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Abstract

Studying the stability of a vertically suspended, fully submerged pipe conveying water (water riser),
researchers have found a contradiction between theoretical predictions and experiments. Theory predicts
instability at small velocities of convection, while experiments did not show such instability. The only
attempt to explain this contradiction was made by Paı̈doussis, suggesting that the theoretical prediction is
wrong because of an improper description of the negative pressurisation of water at the inlet of the pipe. In
this paper, it is shown theoretically that the negative pressurisation influences the stability only slightly and
cannot explain the contradiction. What can explain it, is the hydrodynamic drag caused by surrounding
water, which is shown to be an essential stabilising factor.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Cantilevered (fixed-free) pipes conveying fluid behave non-conservatively [1,2], implying that
the energy of the pipe–fluid system varies in time. The energy increases or decreases depending
on the direction of the fluid flow. If the fluid is sucked into the pipe at the free end and no damping
is regarded, the energy of the pipe grows ever since it starts moving, so that the pipe is unstable.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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A pipe hanging in water loses its energy while moving due to the hydrodynamic drag, which may
alter the pipe stability.
Cantilever pipes can be used in ocean mining to transport a mixture of water and nodules from

the sea bottom to a ship [3]. Recently, designs have been made for pipes suspended from a floating
barge, which will be used for pumping up cooling water. These pipes have an unconstrained tip
(lower end) and therefore are referred to as free-hanging risers. A question arises whether these
risers might become unstable while conveying fluid?
According to existing theory, a free-hanging riser can be unstable at very low convection speed

of the flow in the pipe. However, there is a contradiction between theory and experiments. The
theory predicts unstable behaviour for undamped pipes at infinitely small fluid velocity [4–6]. On
the contrary, in experiments with submerged, cantilevered pipes pumping up water (see Ref. [7]),
no instability has been observed. Later, Paı̈doussis [8] explained in a short way why these
cantilevered pipes should behave stable. The main reason, according to this explanation, is
negative pressurisation of the fluid at the inlet of the riser.
In this paper, it is shown that this negative pressurisation has a slight influence on the system

stability and, therefore, cannot be considered as an explanation for experimentally observed stable
behaviour of free-hanging pipes. As shown in this paper, the experimental results can be explained
by the stabilising effect of the hydrodynamic drag caused by the surrounding water.
This paper is structured as follows. In Section 2, the equation of motion is presented of a

submerged, free-hanging riser conveying fluid, and the main assumptions are discussed with which
this equation is applicable. In literature, different models are available for description of the fluid
pressure inside the riser, which are treated in Section 3. Section 4 shows the non-dimensional
equation of motion and the boundary conditions for the riser. In Section 5, the characteristic
equation for small bending motion of the riser is obtained. The roots of this equation are analysed
in Section 6 by using the Argand diagram. To study the effect of the fluid pressurisation at the
inlet and of the hydrodynamic drag on the system stability, the D-decomposition method [9,10] is
employed. This method is complementary to the conventional Argand diagram and is proved to
be instrumental for stability analyses (see Refs. [11,12]). The method is briefly outlined in Section
7 and applied in Section 8.
2. Assumptions and equation of motion

Consider a straight riser that conveys water up to a floating barge as shown in Fig. 1. The riser
is tubular and submerged fully. It is attached to the barge through a so-called flex-joint connection
that fixes the translational motion of the riser top to that of the barge and provides a linear-elastic
reaction against a relative angular motion of the barge and the riser top. The tip of the riser is free
(not constrained); accordingly, the riser is referred to as a free-hanging riser. Dynamics of the riser
is studied in this paper under the following assumptions:
(a)
 The riser moves in the plane that is depicted in Fig. 1.

(b)
 The length of the riser and the wavelength of its deformation are large in comparison to the

diameter of the riser, so that the Euler–Bernoulli theory is applicable for the bending of the
riser and the plug-flow model [7] is acceptable.
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Fig. 1. Sketch of a free-hanging riser conveying fluid.
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(c)
 Small bending motion of the riser about its equilibrium position is considered.

(d)
 The pipe wall behaves elastically, i.e. no internal damping is considered.

