoÞ for all Sk on Gj: This is clearly verified since the first term of the right hand side of
Eq. (18) is defined from the mass per unit area of the fuzzy subsystem k, which is independent on
the considered fuzzy subsystem k (assumption (H1)). Moreover, the term ðX0ÞkðoÞdXpðxÞ ðx 2

VkÞ; representing the projection of mode p on the rigid-body mode, is also independent on the
considered coupling subsurface Sk according to assumption (H4).
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We define the mass per unit area Mp0 from the projection of mode p of any fuzzy subsystem k

on the rigid-body mode,

Mp0ðoÞ ¼
Z

Vk

rðxÞðX0ÞkðoÞdXpðxÞdx 8k 2 f1; . . . ;Ng; (19)

and we also define the resonant mass per unit area mp of the mode p,

mpðoÞ ¼
apðoÞMp0ðoÞ

S
; (20)

where apðoÞ ¼ Mp0ðoÞ/Mp:
Eq. (18) is written for the surface Gj in the final form

ioZðoÞ ¼ �o2m0 þ o2
X1
p¼1

mpðoÞ

1� ðOp=oÞ
2
ð1þ iZpÞ

on Gj; (21)

or,

ioZðoÞ ¼ �o2m0 þ
X1
p¼1

ð�o2RpðoÞ þ ioIpðoÞÞ on Gj; (22)

where Rp represents the apparent mass per unit area of the fuzzy on Gj due to mode p:

RpðoÞ ¼
mpðoÞððOp=oÞ

2
� 1Þ

ððOp=oÞ
2
� 1Þ2 þ Z2pðOp=oÞ

4
; (23)

Ip represents the apparent damping per unit area of the fuzzy on Gj due to mode p:

IpðoÞ ¼
ompðoÞðOp=oÞ

2Zp

ððOp=oÞ
2
� 1Þ2 þ Z2pðOp=oÞ

4
; (24)

and m0 is the mass per unit area of the fuzzy on Gj;

m0 ¼
1

S

Z
Vk

rðxÞdx on Gj 8k 2 f1; . . . ;Ng; (25)

Eq. (21) suggests that, for a given structural fuzzy, there exists a cutoff frequency Oc/2p; such
that for ooOc; the dynamic component of the boundary impedance of the structural fuzzy on Gj

can be neglected compared to the static component, ioZðoÞ � �o2m0: In other words, for ooOc;
the action of the fuzzy on the master structure on Gj results in an added-mass effect. This concept
was observed experimentally by Soize [1,2]. However, the boundary impedance of a fuzzy, with
discrete attachment, composed of elastic continuous fuzzy subsystems, leads to a difference with
the deterministic solution proposed by Soize (case of the type I fuzzy law) for a single linear
oscillator excited by its support [1,2] (Appendix).
This section has presented a formulation of the boundary impedance of a locally homogeneous

and orthotropic structural fuzzy with discrete boundary. The formulation is deterministic as it is
based on the knowledge of the modal parameters of any fuzzy subsystem k coupled on a specific
coupling surface Gj: resonant masses per unit area fmpg; angular natural frequencies fOpg and
modal structural damping fZpg: However, an exact determination of these modal parameters
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remains impossible due to the complexity of the fuzzy. It is necessary to take uncertainties into
account in the description of the parameters of the mechanical system. The next section presents a
probabilistic model of the boundary impedance of a simple locally homogeneous and orthotropic
fuzzy which is composed of elastic bars.
4. Probabilistic model of the boundary impedance of a structural fuzzy composed of elastic bars

