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1. Motivation and problem statement

The time-function selection utilized in Galerkin approximation is investigated for the
Timoshenko beam theory. Both identical and different time functions for transverse deflection
and beam’s cross-sectional rotation are considered. In order to explain the underlying concept
here, we consider a general Timoshenko beam system with uniform cross-section, which is moving
in the horizontal plane. To characterize the elastic deformations, we associate to each point on the
undeformed neutral axis of the beam two quantities nðx; tÞ and cðx; tÞ: The transverse elastic
deflection is represented by n, while c denotes the orientation of the beam cross-section. x is the
reference variable along the beam measured from one end of the support, and t is the time. Fig. 1
shows the kinematics of deformation of a beam element that undergoes a shear deformation in
addition to a pure bending.

The equations of motion can be derived by applying Hamilton’s principle. However, to
facilitate the analysis, typically an assumed mode expansion (i.e., Galerkin approximation) is
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Fig. 1. Kinematics of deformation of a Timoshenko beam.
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utilized. Specifically, it is assumed that n and c can be written as the finite sums:

nðx; tÞ ¼
Xn

i¼1

FiðxÞpiðtÞ; cðx; tÞ ¼
Xn

i¼1

CiðxÞpiðtÞ; ð1Þ

where pi(t) are the generalized coordinates (time functions) for the elastic deflection and
orientation of the beam element. Fi(x) and Ci(x) are the respective transverse and rotational
eigenfunctions (modal shapes) of a Timoshenko beam.

The use of same time functions, pi(t), in the Galerkin approximation is a common practice and
the standard assumption that has been utilized by many researchers in other areas of mechanics
[1] (for example, elastic rods [2], laminated composite plates [3,4], etc.). Such assumption ensures
the synchronized nature of the motion of the transverse displacement nðx; tÞ of the beam and the
orientation of its cross-section cðx; tÞ: This assumption is also in total agreement with the limiting
case for the Timoshenko beam theory, where by assuming c ¼ @v=@x it will lead to the
Euler–Bernoulli formulation. However, by assuming a different set of generalized coordinates it
will make this simplified form rather unreachable.

Although one may argue that the transverse displacement and the angle of rotation of the cross-
section are independent variables in the Timoshenko beam theory, assuming the same modal
amplitudes will not necessarily introduce any contradictions since the spatial functions are
independent (Fi(x) and Ci(x)). In fact, in a different publication by the authors, this assumption
has been taken into consideration and instead, a more general formulation for different modal

amplitudes has been obtained [5]. The results show that the relative error associated with the same
time-function assumption is rather small (less than 0.25%) and being almost negligible for many
practical applications (see Fig. 2).
2. Generalized formulation

We consider a Timoshenko beam with a total thickness h, width b in the lateral direction, and
length L in the longitudinal (x-) direction. The beam is subjected to a general force f(x,t) in the
transverse direction. To demonstrate the effect of time-function selection for generalized
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Fig. 2. (a) An example of the fundamental time function p1ðtÞ; and (b) the error associated with the use of identical

functions, e1ðtÞ ¼ q1ðtÞ � p1ðtÞ; where nðx; tÞ ¼
Pn

i¼1

FiðxÞpiðtÞ;cðx; tÞ ¼
Pn

i¼1

CiðxÞqiðtÞ [5].
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coordinates, two cases are considered here: (i) different time functions and (ii) identical time
functions as discussed next.
2.1. Different time-function

In this case, we assume different time functions for n and c as the finite sums

nðx; tÞ ¼
Xn

i¼1

FiðxÞpiðtÞ; c ¼ ðx; tÞ ¼
Xn

i¼1

CiðxÞqiðtÞ; ð2Þ

where pi(t) and qi(t) are the modal amplitudes for the deflection and rotation of the beam element,
respectively. The kinetic, T, and potential, V, energies of the beam can be written as

T ¼ 1
2

R L

0 rA_n2 dx þ 1
2

R L

0 rI _c
2
dx;

V ¼ 1
2

R L

0 EIðc0
Þ
2dx þ 1

2

R L

0 kAG c� n0ð Þ
2 dx;

ð3Þ

where r is the beam volumetric density, I is the cross-sectional moment of inertia, A is the cross-
sectional area, E is Young’s modulus of elasticity, k is the shear correction factor in Timoshenko
beam theory, and G is the shear modulus.