(e)
 The vertical motion of the barge is disregarded.

(f)
 The flow inside the riser is uniform across the riser and its mean velocity along the riser is

constant.

(g)
 No friction between the fluid flow and the riser is accounted for.
With these assumptions, the equation that governs the horizontal motion of a differential
element of the riser can be written as

EI
q4w
qz4

�
q
qz

TrðzÞ
qw

qz

� �
þ rf Ai U2 q

2w

qz2
� 2U

q2w
qzqt

þ
q2w
qt2

� �

�
q
qz

ðAepeðzÞ � AipiðzÞÞ
qw

qz

� �
þ rrAr

q2w
qt2

¼ f ðz; tÞ; ð1Þ

where wðz; tÞ is the horizontal riser displacement, z the coordinate along the riser (directed
downward), t the time, EI the bending stiffness of the riser, TrðzÞ the axial tension of the riser, rr

and rf the mass density of the riser and the fluid, respectively, Ai and Ae the internal and external
cross-sectional areas of the riser, respectively, Ar ¼ Ae � Ai the cross-sectional area of the pipe
wall, piðzÞ and peðzÞ the water pressure inside and outside the riser, respectively, U the velocity of
the flow through the riser (directed upward), and f ðz; tÞ the normal dynamic reaction of the
surrounding water on the riser element.
The first and last terms on the left-hand side of Eq. (1) form the well-known equation for the

bending motion of a beam according to the Euler–Bernoulli theory. The second term,
q=qzðTrðzÞqw=qzÞ; is due to the longitudinal tension in the riser that is caused by gravity, minus
the hydrostatic pressure on the rim of the riser tip. This tension reads

TrðzÞ ¼ rrArgðL � zÞ � rf ArgL; (2)
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where g is the gravity acceleration and L the length of the riser (see Fig. 1). Note that the origin of
the reference system is fixed to the riser top. The third term on the left-hand side of Eq. (1) is the
transverse loading per unit length exerted by the internal flow on the pipe. This term is well known
in dynamics of pipes conveying fluid and is explained in detail in the book of Paı̈doussis [7]. The
fourth term in Eq. (1), q=qzððAepeðzÞ � AipiðzÞÞqw=qzÞ; is due to the pressure on the pipe wall. The
external hydrostatic pressure pe zð Þ; neglecting the temperature effects (and compressibility, as
mentioned above), may be assumed to vary linearly with z, so that

peðzÞ ¼ rf gz: (3)

The description of the internal pressure, which is the key issue of this development, is discussed in
detail in the next section.
The dynamic reaction of the surrounding water on the riser, f ðz; tÞ; is assumed to be a

superposition of an inertia force f inðz; tÞ and a drag force f dðz; tÞ: The inertia force depends on the
acceleration of the riser and of the surrounding water as

f inðz; tÞ ¼ rf AeðCa þ 1Þ
qu

qt
� rf AeCa

q2w
qt2

; (4)

where uðz; tÞ is the horizontal component of the surrounding water velocity and Ca the added mass
coefficient. The drag force depends on the relative motion of the riser and on the surrounding
water nonlinearly. Besides, the drag force is influenced by Reynolds number, wall surface
roughness, water turbulence, etc. In this study, all these effects and the nonlinearity are neglected.
The only aim of incorporating the external damping is to investigate whether this might explain
the difference between theory and experiments. Hence, the following linearised expression for the
drag force is used (see Ref. [7]):

f dðz; tÞ ¼
1
2
rf D0

~Cd u �
qw

qt

� �
; (5)

where ~Cd is the adapted drag coefficient, with the dimension of velocity.
3. Description of the internal pressure