In this section, we consider a special situation of a structural fuzzy composed of elastic bars
whose geometrical parameters, lengths and cross-sectional areas, are imprecisely known and are
randomly defined. We show that a probabilistic model of the boundary impedance of this fuzzy
can be easily derived from the deterministic formulation of the boundary impedance presented in
the previous section. This approach differs from previous work based on a fuzzy composed of
linear oscillators [9–12].
Let us consider a specific coupling surface Gj on which the fuzzy is homogeneous and

orthotropic (Section 2): on Gj; the fuzzy is composed of N identical and independent fuzzy
subsystems. On Gj; it is supposed that each fuzzy subsystem k is composed of M clamped–free
elastic bars perpendicular to Gj and that it is excited by a support displacement uk constant over
Sk and perpendicular to Gj (Fig. 4). For the sake of simplicity, we assume that the density, the
modulus of elasticity and the modal structural damping are constants over Vk : rðxÞ ¼ r and
E0ðxÞ ¼ E0 8x 2 Vk ðk ¼ 1; . . . ;NÞ; Zp ¼ Z8p:
For a particular fuzzy subsystem k coupled on Gj , the eigenfunction Xp of a mode p of this

fuzzy subsystem is expressed from the modal solution of a clamped-free bar of length Lp and
cross-sectional area Sp [14],

X pðxÞ ¼ sin
Opx

c

� 	
; x 2 0;Lp


 �
and

OpLp

c
¼ ðq � 1=2Þp: (26)
Fig. 4. Illustration of a master structure coupled with a structural fuzzy, homogeneous and orthotropic on a coupling

surface Gj ; composed of elastic bars described with random geometrical parameters.
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In this equation, the subscript q designates a longitudinal mode of a specific individual bar,
whereas the subscript p designates a mode of the whole subsystem k ðqppÞ; c is the phase velocity,
c2 ¼ E0/r:We emphasize the fact that both the length Lp and the cross-sectional area Sp depend
on the mode p, which simply means that two modes p are in general associated to two different
bars of the subsystem k. From Eqs. (20) and (26), the resonant mass per unit area mp of the mode p
is given by

mp ¼
2rSpc2

O2pLpS
: (27)

The length Lp and the cross-sectional area Sp of the bar, associated with the mode p, are
randomly defined from known mean values, L and S, respectively:

Lp ¼ L 1þ
l1ffiffiffi
3

p Y 1

� 	
; (28)

Sp ¼ S 1þ
l2ffiffiffi
3

p Y 2

� 	
: (29)

In these equations, Y1 and Y2 are two continuous independent normalized random variables
[1–2,15], associated with probability laws PðdykÞ ðk ¼ 1; 2Þ;

PðdykÞ ¼ pðykÞdyk; (30)

where p is a probability density,

pðykÞ ¼
1

2
ffiffiffi
3

p 1
�

ffiffi
3

p
;
ffiffi
3

p
½ �ðykÞ: (31)

In this equation 1H(y)=1 if y 2 H and 1H(y)=0 if yeH: To adjust the variance of the
geometrical parameters, we have introduced in Eqs. (28) and (29) two dispersion
parameters, l1 and l2: 0ol1o1 and 0ol2o1: The mathematical expectation (or mean
value) h of a function h of n continuous independent normalized random variables Yk is defined
by [15]

h ¼

Z 1

�1

Z 1

�1

� � �

Z 1

�1

hðy1; y2; . . . ; ynÞpðy1Þpðy2Þ . . . pðynÞdy1 dy2 . . . dyn: (32)

Thus, the mathematical expectation m
p
of the resonant mass per unit area of the mode p results

from Eqs. (27)–(31):

m
p
¼

rS c2

O2p LSl1
ln

1þ l1
1� l1


 �
: (33)

The mathematical expectation Z of the boundary impedance of the fuzzy on Gj is then obtained
from Eqs. (21)–(24) by replacing mpðoÞ by m

p
: In the following, the expression of Z is further

simplified.
Let us consider a natural angular frequency O of the fuzzy subsystem k and let us consider the

frequency band ½O� DO/2; Oþ DO/2�: In this frequency band, there are nDO modes, where n
represents the modal density of subsystem k coupled on Gj: Assuming that subsystem k is
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composed of M identical bars of length L,

n ¼
M L
pc

on Gj: (34)

Thus, in the limit DO ! 0 and n ! 1; the mathematical expectation Z of the boundary
impedance of the fuzzy on Gj; Eqs. (21)–(24) takes the form of a Riemann integral,

ioZðoÞ ¼ �o2m0 þ o2
X1
j¼0

nm
O1þjDO

1� ððO1 þ jDOÞ=oÞ2ð1þ iZÞ
DO on Gj; (35)

or,

ioZðoÞ ¼ �o2ðm0 þ RðoÞÞ þ io IðoÞ on Gj; (36)

where m0 þ R represents the mean apparent mass per unit area of the fuzzy on Gj; expressed from
the dynamic mass R:

