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Abstract

Models of physical non-linear systems are prone to different kinds of uncertainties. This paper presents a
backstepping-based adaptive control designed for a class of one degree-of-freedom uncertain non-linear
systems. The true system does not need to be known for the control design. A functional description is
assumed with uncertain coefficients and an uncertain residual function. These uncertainties are bounded
and lump the discrepancies between the adopted description and the real behaviour. The adaptive
controller is able to handle these uncertainties and make the closed loop globally uniformly ultimately
bounded when the system is subject to an unknown excitation from which a bound is known. One goal is
that the transient and asymptotic performances depend explicitly on the design parameters. This feature of
the control scheme establishes the main difference with other control methods used to control non-linear
systems, in particular chaotic systems. The efficiency of the approach is tested by numerical simulations on
Duffing oscillators and systems with non-linear and hysteretic stiffness under external loads.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Models of real physical systems usually contain different types of uncertainties. These
uncertainties are typically due to unmodelled dynamics, unknown external disturbances, bad
knowledge of the values of the parameters and others. Therefore the design of robust control
schemes, able to handle a large class of uncertain systems, is needed.
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In this paper a backstepping-based adaptive control scheme is presented in order to drive the
response of a class of uncertain non-linear second order one-dimensional systems to a desired
state when subjected to an external excitation. Backstepping refers to a recent approach for design
of stabilizing controllers for non-linear systems (see Ref. [1]). As noted in Ref. [2], adaptive
control systems and, in particular, adaptive backstepping controllers seem to be good candidates
for controlling uncertain non-linear systems.
In this paper, a switching s-modification [3,4] and a new term that incorporates part of the

information on the uncertainty is used with the objective of driving the output to a
neighbourhood of a reference trajectory, thus reducing the vibrations induced by the external
excitations. The resulting closed loop is globally uniformly ultimately bounded [5] and the output
can be made asymptotically arbitrarily small by choosing appropriate design parameters, since the
analysis presented in the paper evidences that both the transient and the asymptotic performance
depend explicitly on specific design parameters.
The paper is structured as follows. In Section 2, the control scheme design and implementation

are presented, together with the main results of the paper, which ensure the globally uniform
boundedness of the closed-loop responses and analyze the transient and asymptotic behaviour.
Since the proofs of these results follow standard arguments, they are presented (for the sake of
completeness) in Appendix A.
In Section 3, the control scheme is applied to a Duffing oscillator which (in open loop) displays

a chaotic motion regime. Since the seminal paper [6] (see also Ref. [7]), a significant research effort
has been done in two directions: (1) to introduce chaotic behaviours in systems with regular
dynamics for targeting purposes as first steps in a control scheme [8], and (2) to drive chaotic
trajectories to a desired state. Duffing’s system (introduced in 1918) is a simple model to explain
the motions of several systems, like a magnetoelastic beam under forced vibrations in the non-
uniform field of two permanent magnets [9–11], and constitutes a paradigmatic example of an
oscillator leading to ‘‘chaotic’’ motions caused by an external forcing. Duffing’s oscillator also
appears to be of interest in structural dynamics, as in modelling and identification of base
isolation devices [12] and hydraulic dampers [13].
Backstepping design has recently been used for synchronization and robust control of chaotic

systems (in particular, Duffing’s oscillator), see Refs. [2,14]. The control scheme in this paper
allows the designer to tune the design coefficients in an explicit way to obtain the closed-loop
desired behaviour both for the transient and the asymptotic tracking. This gives a difference to the
mentioned works. In fact, other control methods used to control chaos as the Ott–Grebogi–Yorke
(OGY) method (see Refs. [6,7]) can exhibit a very bad transient performance since the control
must wait until the system is close enough to certain region. This is, in general, not the case of the
control presented here, which acts globally and gives the possibility of tuning the transient
performance. This is one of the main goals of this paper, and encourages the authors to agree with
the conclusions in Ref. [2] and to propose adaptive backstepping schemes as a good option to
control uncertain non-linear systems.
In structural systems, feedback controllers in the presence of non-linear components

have been primarily encountered when dealing with smart actuators and base isolation schemes.
In Section 4, the efficiency of the backstepping control scheme is tested when dealing with the
suppression of the vibrations in non-linear uncertain isolation devices induced by seismic
excitations.
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Duffing-like oscillators have been chosen to describe the restoring force appearing in structural
systems [12,13]. However, it has been noted that some real systems do not fit the mathematical
model given by the Duffing oscillator, see Refs. [13,15]. In Ref. [16] an identification procedure
using Chebyshev Polynomials reveals that the mathematical representation of the behaviour of
some real physical systems must include terms beyond the cubic. In Section 4.2, the control
scheme is applied to a model of a base isolation system with a non-linear stiffness given by a high
order polynomial. In Section 4.3, the control is applied to a base isolation scheme with a hysteretic
restoring force described by the Bouc-Wen model [17]. This model lies within the class of
differential hysteretic models and has been widely used in structural dynamics, particularly to
describe rubber bearing base isolation schemes [18].

2. Problem statement and main results

2.1. Problem statement

In this section an adaptive control scheme is developed for systems of the form

’x1 ¼ x2;

’x2 ¼ ax2 þ Qðx1; tÞ þ eðtÞ þ fcðtÞ; ð1Þ

where x1AR and x2AR are the state variables, eðtÞAR is an external disturbance, fcðtÞAR is the
control input and

Qðx; tÞ ¼
Xn

k¼1

dkckðx; tÞ þ Rðx; tÞ; ð2Þ

where the coefficients dk are real uncertain parameters, ckðx; tÞ are known locally Lipschitz
functions and Rðx; tÞ is an unknown residual term. The following assumptions complete the
description of system (1).

Assumption 1. The coefficient a is an unknown parameter which lies within an interval ½�am; am�;
where am is known.