The internal water pressure piðzÞ in pipes sucking up fluid is a subject of discussion in literature.
There exist two different opinions about the description of the internal pressure. Paı̈doussis and
Luu [4] assumed that the internal pressure does not differ from the external one (at the same
depth) and, accordingly, it does not depend on the speed of the internal fluid flow. This approach
was also used by Sällström and Åkesson [5] and by Kangaspuoskari et al. [6]. All these papers
reported unstable behaviour of the free-hanging, undamped riser sucking up fluid at infinitely
small flow velocity.
Recently, Paı̈doussis [8] suggested that there is a negative pressurisation at the riser tip so that

the difference between the external and internal pressure is equal to rf U2: This pressure
difference is in agreement with the pressure drop in a so-called Borda’s mouthpiece, which is a
short tube of length almost equal to the radius that projects into a reservoir. At the inlet the
coefficient of contraction for the Borda’s mouthpiece is 0.5. By modelling the internal pressure
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in this way, the pressure drop balances the centrifugal force induced by the internal flow
(rf AiU

2q2w=qz2). In this case, the only remaining term in the equation of motion, Eq. (1), related
to the fluid velocity is the Coriolis force. Paı̈doussis concluded that no flutter, and hence no
instability, can occur if only the Coriolis force is present. In this paper, it is shown that this
conclusion is incorrect.
Modification of the geometry of the inlet can reduce the pressure loss. If the inlet is shaped so

that the fluid flow remains fully attached to the wall, no pressure loss occurs at the inlet. In this
theoretical case without contraction, the Bernoulli equation shows that the difference between the
external and internal pressure is equal to rf U2=2: In reality, the pressure difference depends on the
geometry of the inlet and varies between rf U2=2 and rf U2:
The effect of the magnitude of the pressure difference has never been studied in the literature, to

the authors’ knowledge. Therefore, in what follows, vibrations are studied of the riser for all the
three aforementioned internal pressure drops and results are compared to each other. Thus, the
following expressions for the internal pressure are considered:

piðzÞ ¼ rf gz � DpðkÞ; k ¼ 1; 2; 3 with Dpð1Þ ¼ 0; Dpð2Þ ¼ rf U2; Dpð3Þ ¼ 1
2
rf U2: (6)

4. Dimensionless form of the equation of motion and the boundary conditions

Substituting Eqs. (2)–(6) into the equation of motion, Eq. (1), the latter can be rewritten in the
following form:

EI
q4w
qz4

þ mf U2 � Dp kð ÞAi þ T top
z

L
� 1

� �� � q2w
qz2

þ
T top

L

qw

qz
� 2mf U

q2w
qzqt

þ 1
2
rf D0

~Cd

qw

qt
þ ðmr þ ma þ mf Þ

q2w
qt2

¼ mf ðCa þ 1Þ
qu

qt
þ 1

2
rf D0

~Cdu; ð7Þ

where mr ¼ rrAr; ma ¼ rf CaAe; mf ¼ rf Ai; T top ¼ ðrr � rf ÞArgL:
The external forces (external flow) do not affect the stability of the system within the accepted

linearised model. Consequently, the right-hand side of the equation of motion is disregarded from
hereonwards.
The boundary conditions at the ends of the pipe are given as

wð0; tÞ ¼ 0; EI
q2wð0; tÞ

qz2
¼ Cfl

qwð0; tÞ

qz
; EI

q2wðL; tÞ
qz2

¼ 0; EI
q3wðL; tÞ

qz3
¼ 0; (8)

where Cfl is the stiffness of the rotational spring at the top of the riser. Introducing the following
dimensionless variables and parameters:

Z ¼ w=L; x ¼ z=L; t ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðmr þ ma þ mf Þ

q
=L2; V ¼ U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf =T top

q
;

a ¼ T topL2=EI ; b ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf T top

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIðmr þ ma þ mf Þ

p
;

g ¼ rf D0
~CdL2= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIðmr þ ma þ mf Þ

p� �
; CðkÞ ¼ DpðkÞAi=T top; k ¼ CflL=EI ;
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the statement of the problem Eqs. (7) and (8) is rewritten as

q4Z

qx4
þ aðV2 � CðkÞ � 1Þ

q2Z

qx2
þ ax

q2Z

qx2
þ a

qZ
qx

� 2bV
q2Z
qxqt

þ g
qZ
qt

þ
q2Z
qt2

¼ 0; (9)

Zð0; tÞ ¼ 0;
q2Zð0; tÞ

qx2
¼ k

qZð0; tÞ
qx

;
q2Zð1; tÞ

qx2
¼ 0;

q3Zð1; tÞ

qx3
¼ 0: (10)