RðoÞ ¼
MrS c

pSl1
ln

1þ l1
1� l1


 �Z 1

O1

1=o2 � 1=O2

ððO=oÞ2 � 1Þ2 þ Z2ðO=oÞ4
dO; (37)

and I represents the mean apparent damping per unit area of the fuzzy on Gj:

IðoÞ ¼
MrS c

pSl1
ln

1þ l1
1� l1


 �Z 1

O1

Z=o

ððO=oÞ2 � 1Þ2 þ Z2ðO=oÞ4
dO: (38)

In Eqs. (37) and (38), O1 represents the angular frequency of the fundamental mode of subsystem
k coupled on Gj: it is expressed approximately from the case of M identical bars of length L;

O1 �
pc

2Lð1þ l1Þ
; (39)

and m0 is the mass per unit area of the fuzzy on Gj; expressed approximately from the same case,

m0 �
MrLS

S
on Gj: (40)

Finally, the dynamic response of the master structure coupled with the fuzzy is derived from
Eq. (4) by replacing, on each coupling surface Gj; the boundary impedance of the fuzzy by its
mathematical expectation, that is,

ZjðoÞ � ZjðoÞ 8j: (41)

This assumption is verified if, on each coupling surface Gj; each fuzzy subsystem is composed of
a large number of different bars, the geometrical parameters of these bars being evaluated from
Eqs. (28) and (29): in other words, it is supposed that the resonant mass per unit area of the
modes contained in the frequency band ½O� DO/2;Oþ DO/2� is approximately nm

O
DO:
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Therefore, Eq. (4) reduces to

Z
O
ð�o2rðxÞduðx;oÞduðx;oÞ þ eTðduÞCðxÞeðuÞÞdx

¼ �
X

j

ioZjðoÞ
Z
Gj

duðx;oÞduðx;oÞdsðxÞ þ

Z
@O\G

duðx;oÞdfexðx;oÞdsðxÞ

þ
X

r

duðxr;oÞdFexðxr;oÞ þ
X

s

ðr 	 duðxs;oÞÞdMexðxs;oÞ: ð42Þ
5. Numerical application

5.1. Master structure coupled with 1 fuzzy substructure

The probabilistic model of the boundary impedance of a locally homogeneous and orthotropic
fuzzy composed of elastic bars, presented in Section 4, is numerically applied to the case
illustrated in Fig. 5: we consider the vibrations of a simply supported Euler–Bernoulli beam
(master structure) uniformly coupled over its length with a homogeneous and orthotropic fuzzy
composed of N ¼ 12 identical fuzzy subsystems. Each fuzzy subsystem is composed of M ¼ 60
elastic clamped–free bars whose lengths and cross-sectional areas are randomly defined from Eqs.
(28) and (29).
The characteristics of the beam are: density r0 ¼ 7800kg=m3; width l ¼ 0:1m; cross-sectional

area l2 ¼ 10�2 m2; length L ¼ 10m; bending stiffness E0
0I ¼ 1:75	 106 Nm2; structural

damping Z0 ¼ 5	 10�3: The structural fuzzy is homogenous and orthotropic on the
coupling surface G of area jGj ¼ l 	 L; relatively to coupling subsurfaces Sk of identical area
S ¼ jGj/N (see Section 2). The length and the cross-sectional area of the bars which form each
fuzzy subsystem are randomly defined from the following mean values, L ¼ 1:5m and
S¼ 2	 10�6 m2; associated, respectively, with the following dispersion parameters: l1 ¼ 0:6
and l2 ¼ 0:4:
Fig. 5. Euler–Bernoulli beam (master structure) coupled over its length with a homogeneous structural fuzzy.
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The bars have the following material characteristics: density r=31,400 kgXm3, Young’s
modulus E0 ¼ 2:1	 1011 Pa; structural damping Z ¼ 5	 10�2: The other characteristics of the
structural fuzzy are: modal density n � 10�2ðrad/sÞ�1; fundamental frequency according to Eq.
(39), O1=2p � 269Hz; mass per unit area according to Eq. (40), m0 � 68 kg/m2: The ratio between
the mass of the structural fuzzy and the mass of the master structure is m0/ðr