Substituting Eqs. (2) into Eqs. (3) and applying the Lagrange’s equations for the forced
vibration would result in the following governing equations of motion:

rA
Pn

j¼1

Cij €pj þ kAG
Pn

j¼1

fðBijpj � HjiqjÞg ¼ f i; i ¼ 1; 2; :::; n;

rI
Pn

j¼1

Dij €qj þ
Pn

j¼1

fðEI Fij þ kAG DijÞqj � kAG Hij pjg ¼ 0; i ¼ 1; 2; :::; n;

ð4Þ
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where

Bij ¼

Z L

0

F0
iðxÞF

0
jðxÞdx; Cij ¼

Z L

0

FiðxÞFjðxÞdx;

Dij ¼

Z L

0

CiðxÞCjðxÞdx; Fij ¼

Z L

0

C0
iðxÞC

0
jðxÞdx;

Hij ¼

Z L

0

CiðxÞF0
jðxÞdx; f i ¼

Z L

0

FiðxÞf ðx; tÞdx: ð5Þ

2.2. Identical time-function

For this case, we now consider identical modal amplitudes for the deflection and rotation as

nðx; tÞ ¼
Xn

i¼1

FiðxÞpiðtÞ; cðx; tÞ ¼
Xn

i¼1

CiðxÞpiðtÞ: ð6Þ

The equations of motion for Timoshenko beam then become

rA
@2n
@t2

� kAG
@2n
@x2

�
@c
@x

� �
¼ f ðx; tÞ;

EI
@2c
@x2

þ kAG
@n
@x

� c
� �

� rI
@2c
@t2

¼ 0: ð7Þ

Substituting Eqs. (6) into Eqs. (7), yields

Pn

i¼1

rAFi €pi � kAG F00
i �C00

i

� �
pi

	 

¼ f ðx; tÞ

Pn

i¼1

EIC00
i pi þ kAG F0

i �Ci

� �
pi � rICi €pi

	 

¼ 0:

ð8Þ

On the other hand, from the free vibration analysis we have

�kAG F00
i �C0

i

� �
¼ rAo2

i Fi;

EIC00
i þ kAG F0

i �Ci

� �
¼ �rIo2

i Ci;
ð9Þ

where oi is the ith natural frequency of the beam. Substituting Eqs. (9) into Eqs. (8) results in

rA
Xn

i¼1

FiðxÞ €piðtÞ þ o2
i piðtÞ

	 

¼ f ðx; tÞ; ð10aÞ

rI
Xn

i¼1

CiðxÞ €piðtÞ þ o2
i piðtÞ

	 

¼ 0: ð10bÞ
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In order to solve for pi(t) from Eqs. (8) and (9), the orthogonality conditions [6,7] of

Z L

0

rAFiðxÞFjðxÞ þ rICiðxÞCjðxÞ
� �

dx ¼ Nidij ð11Þ

are utilized, where i; j ¼ 1; 2; . . . ; n; dij is the Kronecker delta, and Ni is defined by setting i=j in
Eq. (11). Multiplying Eq. (10a) by Fj(x) and Eq. (10b) by Cj(x), adding each side together,
integrating over the entire length of the beam, and with the use of the orthogonality relationship
(11), we get

Ni €piðtÞ þ o2
i piðtÞ

	 

¼

Z L

0

f ðx; tÞFiðxÞdx ð12Þ

or

€piðtÞ þ o2
i piðtÞ ¼ SiðtÞ; ð13Þ

where

Ni ¼
R L

0 rAF2
i ðxÞ þ rIC2

i ðxÞ
	 


dx;

SiðtÞ ¼
1

Ni

Z L

0

f ðx; tÞFiðxÞdx:
ð14Þ

It is obvious that for f ðx; tÞ ¼ gðtÞdðx � lÞ; the generalized force Si(t) becomes SiðtÞ ¼ FiðlÞgðtÞ=Ni:
Without the loss of generality, one may assume zero initial conditions for the beam and hence
obtain the analytical solution of Eq. (13) as

piðtÞ ¼
1

oi

Z t

0

SiðtÞ sinoiðt � tÞdt: ð15Þ
3. An example case study

In order to better demonstrate the derivations obtained in the preceding sections, a beam with a
simply supported boundary condition at either ends is assumed with a sinusoidal distributed
loading as

f ðx; tÞ ¼ f 0sinotsin
rpx

L
; ð16Þ

where r is a constant positive integer. The eigenfunctions for this boundary condition are

FiðxÞ ¼ sinðbixÞ; CiðxÞ ¼ RicosðbixÞ; ð17Þ

where

bi ¼ ip=L ð18Þ

and Ri is a function of the natural frequency of the beam (oi). oi and Ri can be easily found
by substituting Eqs. (17) into the equations of motion. Substituting Eqs. (16) and (17) into
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Eq. (14) gives

SiðtÞ ¼
f 0sinot

rðA þ IRiÞ
dri; ð19Þ

which means that for iar; Si(t) and ultimately pr(t) would become zero. Consequently, with zero
initial conditions we get

prðtÞ ¼
f 0

rðA þ IRrÞ

o=or

o2 � o2
r

sinort �
1

o2 � o2
r

sinot

� �
: ð20Þ

One can obtain the solutions to the deflection v and the sectional rotation c of the beam as

nðx; tÞ ¼
f 0

r
sin

rpx

L

X2

k¼1

ðo=orkÞ sin orkt � sinot

ðo2 � o2
rkÞðA þ IRkÞ

� �
;

cðx; tÞ ¼
f 0

r
cos

rpx

L

X2

k¼1

Rk
ðo=orkÞ sin orkt � sinot

ðo2 � o2
rkÞðA þ IRkÞ

� �
:

ð21Þ
4. Numerical results and discussions

In order to compare the effect of time-function selection, a beam with the following geometrical
and material properties is considered:

h ¼ 0:035m; L ¼ 0:5m; I ¼ 8:9323e-8m4; A ¼ 8:75e24m2;