In Eq. (9), the coefficient CðkÞ changes for the three descriptions of the pressure difference:

Dpð1Þ ¼ 0 corresponds to Cð1Þ ¼ 0;

Dpð2Þ ¼ rf U2 corresponds to Cð2Þ ¼ V2;

Dpð3Þ ¼ 1
2
rf U2 corresponds to Cð3Þ ¼ 1

2
V2:

5. Characteristic equation

To find the eigenvalues of the problem Eqs. (9) and (10), the displacement Zðx; tÞ is to be sought
in the following form:

Zðx; tÞ ¼ W ðxÞelt: (11)

The pipe is unstable if at least one of the eigenvalues l has a positive real part.
Substituting Eq. (11) into the equation of motion, Eq. (10), the following ordinary differential

equation is obtained:

d4W

dx4
þ aðV2 � CðkÞ � 1Þ

d2W

dx2
þ ax

d2W

dx2
þ a

dW

dx
� 2bVl

dW

dx
þ glW þ l2W ¼ 0: (12)

This dimensionless ordinary differential equation contains one coefficient that depends on x;
which implies that the eigenfunctions of this equation are not sinusoidal. A solution to this
equation can be sought in the form of a power series expansion (see Ref. [13]):

W ðxÞ ¼
X1
n¼0

anx
n: (13)

Substituting Eq. (13) into Eq. (12), an equation is obtained involving a power series whose sum is
equal to zero. Since each term in the series must be equal to zero, the following recurrence relation
can be derived:

an ¼ An�2an�2 þ An�3an�3 þ An�4an�4 ðnX4Þ; (14)

with

An�2 ¼
�aðV2 � CðkÞ � 1Þ

nðn � 1Þ
; An�3 ¼

�ðaðn � 3Þ � 2bVlÞ
nðn � 1Þðn � 2Þ

; An�4 ¼
�ðglþ l2Þ

nðn � 1Þðn � 2Þðn � 3Þ
:



ARTICLE IN PRESS

G.L. Kuiper, A.V. Metrikine / Journal of Sound and Vibration 280 (2005) 1051–1065 1057
By repeated application of this recurrence relation, starting with n ¼ 4; an can be expressed as a
linear combination of a0; a1; a2 and a3:

an ¼ Fna0 þ Gna1 þ Hna2 þ Ina3 ðnX0Þ; (15)

in which

F0 ¼ 1; F1 ¼ 0; F2 ¼ 0; F3 ¼ 0;

G0 ¼ 0; G1 ¼ 1; G2 ¼ 0; G3 ¼ 0;

H0 ¼ 0; H1 ¼ 0; H2 ¼ 1; H3 ¼ 0;

I0 ¼ 0; I1 ¼ 0; I2 ¼ 0; I3 ¼ 1:

ð16Þ

By substituting Eq. (15) into Eq. (14) the following relations are found:

Fn

Gn

Hn

In

2
6664

3
7775 ¼ An�2

Fn�2

Gn�2

Hn�2

In�2

2
6664

3
7775þ An�3

Fn�3

Gn�3

Hn�3

In�3

2
6664

3
7775þ An�4

Fn�4

Gn�4

Hn�4

In�4

2
6664

3
7775: (17)

With the starting values given by Eq. (16), it is possible to obtain Fn;Gn;Hn and In for every n.
Making use of Eq. (15), the general solution Eq. (13) can then be written as

W ðxÞ ¼ a0
X1
n¼0

Fnx
n
þ a1

X1
n¼0

Gnx
n
þ a2

X1
n¼0

Hnx
n
þ a3

X1
n¼0

Inx
n: (18)

To find the four unknowns aj; j ¼ 0; . . . ; 3; Eq. (18) should be substituted into the boundary
conditions, Eq. (10). This yields four linear algebraic equations with respect to a0–a3: From the
first two boundary conditions of Eq. (10), it is concluded that

a0 ¼ 0 and a2 ¼
k
2

a1: (19)