0lÞ � 9%: The master
structure is excited at its center (z ¼ L/2) by a harmonic force F of modulus Fj jj j ¼ 1000N on the
frequency range [100Hz, 1200Hz]. At 1200Hz, the uncoupled beam contains almost 11 flexural
wavelengths.
The exact response of the uncoupled beam is numerically compared with the exact response of

the beam coupled with the fuzzy and the response as obtained from the proposed probabilistic
model. The exact response of the coupled beam is numerically calculated by solving the equation
of motion of the homogeneous uncoupled beam [14] associated with the boundary conditions at
the coupling points (transverse displacement and shear force compatibility). The response of the
coupled beam obtained from the probabilistic model is numerically evaluated by solving the
equation of motion resulting from the principle of virtual works, Eq. (42),

@4uðz;oÞ
@z4

�
o2r0l2 � ioZðoÞl

E0I

� 	
uðz;oÞ ¼ 0 z 2�0;L=2½[�L=2;L½: (43)

In Eq. (43), E0 ¼ E0
0ð1þ iZ

0Þ represents the complex modulus of elasticity of the coupled beam.
The mean apparent mass per unit area m0 þ R and the mean apparent damping per unit area I

of the fuzzy on G have been computed according to Eqs. (37) and (38) on the frequency range
[100Hz, 1200Hz] from numerical integration over an interval [O1/2p; 2400Hz] (it was verified that
the modes of the fuzzy above 2400Hz do not modify the computed response below 1200Hz). The
functions o7!m0 þ RðoÞ and o 7! IðoÞ are plotted in Fig. 6.
The function o7!m0 þ RðoÞ has its maximum at O1/2p: Moreover, when o ! 1; the mass

introduced by the fuzzy becomes negligible compared to the mass of the beam. For
ooO1/2p; IðoÞ � 0 and for o4O1/2p; IðoÞ rapidly reaches an asymptotic value. Thus, below
the fundamental mode of the continuous fuzzy, the fuzzy essentially acts as an added mass, and
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Fig. 7. Exact response of the uncoupled beam (- - - - - -), exact response of the beam coupled with the structural fuzzy

(——) and predicted response of the beam coupled with the structural fuzzy (——) at (a) z ¼ L/2 (excitation point) and

at (b) z ¼ L/4:
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above the fundamental mode, the action of the fuzzy on the master structure results essentially in
a dissipative effect.
The exact response of the uncoupled beam, the exact response of the beam coupled with the

fuzzy and the response of the beam coupled with the fuzzy obtained from Eq. (43) are compared
in Fig. 7.
The theoretical prediction of the response of the coupled beam, provided by Eq. (43), is almost

similar to the exact response provided by the numerical simulation. These results clearly validate
the probabilistic model proposed in this paper. Above the fundamental frequency O1/2p of the
fuzzy, the response of the coupled beam is considerably damped compared to the response of the
uncoupled beam and below that frequency the mass loading is the dominant mechanism. It can be
noticed that in this situation, assumption (H3) of a constant displacement over a given subsurface
Sk may not be valid at higher frequency since at 1200Hz, the uncoupled beam contains
approximately 11 wavelengths whereas only N ¼ 12 fuzzy subsystems are considered.