Assumption 2. The constant vector Hd ¼ ðd1; d2;y; dnÞ
T is unknown but lies within a known

sphere. That is jjHdjjpMd for a known positive constant Md:

Assumption 3. The function Rðx; tÞ is unknown but is assumed to be locally Lipschitz and such
that jRðx; tÞjp %R; for all xAR and tX0; where %R is a known positive constant.

Assumption 4. The exciting signal eðtÞ is unknown but bounded in the form jeðtÞjpE for all tX0;
where E is a known positive constant.

As shown in further sections, different systems can be represented within the form considered
above.
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The objective of this paper is to design a backstepping-based adaptive control law for systems
(1)–(2) (under Assumptions 1–4) satisfying the following specifications:

1. The closed loop is globally uniformly ultimately bounded.
2. Let yrðtÞ be a given known bounded reference signal (where ’yr and .yr are known, bounded and

piecewise continuous). The tracking error x1ðtÞ � yrðtÞ can be reduced both in the transient and
asymptotically by an explicit choice of the design parameters.

2.2. Control design

System (1) can be rewritten in the form

’x1 ¼ x2;

’x2 ¼ Uðx1;x2; tÞ
TH þ Rðx1; tÞ þ eðtÞ þ uðtÞ; ð3Þ

where Uðx1;x2; tÞ
T ¼ ðx2;c1ðx1; tÞ;y;cnðx1; tÞÞ and HT ¼ ða; d1;y; dnÞ:

From Assumptions 1 and 2, it follows that

jjHjjp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ M2

d

q
9M: ð4Þ

Now introduce the following auxiliary variables:

z1 ¼ x1 � yr ðtracking errorÞ;

z2 ¼ x2 � a1;

a1 ¼ �c1z1 þ ’yr ðstabilizing functionÞ: ð5Þ

An adaptive control scheme is proposed below. It is obtained using adaptive backstepping design.
The main ingredient of the backstepping design is the co-ordinate change (5). As usual in
Lyapunov-based methods, the design combines the choice of a Lyapunov function (for the system
in the new co-ordinates) with the design of the control law as well as the parameter update law
(see Ref. [1, Chapters 3 and 4]). In this sense, both the control law (6) and the parameter estimate
law (7) below have been obtained when trying to minimize the derivative of the Lyapunov
function (A.1) given in Appendix A. A switching s-modification has been added to the parameter
update law, as in Ref. [3], to prevent parameter drift.

Adaptive control law:

uðtÞ ¼ �Uðx1; x2; tÞ
T #H � z1 � c2z2 � c1x2 � sgðz2Þcfðjrz2jÞr þ c1 ’yr þ .yr: ð6Þ

Parameter estimate law:

’#H ¼ CUðx1;x2; tÞz2 � CsHðjj #HjjÞ #H;

#Hð0Þ ¼ #H0: ð7Þ

In the above expressions, c1 and c2 are positive design parameters and r ¼ %R þ E is a bound on
the uncertainty in model (1). It is obtained by adding the bound on the residual term Rðx1; tÞ and
the bound on the excitation signal eðtÞ (see Assumptions 3 and 4). C is a positive definite design
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V. Mañosa et al. / Journal of Sound and Vibration 280 (2005) 657–680660



matrix and cfðyÞ ¼ sðy=e1Þ; sYðyÞ ¼ %ssðy=MÞ; where

sðyÞ ¼

0; yo1;

y � 1; yA½1; 2�;

1; y > 2;

8><
>:

sgðyÞ ¼

�1; yo�
1

1þ r
e2;

1þ r

e2
y; yA �

1

1þ r
e2;

1

1þ r
e2

� 	
;

1; y >
1

1þ r
e2;

8>>>>>><
>>>>>>:

where e1; e2 and %sY are positive design parameters.

Remark. In general, in order to rewrite systems in form (1) into form (3), proceed as follows: All
the terms having a known functional description and parametric uncertainties are included in the
term Uðx1; x2; tÞ

TH: All the bounded uncertain terms depending on x1 and t not having a
functional description must be added in the term Rðx1; tÞ: The control variable u includes the real
active control fc plus all the terms of the model with a known functional description and without
parametric uncertainties. That is, the control u contains all the terms of the model that are
computable (see, for instance, Ref. [19]). This trick helps avoid unnecessary terms in the dynamic
estimator #H; given by Eq. (7).

2.3. Main results

The following results assure that system (3) can be stabilized using the control scheme presented
above, and that its performance can be improved by an accurate selection of the design parameters.

Theorem 1. The orbits of the closed loop composed of system (3), under Assumptions 1–4, and the

controller defined in Eqs. (6) and (7) are globally uniformly ultimately bounded. Moreover the control
signal is bounded.

Theorem 2. Consider system (3) subject to Assumptions 1–4 along with the control law given by Eqs.

(6) and (7). Then the following statements hold:

(a) The asymptotic tracking error is given by

jjz1jj
2
r:m:s:;½t0;N�9 lim

T-N

1

T

Z t0þT

t0

z21ðtÞ dtp
4e1 þ 2e2

c1
; ð8Þ

for any t0X0:
(b) The transient tracking error is given by

jjz1jj2r:m:s:;½0;T �9
1

T

Z T

0

z21ðtÞ dtp
maxð1; lmaxðC�1ÞÞ
minðc1; c2; 34 %sÞ

ð39
4 %sM2 þ 4e1 þ 2e2Þ

2c1T
þ
4e1 þ 2e2

c1
; ð9Þ

for all TX0; where lmax denotes the maximum eigenvalue.
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From Theorem 2 the following conclusions are drawn about the role of the parameters in the
control law:

(i) The tracking performances (both transient and asymptotic) are expressed explicitly as a
functions of design parameters.