Using Eqs. (18) and (19), the last two boundary conditions of Eq. (10) result in the following
equations:

a1ða þ kbÞ þ a3c ¼ 0;

a1ðd þ keÞ þ a3f ¼ 0; ð20Þ

with

a ¼
X1
n¼2

Gnnðn � 1Þ; b ¼
1

2

X1
n¼2

Hnnðn � 1Þ; c ¼
X1
n¼2

Innðn � 1Þ;

d ¼
X1
n¼3

Gnnðn � 1Þðn � 2Þ; e ¼
1

2

X1
n¼3

Hnnðn � 1Þðn � 2Þ; f ¼
X1
n¼3

Innðn � 1Þðn � 2Þ:
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The two linear equations Eq. (20) have a non-trivial solution if and only if the following equation
is satisfied:

D ¼ ða þ kbÞf � ðd þ keÞc ¼ 0: (21)

Eq. (21) is the characteristic equation for the problem described by Eqs. (9) and (10).
6. Argand diagram

Now that the characteristic equation Eq. (21) has been obtained, its roots l have to be analysed
to draw a conclusion on the riser stability. The most common way to do so is to make use of an
Argand diagram [7]. In this diagram, the real and imaginary parts of the natural frequency o are
plotted parametrically, as they depend on one of the system parameters. Normally, the flow
velocity V is used as such a parameter. In this paper, along with V, the dimensionless external
damping is employed as the parameter to plot a part of the Argand diagram. The natural
frequency o is related to the eigenvalue l as, o ¼ il: Note that if the imaginary part of a natural
frequency o is smaller than zero, the system is unstable.
At the first step of the analysis, both the fluid velocity and the external damping are

disregarded. The system possesses in this case only real natural frequencies, which can be easily
found numerically. These natural frequencies equal the resonance frequencies of an undamped
cantilever beam with varying tension. As the second step, the damping is gradually increased,
keeping the velocity zero, and the accompanying complex values of the natural frequencies are
computed and plotted in the Argand diagram. As expected, all complex natural frequencies
acquire positive imaginary part, implying that the pipe is stable. Once the damping reaches its
‘true’ (assumed in the present analysis) value, the fluid velocity is gradually increased from zero.
As a result, the imaginary part of the complex natural frequencies decreases with increasing fluid
velocity. At a certain velocity, the imaginary part of some natural frequencies becomes negative,
implying that the pipe becomes unstable. For constructing the Argand diagram, the system
parameters that are shown in Table 1 are used. The internal pressure is taken as independent of
the internal fluid velocity, Cð1Þ ¼ 0: The Argand diagram is presented schematically in Fig. 2. Only
the first four natural frequencies are plotted. The paths of the other natural frequencies have a
similar shape as those of the second, third and fourth natural frequencies. The smallest fluid
velocity for which the natural frequency has a negative imaginary part is denoted as the critical
Table 1

Parameters used in the calculations

Parameter Dimensionless parameter

EI 1:00� 109 Nm2 L 100m a 10.0

mf 1:00� 103 kg=m rf 1:00� 103 kg=m3 b 1.83

ma 1:00� 103 kg=m D0 1.00m g 2.89

mr 1:00� 103 kg=m ~Cd 1.00m/s k 0.100

T top 1:00� 106 N Cfl 1:00� 106 Nm/rad
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Fig. 2. Argand diagram for the first four natural frequencies.
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velocity V�: The paths of all the natural frequencies, except the first one, intersect the real o-axis
at almost the same fluid velocity. This implies that the corresponding modes become unstable at
the same fluid velocity.
Using the Argand diagram, the influence of the description of the internal pressure on the

system stability can be analysed. In Fig. 3, the second natural frequency of the system is shown for
the three different descriptions of the internal pressure as mentioned before. As can be seen, the
real part of the complex natural frequency changes drastically by using different descriptions of
the internal pressure. However, the critical velocity V� is hardly different for these three
descriptions (the deviation is less than 2%). Similar observations can be made for all other natural
frequencies, and, hence, the influence is marginal of the description of the internal pressure on the
system stability. This means that the negative pressurisation cannot be considered as the reason
for the stable behaviour of the free-hanging riser, which has been found experimentally. What can
be a reason for the observed stable behaviour is the external hydrodynamic drag. This drag can
greatly influence the stability of the pipe at hand, since it induces the energy loss all over the length
of the pipe, while the energy can be gained at the pipe ends only [1,2].
In the next section, the stabilising effect of this drag is studied by a D-decomposition method,