5.2. Master structure coupled with 2 distinct fuzzy substructures

In a second numerical simulation, we consider the vibrations of a simply supported
Euler–Bernoulli beam (master structure) coupled with a locally homogeneous fuzzy composed
of two homogeneous fuzzy substructures (fuzzy substructures 1 and 2), associated with two
different fuzzy laws. This coupled structure is described in Fig. 8.
The characteristics of the beam and the material characteristics of the bars are similar to those

in the previous section. The fuzzy substructure 1 is composed of N1 ¼ 20 identical fuzzy
subsystems; each fuzzy subsystem contains M1 ¼ 15 elastic bars. The fuzzy substructure 1 is
homogenous and orthotropic on the coupling surface G1; jG1j ¼ jGj/2 (where the surface G has
been defined in the previous section) relatively to the coupling subsurfaces Sk of identical area
S ¼ jG1j/N1: The length and the cross-sectional area of the bars which form each fuzzy subsystem
are randomly defined from the following mean values, L1¼ 2m and S1¼ 2	 10�6 m2; associated,
respectively, with dispersion parameters l1 ¼ 0:6 and l2 ¼ 0:4: The other characteristics of the
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Fig. 8. Euler–Bernoulli beam (master structure) coupled with two homogeneous fuzzy substructures.
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fuzzy substructure 1 are: modal density n1 � 4	 10�3ðrad/sÞ�1; frequency of the fundamental
mode according to Eq. (39), ðO1Þ1=2p � 202Hz; mass per unit area according to Eq. (40), ðm0Þ1 �
75 kg/m2:
The fuzzy substructure 2 is composed of N2 ¼ 12 identical fuzzy subsystems; each fuzzy

subsystem contains M2 ¼ 15 elastic bars. The fuzzy substructure 2 is homogenous and
orthotropic on the coupling surface G2; jG2j ¼ 3jGj/10 relatively to the coupling subsurfaces Sk

of identical area S ¼ jG2j/N2 ¼ jG1j/N1: The length and the cross-sectional area of the bars which
form each fuzzy subsystem are randomly defined from the following mean values, L2¼ 2:5m and
S2¼ 3	 10�6 m2; associated, respectively, with dispersion parameters l1 ¼ 0:6 and l2 ¼ 0:4: The
other characteristics of the fuzzy substructure 2 are: the modal density n2 � 5	 10�3ðrad/sÞ�1;
frequency of the fundamental mode according to Eq. (39), ðO1Þ2/2p � 162Hz; mass per unit area
according to Eq. (40), ðm0Þ2 � 141kg/m2:
The ratio between the mass of the structural fuzzy (fuzzy substructure 1 and 2) and the mass of

the master structure is approximately 10%. The master structure is excited at z ¼ 3L/5 by a
harmonic force F ( Fj jj j ¼ 1000N) on the frequency range [100Hz, 1200Hz].
The response of the coupled beam is numerically evaluated by solving the following system of

equation of motions:

@4uðz;oÞ
@z4

�
o2r0l2 � ioZ1ðoÞl

E0I

� 	
uðz;oÞ ¼ 0; z 2�0;L=2½;

@4uðz;oÞ
@z4

�
o2r0l2

E0I

� 	
uðz;oÞ ¼ 0; z 2�L=2; 3L=5½[�3L=5; 7L=10½;

@4uðz;oÞ
@z4

�
o2r0l2 � ioZ2ðoÞl

E0I

� 	
uðz;oÞ ¼ 0; z 2�7L=10;L½;

(44)

where Z1 and Z2 are the mean boundary impedances of fuzzy 1 and 2, respectively.
The mean apparent mass per unit area ðm0Þj þ Rj and the mean apparent damping per unit area

Ij of the fuzzy on Gj ðj ¼ 1; 2Þ are computed according to Eqs. (37) and (38) on the frequency range
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[100Hz, 1200Hz] from numerical integration over the interval [ðO1Þj/2p; 2400Hz]. The functions
o 7!ðm0ÞjþR jðoÞ and o7!I j ðoÞ ðj ¼ 1; 2Þ are plotted in Figs. 9 and 10.
The functions o 7!R1ðoÞ and o 7!R2ðoÞ reach a maximum at the frequency of the fundamental

modes, ðO1Þ1/2p and ðO1Þ2/2p; respectively. Again, below the fundamental mode of the continuous
fuzzy, the fuzzy essentially acts as an added mass, and above the fundamental mode, the action of
the fuzzy on the master structure results essentially in a dissipative effect.
Finally, the exact response of the uncoupled beam, the exact response of the beam coupled with

the fuzzy and the response of the beam coupled with the fuzzy obtained from Eq. (44) are
compared in Fig. 11.
Here again, the results validate the theoretical solution developed in this paper, since both the

exact and the probabilistic model show a transition between the mass-loading effect and the
dissipative effect of the fuzzy in the region of the fundamental modes of the fuzzy.
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Fig. 11. Exact response of the uncoupled beam (- - - - - -), exact response of the beam coupled with the structural fuzzy