(ii) To reduce the tracking performance (transient and asymptotic) either increase the gains c1; c2;
and %s or decrease e1; e2: However, since they enter directly into the control law, this means
that improving the closed-loop behaviour may be done at the expense of an increase in the
control signal amplitude. That is, a trade-off between good performance and reasonable
control amplitude should be made.

(iii) The transient tracking error can be reduced by increasing the eigenvalues of the adaptation
gain C as long as lmaxðC�1Þ > 1: This increase has no effect on the asymptotic tracking
performance.

(iv) The transient performance depends on the accuracy of the estimate of the bounds of the
uncertain parameters through M:

The proofs of these theorems are presented in Appendix A.
In order to test the proposed control scheme it has been applied, by means of numerical

simulations, in three different cases presented in Sections 3 and 4. In these examples, the ratio of
the root mean square norm of the control signal uðtÞ versus the root mean square norm of the
external excitation eðtÞ (in an appropriate time interval ½0;T �), is proposed to give a relative
measure of the strength of the control action, that is

Sr:m:s:;½0;T �9
jjujjr:m:s:;½0;T �

jjejjr:m:s:;½0;T �
; ð10Þ

where, as usual, the root mean square norm is computed as

jjyjjr:m:s:;½0;T �9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Z T

0

y2ðtÞ dt

s
:

The following index is proposed to give a relative measure of the performance:

Pr:m:s:;½0;T �9
jjzcon

1 jjr:m:s:;½0;T �

jjzunc
1 jjr:m:s:;½0;T �

; ð11Þ

where z1ðtÞ
con ¼ xcon

1 ðtÞ � yrðtÞ is regulation/tracking error variable in closed loop, and z1ðtÞ
unc ¼

xunc
1 ðtÞ � yrðtÞ is regulation/tracking error variable in open loop.

3. Application: control of a Duffing oscillator

3.1. System description and control design

Duffing’s oscillator is the well-known second order differential equation with a cubic non-linear
stiffness given by Ref. [9]

.x þ d ’x � bx þ x3 ¼ eðtÞ þ fcðtÞ: ð12Þ
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After the works of Moon and Holmes [9–11], this system appears to be a simple model for the
motion of a magnetoelastic beam under forced vibrations in the non-uniform field of two
permanent magnets. In Eq. (12), x represents the displacement of the beam and f is the resulting
external force. Now consider that the external force includes an exciting force (disturbance) eðtÞ
plus an active control force fcðtÞ: Introducing the state space variables ðx1;x2Þ ¼ ðx; ’xÞ; the
Duffing’s equation (12) can be written in the following form:

’x1 ¼ x2;

’x2 ¼ Uðx1;x2; tÞ
TH þ eðtÞ þ fcðtÞ � x3

1; ð13Þ

where Uðx1;x2; tÞ ¼ ðx2;x1Þ; HT ¼ ð�d; bÞ: If (following the indications given in Section 2.2)
we sets uðtÞ :¼ fcðtÞ � x3

1ðtÞ; system (13) fits in the class of systems (3), with Rðx1; tÞ 	 0: The
‘‘control variable’’ is now uðtÞ and is obtained with the adaptive feedback control scheme (6)–(7),
but observe that the final active control force acting on the system is then fcðtÞ ¼ uðtÞ þ x3

1ðtÞ;
yielding to

fcðtÞ ¼ #dx2 � #bx1 þ x3
1 � z1 � c2z2 � c1x2 � sgðz2Þcfðjrz2jÞr þ c1 ’yr þ .yr:

3.2. Simulation results

In this section the efficiency of the control scheme presented in Section 2.2 will be tested. The
real parameters of system (12), which are unknown for the controller, are given by b ¼ 1; d ¼
0:25; and the external excitation (also unknown for the controller) is given by eðtÞ ¼ g cosðotÞ with
g ¼ 0:3 and o ¼ 1: With these values of the parameters, system (12) apparently exhibits chaotic
motions and a strange attractor [9, pp. 82–91].
For the control implementation, it is assumed that jeðtÞjpE90:45 (observe that r ¼ E; since

R ¼ 0) and M ¼ 1:5jjHðnomÞ
d jj ¼ 1:5jjðb; dÞjj ¼ 1:5462; which is a 50% of uncertainty added to

maxtA½0;NÞ jeðtÞj and jjHðnomÞ
d jj; respectively.

The design parameters are set to be: C ¼ 10I2; e1 ¼ 1; e2 ¼ 2; c1 ¼ 0:75; c2 ¼ 5 and %s ¼ 0:25;
where I2 is the 2
 2 identity matrix. The initial conditions for the parameter estimation are
chosen #bð0Þ ¼ 0 and #dð0Þ ¼ 0:
Figs. 1 and 2 show the performance of both the open- and closed-loop responses (dashed and

solid lines, respectively) when reference tracking signals yrðtÞ 	 0 and yrðtÞ 	 1 are fixed,
respectively. It can be observed that the controlled orbits tend to a periodic motion, contained in a
ball of ultimate boundedness, whose radius can be reduced increasing the gains c1; c2 and %s: In the
case yrðtÞ 	 0; the performance index (11) for 70 s is Pr:m:s:;½0;70� ¼ 0:0518; resulting in a reduction
in the regulation error for x1 of 94.82%. When yrðtÞ 	 1; Pr:m:s:;½0;70� ¼ 0:0974; hence the regulation
error has been reduced in a 90.26%.
Observe that the transient response is very fast in reaching this neighbourhood, but this is at the

cost of a high control action in comparison with the external excitation. Indeed, for the case where
yrðtÞ 	 0; the strength index (10) is Sr:m:s:;½0;70� ¼ 1:6341: In the case where yrðtÞ 	 1; Sr:m:s:;½0;70� ¼
1:1306:
In Fig. 3 the open- and closed-loop responses are shown when a reference tracking

signal yrðtÞ ¼ 1þ 0:5 cosðtÞ is considered. Fig. 4 displays both the history of the reference
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tracking signal yrðtÞ (dashed line) and the controlled signal x1 (solid line) to illustrate the
good tracking of the desired reference signal. The performance index is Pr:m:s:;½0;70� ¼ 0:1269:
Also in this case Sr:m:s:;½0;70� ¼ 2:5115: Of course, pretending to have a fast transient regime
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Fig. 1. Tracking trajectories of system (13) when yr 	 0: Open-loop responses in dashed line and closed-loop responses
in solid line.