developed by Neimark [9] (see Ref. [10]). The main advantage of this method relative to the
Argand diagram is that it does not require searching for complex zeroes of a complex function.
The stability can be analysed using the D-decomposition method by just considering the
imaginary axis of the complex l-plane (the plane of complex eigenvalues). This increases the
accuracy of the stability analysis and, in some cases, the calculation speed. As shown in the
following sections, the D-decomposition method is especially efficient in combination with the
Argand diagram.
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Fig. 3. Argand diagram for the second natural frequency and for three descriptions of the internal pressure (Cð1Þ ¼ 0;
— Cð2Þ ¼ V2; Cð3Þ ¼ V2=2��).
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7. D-decomposition method

The D-decomposition method utilises the fact that the stability of a linear system is fully
determined by the sign of the real part of its eigenvalues l (Eq. (11)). The eigenvalues which
correspond to unstable vibrations are located in the right-half plane of the complex l-plane, see
Fig. 4. Consequently, the imaginary axis of this plane, l ¼ iO;O 2 R is the boundary that
separates the ‘‘stable’’ and ‘‘unstable’’ eigenvalues (roots with ReðlÞo0 and ReðlÞ40;
respectively). Assume now that the characteristic equation contains a parameter P that can be
expressed explicitly. Such expression can be then used as a mapping rule to map the imaginary
axis of the l-plane onto the complex plane of the parameter P, as sketched in Fig. 4. The
frequency O serves as the parameter of this mapping. The resulting mapped lines, which are
referred to as D-decomposition lines, break the P-plane into domains with different number of
‘‘unstable’’ eigenvalues. Within a domain, this number may not vary.
Shading the right side of the imaginary axis of the l-plane (the side of ‘‘unstable’’ eigenvalues),

and keeping the shading at the corresponding side of the D-decomposition lines, the information
contained in the decomposed P-plane can be enriched. With this shading, it becomes known that
passing through a D-decomposition line in the direction of shading corresponds to the gain of one
additional ‘‘unstable’’ eigenvalue by the characteristic equation. Thus, if the number of the
‘‘unstable’’ eigenvalues is known for only one (arbitrary) value of the parameter P, the D-
decomposed P-plane allows to draw a conclusion on the stability of the system for all admissible
values of this parameter at once.
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For the free-hanging riser conveying fluid, the dimensionless rotational spring stiffness k can
serve as the parameter P, since it can be readily expressed from the characteristic equation
(21) to give

k ¼
�af þ cd

�ce þ bf
: (22)

The D-decomposition of the k-plane is depicted in Figs. 5 and 6 for two velocities of the fluid,
namely V ¼ 0:32 and 0.95, respectively. The system parameters used in calculations are shown in
Table 1. The internal pressure is taken as independent of the internal fluid velocity, Cð1Þ ¼ 0 (the
other two descriptions give almost the same result). Note that in both figures only the positive part
of the real axis has physical meaning, since k is the stiffness of the rotational spring. Only the key
(low-frequency) part of the D-decomposition curves is plotted in the figures. Taking higher
frequencies into account would lead to a larger number of quasi-circles both in the lower and
upper half planes. These circles do not change the result of the stability analysis.
Although the D-composition curves in Figs. 5 and 6 have qualitatively the same shapes, these

curves run with the increase of O in opposite directions. In both figures, the D-decomposition
curves do not cross the positive part of the real axis. So, in one run with the D-decomposition
method, it is easily concluded that the riser stability does not depend on the stiffness of the
rotational spring. It would be much more laborious to draw the same conclusion by using only the
Argand diagram. The question remains if the pipe is stable or unstable for all real and positive
values of the rotational spring. To answer this question, it is sufficient to determine the number N
of unstable roots for one particular stiffness of the rotational spring. For the problem at hand, this
can be conveniently done by making use of the Argand diagram (note that studying other stability
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Fig. 6. D-decomposition of the k-plane for V ¼ 0:95:
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problems, the number of unstable roots for a particular set of parameters can be found using
physical considerations [14] or the principle of the argument [12]).
As follows from Fig. 2, the pipe is stable if the flow velocity belongs to the interval