(——) and predicted response of the beam coupled with the structural fuzzy (——) at (a) z ¼ 3L/5 (excitation point)

and at (b) z ¼ 3L/10:
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6. Conclusion

This paper has proposed a theoretical framework for the dynamic response of a master structure
coupled to a locally homogeneous and orthotropic structural fuzzy, with discrete attachment,
composed of elastic continuous fuzzy subsystems. The approach generalizes previous work based
on the study of a structural fuzzy composed of linear oscillators excited by their supports. A
deterministic model of the action of the continuous fuzzy on the master structure has been derived
from a boundary impedance of the fuzzy, which is characterized by its modal parameters. We have
presented a simple application of this model in the case of a structural fuzzy composed of elastic
bars whose geometrical parameters are randomly defined. In this case, a probabilistic model of the
boundary impedance can be simply derived from uncertainty on geometrical parameters of the
fuzzy (length and cross-sectional area of the bars). The theoretical solution has been successfully
validated through numerical applications performed on an Euler–Bernoulli beam coupled with
such a continuous structural fuzzy. The results show that above the fundamental mode of the
fuzzy, the response of the system is considerably damped compared to the response of the master
structure and below that frequency the mass loading is the dominant mechanism.
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Appendix A. Formulation of the boundary impedance of a structural fuzzy composed of identical

linear oscillators excited by their supports

We consider a master structure coupled with a locally homogeneous and orthotropic structural
fuzzy and we consider a coupling surface Gj on which the fuzzy is homogeneous: on Gj; the fuzzy
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is composed of N identical linear oscillators excited by their supports; each oscillator is
characterized by a massM and a complex stiffness Kð1þ iZÞ: Assumptions (H1)–(H5) of Section 2
are verified on Gj: An expression of the boundary impedance of the fuzzy on Gj is straightforward
from Eqs. (20)–(25): the mass density of an oscillator k is

rðxÞ ¼ Mdðx� x0Þ; ðx;x0Þ 2 Vk 	 Vk; (A.1)

where d is the Dirac function,

hðx0Þ ¼

Z
Vk

hðxÞdðx� x0Þdx: (A.2)

The displacement of the oscillator are given by

unðoÞ ¼ unðoÞX; X ¼ 0 1

 �T

; (A.3)

ukðoÞ ¼ ukðoÞ ðX0Þk; ðX0Þk ¼ ½ 1 1 �T: (A.4)

According to Eqs. (A.3) and (A.4), Eq. (21) becomes

ioZðoÞ ¼ �o2RoscilðoÞ þ ioIoscilðoÞ on Gj; (A.5)

where Roscil represents the apparent mass per unit area of the oscillators:

RoscilðoÞ ¼
M

S

ðO=oÞ2ððO=oÞ2ð1þ Z2Þ � 1Þ

ððO=oÞ2 � 1Þ2 þ Z2ðO=oÞ4
; (A.6)

and Ioscil represents the apparent damping per unit area of the oscillators:

IoscilðoÞ ¼
M

S

oðO=oÞ2Z

ððO=oÞ2 � 1Þ2 þ Z2ðO=oÞ4
: (A.7)

In these equations, O is the natural angular frequency of the oscillator k ðk ¼ 1; . . . ;NÞ; O2 ¼
K/M; S ¼ jGjj/N is the area of the coupling subsurface Sk. In the particular case where the fuzzy
is composed of linear oscillators, the deterministic model developed by Soize (type I fuzzy law,
[1,2]) is then obtained from Eqs. (A.5) to (A.7), which appears to be a special case of the general
Eqs. (20)–(25) (with the distinction that Eqs. (20)–(25) assume a structural damping whereas Eqs.
(A.5)–(A.7) assume a viscous damping).
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