E ¼ 207GPa; G ¼ 79GPa; r ¼ 7850kg=m3; k ¼ 5=6: ð22Þ

4.1. Example 1: simply supported boundary conditions at either ends

For the first example, we consider a simply supported boundary condition at either ends of the
beam

n ¼ c0
¼ 0 at x ¼ 0;x ¼ L: ð23Þ

The beam is subjected to a sinusoidal concentrated force applied at x ¼ L=5:

f ðx; tÞ ¼ 10 sinð100tÞdðx � L=5Þ; ð24Þ

where dðxÞ denotes the delta function. The eigenfunctions for this boundary condition can be
found as [8]:

FiðxÞ ¼ sinðbixÞ; CiðxÞ ¼ RicosðbixÞ; ð25Þ

where Ri’s are functions of natural frequency of the beam and

bi ¼ ip=L: ð26Þ
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To solve this system with different time functions, we substitute Eqs. (25) into Eqs. (5) to get

Bij ¼
i2p2

2L
dij ; Cij ¼ dijL=2;

Dij ¼ LR2
i dij=2; Fij ¼

i2p2

2L
R2

i dij ; Hij ¼
ip
2

Ridij:

ð27Þ

Substituting Eqs. (27) into Eqs. (4) results in the following equations:

rACii €pi þ kAGðBiipi � HiiqiÞ ¼ 10sinð100tÞsinðip=5Þ; i ¼ 1; 2; :::; n;

rIDii €qi þ ðEIFii þ kAGDiiÞqi � kAGHiipi ¼ 0; i ¼ 1; 2; :::; n:
ð28Þ

Consequently, pi(t) and qi(t) can be found, for each i, by solving these two sets of coupled
differential equations. The modal amplitudes for i ¼ 1 and 2 are calculated and compared in
Fig. 3, which shows that pi(t) and qi(t) are nearly the same.
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Fig. 3. Modal amplitudes for different time functions: (a) first mode and (b) second mode.
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Fig. 4. Modal amplitudes with identical time function for (a) the first mode and (b) the second mode; and the difference

associated with the use of different time functions for (c) the first mode and (d) the second mode.
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We now consider the identical time-function case for this example. From Eqs. (14), (15) and
utilizing Eq. (19), pi(t) can be calculated for each i. The results for i ¼ 1 and 2 are shown in Fig. 4.
The differences between the related time functions in two cases (identical and different time
function) are also plotted in Fig. 4.
4.2. Example 2: clamped–simply supported boundary conditions

As the second example, the clamped–simply supported boundary condition is now assumed for
the Timoshenko beam:

n ¼ c ¼ 0 at x ¼ 0; n ¼ c0
¼ 0 at x ¼ L: ð29Þ
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Fig. 5. Modal amplitudes for different time functions: (a) first mode and (b) second mode.
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The beam is again subjected to the sinusoidal concentrated force (24). The eigenfunctions for
this boundary condition are in the following forms [8]:

FiðxÞ ¼ coshðbiaixÞ � cothðbiaiÞ sinhðbiaixÞ � cosðbibixÞ þ cotðbibiÞ sinðbibixÞ;

CiðxÞ ¼ Ri coshðbiaixÞ þ yi

lizi


 �
sinhðbiaixÞ � cosðbibixÞ þ yi sinðbibixÞ

n o
;

ð30Þ

where x ¼ x=L and constants bi, ai, yi, li, zi, Ri depend on the natural frequencies of the beam. By
solving the system of Eq. (4) which is a set of 2n coupled differential equations, one can find pi(t)
and qi(t) for i ¼ 1; 2; . . . ; n: The results for n ¼ 2 are presented in Fig. 5, which again demonstrates
that pi(t) and qi(t) are nearly the same.

By considering identical time functions for this example, pi(t) can be found from Eqs. (13) and
(14) using shape modes in equation (30). The results for i ¼ 1 and 2 are shown in Fig. 6. The
differences between the related time functions in two cases (identical and different time-function)
are also plotted in Fig. 6, which shows the insignificant nature of errors.
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associated with the use of different time functions for (c) the first mode and (d) the second mode.
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The h/L ratio in the example given in the numerical results is small enough to violate the
Euler–Bernoulli assumption ðc ¼ @n=@xÞ: For the larger ratios for which the assumption is valid,
the time function will give even smaller error values. Hence, different h/L ratio will result in a
small error similar to the figures given in the paper. These details are not presented here for the
sake of brevity [9].
5. Conclusion

The Galerkin approximation with identical and different time functions for transverse
deflection and beam’s cross-sectional rotation has been considered. The equations of motion for
identical time functions were obtained using orthogonality conditions. For the different time
functions in Galerkin approximation, the equations of motion were derived using Lagrangian
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approach. Two boundary conditions, simply supported–simply supported and clamped-simply
supported, were considered for the numerical simulations. The numerical results demonstrated
that the related time functions in each case are almost identical and the error resulting from
identical time-function assumptions can be negligible.
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