0pVoVn; and is unstable if V4Vn; where V� is the critical velocity. For the parameters
given in Table 1, this critical velocity is Vn 
 0:41; which is greater than V ¼ 0:32 (Fig. 5)
and smaller than V ¼ 0:95 (Fig. 6). Thus, combining the information containing in
Figs. 2 and 5, it can be concluded that the pipe is stable independently of the flexjoint stiffness
if V=0.32. On the contrary, as follows from Figs. 2 and 6, the pipe is unstable if V ¼ 0:95; again
independently of the flexjoint stiffness. These conclusions can be generalised by performing the D-
decomposition of the k-plane for other velocities V of the flow through the pipe. This
decomposition shows that, independently of the flexjoint stiffness, the pipe is stable if 0pVoVn

and is unstable if V4Vn:
Thus, applying the D-decomposition method, the critical velocity Vn can be easily found, which

separates the stable and unstable behaviours of the riser. To this end, it is sufficient to track the
half-plane (upper or lower) to which the D-decomposition curve runs as the frequency O is
increased from zero. If the curve runs to the lower half-plane, then the pipe is stable. The flow
velocity, at which the curve starts to run to the upper half-plane is the critical velocity V�: This
approach is used in the next section to investigate the effect of fluid pressurisation at the inlet and
of the hydrodynamic drag (external damping) on the pipe stability.
8. Effect of fluid pressurisation and external damping

As shown in the previous sections, both the Argand diagram and the D-decomposition method
can be used to compute the critical velocity after which the system becomes unstable. Here we use
the D-decomposition method to analyse the critical velocity. This velocity depends on all
parameters of the system, including the difference between the external and internal hydrostatic
pressure and the amount of external damping g: The dependence of the critical velocity on the
external damping breaks the plane ðV ; gÞ as shown in Fig. 7. In this figure, the critical velocity is
presented for three values of the pressure difference, which are studied in this paper. This
dependence is obtained using parameters given in Table 1.
From Fig. 7 the conclusion should be drawn that the effect of the internal fluid pressure is

small, especially, for low fluid velocities. This means that the negative pressurisation cannot be
considered as the reason for the stable behaviour of the free-hanging riser, which has been found
experimentally. From Fig. 7 it is also clear that the external damping has a much more significant
influence on the system stability. Without external damping ðg ¼ 0Þ; the system is unstable for all
fluid velocities, irrespective of the description of the internal pressure. On the contrary, with the
external damping, a stable range of velocities is found, for which the system behaves stable, as was
observed in the experiments.
As mentioned in the introduction, the hydrodynamic drag caused by the surrounding water is

described in this paper by a simplistic linearised expression, which does not allow to draw any
quantitative conclusions. In order to prove that this damping (drag) is indeed the cause of the
discrepancy between theory and experiment, experiments should be carried out to check if fluid
velocities which should lead to instability, in accordance with the results in Fig. 7, agree with
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measurements. If not, the model for the riser should be improved by taking into account a
nonlinear description of the drag, including the drag dependence on the Reynolds number.
9. Conclusions

In this paper, the stability of a free-hanging riser conveying fluid has been considered. It has
been proven that the existing contradiction between theory (predicts instability for small fluid
velocities) and experiments (show stable behaviour for small fluid velocities) cannot be explained
by the negative pressurisation at the riser inlet. The stability analysis that has been carried out in
this paper has shown a marginal effect of this depressurisation.
The difference between theory and experiment might be explained by the energy dissipation

caused by the hydrodynamic drag, which the riser experiences while moving in water. It would be
advisable to carry out experiments to check if the critical fluid velocities agree with the results of
this paper (see Fig. 7). If not, the model for the riser should be improved by taking into account a
more realistic, nonlinear description of the drag, which has been linearised in this paper.
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