Fig. 2. Tracking trajectories of system (13) when yr 	 1: Open-loop responses in dashed line and closed-loop responses
in solid line.
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to a capricious sustained oscillatory signal has the cost of having to apply a sustained high
control action.
The data results for these three simulations are displayed in Table 1.
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Fig. 3. Tracking trajectories of system (13) when yrðtÞ ¼ 1þ 0:5 cosðtÞ: Open-loop responses in dashed line and closed-

loop responses in solid line.

Fig. 4. Reference tracking signal yrðtÞ ¼ 1þ 0:5 cosðtÞ in dashed line and closed-loop response of system (13) x1ðtÞ; in
solid line.
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4. Application: control of base isolation systems

4.1. System description and control design

In this section a one degree-of-freedom non-linear system which models a base isolation device
as illustrated in Fig. 5 is considered. This system is the main component in base isolation schemes
installed to supply passive and active protection in structures (like buildings) against earthquakes.
The passive resistance is given by the physical characteristics of the isolator between the base and
the foundation. The active resistance is given by a controller which produces forces generated by a
feedback control law. Hybrid schemes by combining passive and active means have been
proposed in recent years, attracting the interest of researchers from both structural and control
engineering [20–22].
The model has the form

m .x þ c ’x þ Fsðx; tÞ ¼ �maðtÞ þ fcðtÞ; ð14Þ

where x is the base displacement relative to the ground, m and c are the mass and the viscous
damping coefficient, respectively, and Fsðx; tÞ describes a non-linear restoring force. The excitation
is supplied by the ground acceleration aðtÞ and fcðtÞ is the force supplied by the active controller.
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Table 1

Data results from simulations in Section 3 (Duffing oscillator: (jj � jj means jj � jjr:m:s:;½0;70�))

Target Performance index Error reduction (%) Strength index

yr 	 0 jjzcon
1 jj ¼ 0:0460 jjfcjj ¼ 0:3479

jjzunc
1 jj ¼ 0:8873 Pr:m:s:;½0;70� ¼ 0:0518 94.82 jjejj ¼ 0:2129 Sr:m:s:;½0;70� ¼ 1:6341

yr 	 1 jjzcon
1 jj ¼ 0:1344 jjfcjj ¼ 0:2407

jjzunc
1 jj ¼ 1:3798 Pr:m:s:;½0;70� ¼ 0:0974 90.26 jjejj ¼ 0:2129 Sr:m:s:;½0;30� ¼ 1:1306

yr 	 1þ 0:5 cosðtÞ jjzcon
1 jj ¼ 0:1825 jjfcjj ¼ 0:5343

jjzunc
1 jj ¼ 1:4386 Pr:m:s:;½0;30� ¼ 0:1269 87.31 jjejj ¼ 0:2129 Sr:m:s:;½0;70� ¼ 2:5115

Fig. 5. Base isolation system.
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The purpose here is to design the control force by means of the backstepping control law
presented in Section 2 with the aim of reducing the response of the system induced by the seismic
acceleration.
Defining the state variables ðx1; x2Þ ¼ ðx; ’xÞ (14) may be written in the form

’x1 ¼ x2;

’x2 ¼ �
c

m
x2 �

Fsðx1; tÞ
m

� aðtÞ þ
fcðtÞ
m

: ð15Þ

For the control design, this system should have the structure assumed in Eqs. (1)–(3) and satisfy
Assumptions 1–4 in Section 2. In this application mathematical description of the restoring force
Fs is not considered a priori available for the control designer. Instead, for a number of time
instants ti ði ¼ 1;y;NÞ; the values of the displacement x1ðtiÞ and the corresponding restoring
force Fsðx1ðtiÞ; tiÞ are known. This information can be available, for instance, from experimental
input–output tests in which displacement and restoring force have been measured. Or it can be
known by means of a physical constitutive model or a mathematical model which is considered as
a ‘‘true’’ ideal description of a class of base isolation devices. Considering that the data set
ðx1ðtiÞ;Fsðx1ðtiÞ; tiÞÞ is available, an off-line identification procedure is performed to obtain an
approximating function Fsðx1; tÞ with the structure adopted in Eq. (2).
More specifically, the idea is that it is possible to approximate the non-linear restoring force by

an n order least-squares regression polynomial, that is, this function is assumed to have the
following structure:

Fsðx; tÞ ¼ CðxÞ þ Reðx; tÞ; CðxÞ9d�0 þ d�1
x

d
þ d�2

x

d

� 
2
þ?þ d�n

x

d

� 
n

; ð16Þ

where CðxÞ is an n degree polynomial and Reðx; tÞ is a residual function. In the polynomial, d is a
known constant with the dimension of a displacement. It is introduced so that all the coefficients
d�i have the same dimension (of a force). This representation of a restoring force lies within the
class of the so-called non-parametric models [23–25]. In general, these models attempt to
approximate unknown non-linear behaviours by functional expansions with appropriate
coefficients, which are usually chosen through identification experiments. In Eq. (16), a simple
polynomial plus a residual function is adopted as a description of the non-linearity. Its purpose
here is not to give a precise model of the non-linearity, but to be used as a working model for the
controller design. In fact, the coefficients di and the function Reðx; tÞ do not need to be known
exactly for the controller design, but must be bounded in the form jReðx; tÞjp %Re for all x and tX0;
where %Re is a known positive constant.
Let eiðtiÞ denote the errors between the fitted values and the ‘‘true’’ values

ei ¼ jFsðx1ðtiÞ; tiÞ �Cðx1ðtiÞÞj: ð17Þ

If the residual error Reðx1; tÞ ¼ Fsðx1ðtÞ; tÞ �Cðx1ðtÞÞ of the least-squares approximation is a
normally distributed random variable with mean mR ¼ 0 and variance s2R; then a good estimation
for s2R is given by

s2R ¼
1

N � ðn þ 1Þ

XN

i¼1

e2i ; ð18Þ
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(see, for more details, Ref. [26, Chapter 13]). In such a case, 3sR would be a good estimation for a
bound %Re of jReðx1; tÞj: Since, in general, this will not be the case, the following estimation of %Re is
adopted:

%Re9maxðemax; 3sRÞ; ð19Þ

where emax ¼ maxi¼1;y;N ei:
By substituting the identified function Fsðx1; tÞ of Eq. (16) into Eq. (15), it can be written that

’x1 ¼ x2;

’x2 ¼ Uðx1; x2Þ
TH þ Rðx1; tÞ � aðtÞ þ uðtÞ ð20Þ

with

H ¼
cv

m
; d0; d1; d2;y; dn

� 
T
; Uðx1; x2Þ ¼ �

x2

v
; 1;

x1

d
;
x2
1

d2
;y;

xn
1

dn

� �T

;

di ¼
d�i
m
; Rðx1; tÞ ¼

Reðx1; tÞ
m

and uðtÞ ¼
fcðtÞ
m

;

where v is a known constant which has the dimension of a velocity. It is introduced to have
dimensionless variables in U and coefficients of the same dimension in H:
Now model (20) has the same form as the one in Eq. (3). As for the Assumptions 1–4 in Section

2, consider that the mass m is known, while the damping coefficient c is unknown but lies within
an interval ½0; cmax�; where cmax is known. Now consider that the values of the constant vector
Hd ¼ ðd0; d1; d2;y; dnÞ

T obtained in the previous identification are only nominal values and
assume that the ‘‘true’’ parameters are not precisely known by the control designer. This allows
one to cope with some degree of uncertainty in the identification of the restoring force from the
data as performed above. Thus, according to Assumption 2, the control design considers that the
parameter vector H is unknown but lies within a known sphere, which contains the nominal
identified parameters. That is, jjHdjjpMd for a known positive constant Md: Consequently, the
following bound for vector H is obtained:

jjHjjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cmaxv

m

� 
2
þM2

d

r
9M: ð21Þ

For Assumption 3,

jRðx; tÞj ¼
jReðx; tÞj

m
p

%Re

m
9 %R: ð22Þ

Finally, according to Assumption 4, the seismic acceleration disturbance aðtÞ is considered to be
unknown, but bounded in the form jaðtÞjpA; where A is a known positive constant. With this
value, it is possible to obtain

r ¼ %R þ A; ð23Þ

which, together with M in Eq. (21), is needed in the control scheme (6)–(7).
The approach presented above is tested in the remainder of the paper. Since a real system is not

available for a true implementation, the data set ðx1ðtiÞ;Fsðx1ðtiÞ; tiÞÞ for fitting a restoring force
function as considered above will be supplied by a mathematical model which is considered as the
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‘‘true’’ system. Two cases are considered. In the first one, the real restoring force is described by
a high order polynomial function FsðxÞ: In the second one, it is described by the well-known
Bouc–Wen model [12,17,18], which represents a hysteretic restoring force by means of a
differential equation.

4.2. Base isolation with high order non-linear stiffness

Duffing-type oscillators, such as the one in Eq. (12), have been used to describe restoring forces
in such structural systems [12,13]. However, some works have reported that polynomial
representations with terms beyond the cubic may be required to capture the essential behaviour of
highly non-linear restoring forces in real physical structures [13,15,16]. Inspired by these works, in
this section the adaptive backstepping control law presented in Section 2 will be applied to a
model of a non-linear base isolation like the one in Eq. (14) in which the restoring force is a
polynomial

m .x þ c ’x þ PðxÞ ¼ �maðtÞ þ fcðtÞ;

PðxÞ ¼ mo2 x þ
Xl

j¼2

djx
j

 !
; ð24Þ

where o; l; dj ðk ¼ 1;y; lÞ are uncertain parameters.
Numerical simulations assessing the efficiency of the control law are presented in the next

section.

4.2.1. Simulation results
Consider system (24) with l ¼ 7 and the following parameter values: mass m ¼ 156
 103 kg;

o ¼ 2p rad=s; damping c ¼ 2
 104 Ns=m (which gives a 1% damping factor). Setting ki ¼
mo2di; gives k1 ¼ mo2 ¼ 6:1586
 106 N=m; k2 ¼ 1:7
 106 N=m2; k3 ¼ 3:2
 106 N=m3; k4 ¼
4:8
 109 N=m4; k5 ¼ 2:6
 1010 N=m5; k6 ¼ 1:3
 109 N=m6; k7 ¼ 7:2
 1020 N=m7: These para-
meters define the true system, which is not known for the control designer. The objective of the
control is to keep the system response substantially reduced against an earthquake whose
acceleration aðtÞ is unknown but bounded by 1:2 m=s2: Fig. 6 shows a prototype acceleration
record (Taft’s earthquake) which lies within this bound and will be used to perform numerical
tests.
Prior to the design of the control law, the polynomial identification described in Section 4.1 has

to be carried out. To do this, an open-loop simulation is performed, applying to system (24) a
slow-varying excitation given by aðtÞ ¼ 1:5 cosð0:2tÞ; which is a signal with a little more amplitude
than the one expected to be controlled. A simulation time of 5 s; with 15 147 discrete time instants
is taken for the identification, obtaining the values

x1ðtiÞ; Pðx1ðtiÞÞ ¼ mo2x1ðtiÞ þ
X7
j¼2

kjx
j
1 ðtiÞ for i ¼ 1;y; 15 147:

The values of the constants d and v are determined from the open-loop identification as the
maximum output (displacement and velocity, respectively) for the Taft’s earthquake input. Thus
taking d ¼ 0:03 m and v ¼ 0:2 m=s; the following third order least-squares regression polynomial
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is obtained:

Cðx1Þ ¼ �0:1458� 10:8279
x1

d
� 13:0085

x1

d

� 
2
�543:1181

x1

d

� 
3� �
m; ð25Þ

with a maximum error emax ¼ 2:3248 m and a variance error sR ¼ 0:5381 m; so that %Re ¼
2:3248 m: Fig. 7 displays the results of the identification by comparing the behaviour of the ‘‘true’’
system restoring force and the identified polynomial.
For the control law implementation, the values of the uncertainty bounds r and M in Eqs. (6)

and (7) need to be set. Assuming that the excitation is bounded in the form jaðtÞjpA ¼ 1:2; then
r ¼ %R þ A ¼ 3:5248: Consider cðnomÞ ¼ 2
 104 and the vector HðnomÞ

d ¼ ð�0:1458;�10:8279;
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13:0085; 543:1181ÞT with the parameters identified in Eq. (25) as nominal model values. Compute
jjHðnomÞ

d jj ¼ 543:3818:Now, some uncertainty margins to these parameters are included, so that the
real values c and Hd; which are unknown for the control law, have the following bounds:

0pcpcmax ¼ 2cðnomÞ ¼ 4
 104; jjHdjjpMd ¼ 2jjHðnomÞ
d jj ¼ 1:0868
 103:

These bounds allow one to cope with some degree of uncertainty in the true system model (24) and
errors in the performed identification. With these values the following is obtained:

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cmaxv

m

� 
2
þM2

d

r
¼ 1:0868
 103 m=s2:

After some numerical experiments, the following design parameters are chosen: c1 ¼ 100; c2 ¼
5; e1 ¼ 0:01; e2 ¼ 0:1; %s ¼ 1 and C ¼ I5 (the 5
 5 identity matrix). For the parameter adaptive law
in Eq. (6), the following initial parameter vector #H0 has been chosen:

#H0 ¼
cmaxv

m
;HðnomÞT

d

� 
T
:

Starting at time 0 with these values, the adaptive law in Eq. (6) updates on-line new values of these
parameters.
The system is subjected to the Taft earthquake excitation, whose acceleration is plotted in

Fig. 6. Since the control objective is to mitigate the seismic displacement response of the system,
the target for x1 is set to yr ¼ 0:
Fig. 8 shows the behaviour of system (24) both in the case without control and with the

backstepping active control in operation. The phase portrait and the time histories of the
displacement and the velocity exhibit a significant reduction of the controlled response in
comparison to the open-loop response. After t ¼ 20 s; the excitation stops and the uncontrolled
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Fig. 8. Tracking trajectories of system (24) when yr 	 0: Open-loop responses in dashed line and closed-loop responses
in solid line.
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case corresponds to free vibration response. The open-loop system exhibits a low damping
behaviour. On the contrary, the control drives a fast response towards the neighbourhood of zero,
thus introducing a significant damping effect into the system. The performance index at 20 s
(when the earthquake finishes), and at 30 s are given by Pr:m:s:;½0;20� ¼ 0:0303; and Pr:m:s:;½0;30� ¼
0:0269; respectively, which gives a regulation error reduction for x1 of 96.97% and 97.31%
respectively. The strength index at 20 s is Sr:m:s:;½0;20� ¼ 1:0249; and at 30 s is Sr:m:s:;½0;30� ¼ 1:0249:
This means that to reduce 97% (in average) vibration, the control signal has to be of almost the
same size of the external excitation. The data results of this simulation are summarized in Table 2.
Fig. 8 also shows the time history of the control signal uðtÞ: Physically, this signal is an

acceleration. Its pattern seems reasonable in comparison with the seismic excitation acceleration
in Fig. 6.

4.3. Base isolation with hysteretic behaviour

Hysteretic restoring forces are very common when dealing with structural systems, in
particular, in base isolation schemes. In this section, the dynamics of the base isolation device (14)
is represented in the form

m .x þ c ’x þ Hðx; tÞ ¼ �maðtÞ þ fcðtÞ;

Hðx; tÞ ¼ akxðtÞ þ ð1� aÞkDzðtÞ; ð26Þ

where Hðx; tÞ describes a non-linear hysteretic uncertain restoring force as the superposition of an
elastic component akxðtÞ and a hysteretic component ð1� aÞkDzðtÞ: This component involves a
non-dimensional auxiliary variable zðtÞ which is the solution of the following non-linear first order
differential equation:

’z ¼ D�1½A ’x � bj ’xj jzjn�1z � g ’xjzjn�: ð27Þ

In this equation, D > 0 is the yield constant displacement and aA½0; 1� is the post to pre-yielding
stiffness ratio, A;b and g are non-dimensional parameters which control the shape and the size of
the hysteresis loop, while n is an integer that governs the smoothness of the transition from elastic
to plastic response. The above hysteretic force description is the so called Bouc-Wen model [17],
which belongs to the class of differential hysteretic models and has been widely used in structural
dynamics, particularly to describe rubber bearing base isolation schemes [18].
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Table 2

Data results from simulations in Section 4.2 (jj � jjT means jj � jjr:m:s:;½0;T �)

Time Performance index Error reduction (%) Strength index

T ¼ 20 s jjzcon
1 jj20 ¼ 1:5135
 10�4 jjujj20 ¼ 0:2571

jjzunc
1 jj20 ¼ 0:0050 Pr:m:s:;½0;20� ¼ 0:0303 96.97 jjejj20 ¼ 0:2503 Sr:m:s:;½0;20� ¼ 1:0272

T ¼ 30 s jjzcon
1 jj30 ¼ 1:2371
 10�4 jjujj30 ¼ 0:2099

jjzunc
1 jj30 ¼ 0:0046 Pr:m:s:;½0;30� ¼ 0:0269 97.31 jjejj30 ¼ 0:2044 Sr:m:s:;½0;30� ¼ 1:0269
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4.3.1. Simulation results

Consider systems (26)–(27) with the following parameter values: mass m ¼ 156
 103 kg;
stiffness k ¼ 6
 106 N=m; damping c ¼ 2
 104 Ns=m; a ¼ 0:6; D ¼ 0:6 m; A ¼ 1; b ¼ 0:5; g ¼
0:5 and n ¼ 3:
As in the previous example, the purpose here is to check the control efficiency against the action

of an earthquake whose acceleration is roughly bounded by 1:2 m=s2: Thus, for the polynomial
identification described in Section 4.1, an open-loop simulation of the response of systems (26)–
(27) is done introducing a slow-varying excitation given by aðtÞ ¼ 1:5 cosð0:2tÞ: Take zð0Þ ¼ 0 and
a simulation time of 100 s; with 8226 discrete time instants for the identification, obtaining the
following values:

x1ðtiÞ; Hðx1ðtiÞ; tiÞ ¼ akx1ðtiÞ þ ð1� aÞkDziðtÞ for i ¼ 1;y; 8226:

The values of d and v are determined from the open-loop identification as the maximum output
(displacement and velocity, respectively) for the Taft’s earthquake input. This gives d ¼ 0:03 m
and v ¼ 0:2 m=s: The following third order least-squares regression polynomial is obtained:

Cðx1Þ ¼ �0:02þ 1:14
x1

a
� 0:001

x1

a

� 
2
�0:024

x1

a

� 
3� �
m; ð28Þ

with a maximum error emax ¼ 0:4365 m and a variance error sR ¼ 0:1446 m; so that %Re ¼
0:4365 m:
Fig. 9 displays the results of the hysteresis identification, by comparing the hysteretic behaviour

of the Bouc-Wen model (‘‘true’’ system) and the identified polynomial.
Assuming that the excitation is bounded in the form jaðtÞjpA ¼ 1:2; then r ¼ %R þ A ¼ 1:6365:

Now consider cðnomÞ ¼ 2
 104 and the vector

HðnomÞ
d ¼ ð�0:02; 1:14;�0:001;�0:024ÞT;

with the parameters identified in Eq. (28) as nominal model values. Compute jjHðnomÞ
d jj ¼ 1:14: As

in the previous example, it is assumed that the above values are only ideal nominal parameters,
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Fig. 9. Hysteresis identification: hysteretic cycles (dashed line) and regression polynomial (solid line).
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and uncertainty bounds are introduced by considering cmax ¼ 2cðnomÞ ¼ 4
 104 and Md ¼
2jjHðnomÞ

d jj ¼ 2:28: With these values the following is obtained:

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cmaxv

m

� 
2
þM2

d

r
¼ 2:28 m=s2:

The following design parameters are chosen: c1 ¼ 5; c2 ¼ 5; e1 ¼ 0:01; e2 ¼ 0:1; %s ¼ 1 and
C ¼ I5: The parameter adaptive law in Eq. (6) is initialized at: #H0 ¼ ðcmaxv=m;HðnomÞT

d ÞT: The
control objective is to mitigate the seismic displacement response of the system, hence the target
for x1 is set to yr ¼ 0: The system is subjected to the Taft earthquake excitation (Fig. 6).
The system behaviour is shown in Fig. 10, both in the case without control and with active

control. A significant reduction can be observed due to the control (solid lines). When the
excitation stops at t ¼ 20 s; the uncontrolled system shows a low damped-free vibration response,
while the controlled system behaves highly damped, as already observed in the previous example
in Fig. 1. The time history of the control acceleration signal in Fig. 10 also shows a reasonable
behaviour in comparison with the seismic acceleration excitation in Fig. 6.
After 20 s (at the end of the earthquake), the performance index is given by Pr:m:s:;½0;20� ¼ 0:0430;

which gives a reduction of 95.70% in the regulation error for x1; and after 30 s Pr:m:s:;½0;30� ¼
0:0403; which gives a reduction of 95.97%. The strength indices are Sr:m:s:;½0;20� ¼ 0:8905 and
Sr:m:s:;½0;30� ¼ 0:8904: All the data results for this simulation are given in Table 3.
Note that the parameter r has been obtained experimentally. If bigger values of r are considered

(for instance, to have a more conservative estimation of the uncertainties), the control action
becomes stronger. New simulations have been obtained taking r ¼ 2 and r ¼ 2:5; which represents
an increase of 22.21% and 50%, respectively, of the uncertainty with respect to the case r ¼
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Fig. 10. Tracking trajectories of system (26) when yr 	 0: Open-loop responses in dashed line and closed-loop

responses in solid line.
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1:6365: The reduction of the regulation errors for x1; at 20 s; and at 30 s (respectively) are of
96.51% and 96.72% (respectively) for the r ¼ 2 case, and of 97.25% and 97.42% (respectively) for
the r ¼ 2:5 case. The results for these numerical experiments are summarized in Tables 4 and 5,
respectively.
Setting r ¼ 2; the strength indices at 20 and 30 s have an increase of only 3.68% in both cases

with respect the same indices when r ¼ 1:6365:
In the case r ¼ 2:5; the strength indices at 20 and 30 s have an increase of only 6.74% and

6.70%, (respectively) with respect to the same indices when r ¼ 1:6365:
Table 6 summarizes the compared data results for the experiments in the above three cases.
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Table 3

Data results from simulations in Section 4.3, for the case r ¼ 1:6365 (Bouc–Wen oscillator: Case r ¼ 1:6365 (jj � jjT
means jj � jjr:m:s:;½0;T �))

Time Performance index Error reduction (%) Strength index

T ¼ 20 s jjzcon
1 jj20 ¼ 5:3701
 10�4 jjujj20 ¼ 0:2229

jjzunc
1 jj20 ¼ 0:0125 Pr:m:s:;½0;20� ¼ 0:0430 95.70 jjejj20 ¼ 0:2503 Sr:m:s:;½0;20� ¼ 0:8905

T ¼ 30 s jjzcon
1 jj30 ¼ 4:3964
 10�4 jjujj30 ¼ 0:1820

jjzunc
1 jj30 ¼ 0:0109 Pr:m:s:;½0;30� ¼ 0:0403 95.97 jjejj30 ¼ 0:2044 Sr:m:s:;½0;30� ¼ 0:8904

Table 4

Data results from simulations in Section 4.3, for the case r ¼ 2 (Bouc–Wen oscillator: Case r ¼ 2 (jj � jjT means

jj � jjr:m:s:;½0;T �))

Time Performance index Error reduction (%) Strength index

T ¼ 20 s jjzcon
1 jj20 ¼ 4:3627
 10�4 jjujj20 ¼ 0:2311

jjzunc
1 jj20 ¼ 0:0125 Pr:m:s:;½0;20� ¼ 0:0349 96.51 jjejj20 ¼ 0:2503 Sr:m:s:;½0;20� ¼ 0:9233

T ¼ 30 s jjzcon
1 jj30 ¼ 3:5723
 10�4 jjujj30 ¼ 0:1887

jjzunc
1 jj30 ¼ 0:0109 Pr:m:s:;½0;30� ¼ 0:0328 96.72 jjejj30 ¼ 0:2044 Sr:m:s:;½0;30� ¼ 0:9232

Table 5

Data results from simulations in Section 4.3, for the case r ¼ 2:5 (Bouc–Wen oscillator: Case r ¼ 2:5 (jj � jjT means

jj � jjr:m:s:;½0;T �))

Time Performance index Error reduction (%) Strength index

T ¼ 20 s jjzcon
1 jj20 ¼ 3:4340
 10�4 jjujj20 ¼ 0:2379

jjzunc
1 jj20 ¼ 0:0125 Pr:m:s:;½0;20� ¼ 0:0275 97.25 jjejj20 ¼ 0:2503 Sr:m:s:;½0;20� ¼ 0:9505

T ¼ 30 s jjzcon
1 jj30 ¼ 2:8122
 10�4 jjujj30 ¼ 0:1942

jjzunc
1 jj30 ¼ 0:0109 Pr:m:s:;½0;30� ¼ 0:0258 97.42 jjejj30 ¼ 0:2044 Sr:m:s:;½0;30� ¼ 0:9501
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5. Conclusions

This paper has presented a backstepping-based robust controller for a class of one-degree-of-
freedom non-linear systems. For the control design, it is assumed that the non-linear behaviour
can be described by a nominal function plus a remainder. The coefficients of the nominal and the
residual function do not need to be known for the controller design. Indeed, an adaptive law is
included in the control to estimate these coefficients on-line.
The behaviour of the closed loop is such that the response variables of the controlled system are

globally uniformly ultimately bounded and they can be made arbitrarily small by an appropriate
choice of design parameters. Both the transient and the asymptotic performance depend explicitly
on the design parameters. Since decreasing the ultimate bound of the controlled response requires
increasing the control action, a trade-off between a desired response reduction and a reasonable
control level has to be judiciously considered.
The proposed control scheme has been tested in three different cases. In the first case the states

of an uncertain Duffing oscillator, which exhibits a chaotic motion regime, are driven arbitrarily
close either to a steady state or to a periodic orbit. In comparison with other methods usually
applied to suppress ‘‘chaotic’’ motions, the backstepping approach developed in this work permits
some control also on the transient performance. In the first example, however, this good
behaviour of the transient performance is reached at expense of a high control action in
comparison with the external excitation input.
The second and third applications refer to the control of oscillators appearing as models for

non-linear base isolation devices. Since these models are based on differential equations with
unknown parameters, a regression-based identification procedure has been proposed to obtain
‘‘experimentally’’ an approximation of the theoretical non-linear behaviour within the functional
framework of the control scheme. The discrepancies between the identified non-linearity and the
theoretical one are lumped in the uncertain coefficients of the polynomial and the residual
function.
In order to test the efficiency of the control in this framework, two different types of non-

linearities have been considered. One of the models is given by a seven order polynomial restoring

ARTICLE IN PRESS

Table 6

Comparison results for simulations in Section 4.3, for the cases r ¼ 2; and r ¼ 2:5 with respect to r ¼ 1:6365
(Bouc–Wen oscillator: Comparison results respect to r091:6365)

r Added uncertainty Performance Error Strength Increase of S

respect to r0 reduction (%) respect to r0

r0 ¼ 1:6365 Pr:m:s:;½0;20� ¼ 0:0430 95.70 Sr:m:s:;½0;20� ¼ 0:8905
Pr:m:s:;½0;30� ¼ 0:0403 95.97 Sr:m:s:;½0;30� ¼ 0:8904

r ¼ 2 22.21% Pr:m:s:;½0;20� ¼ 0:0349 96.51 Sr:m:s:;½0;20� ¼ 0:9233 3.68%

Pr:m:s:;½0;30� ¼ 0:0328 96.72 Sr:m:s:;½0;30� ¼ 0:9232 3.68%

r ¼ 2:5 50% Pr:m:s:;½0;20� ¼ 0:0275 97.25 Sr:m:s:;½0;20� ¼ 0:9505 6.74%

Pr:m:s:;½0;30� ¼ 0:0258 97.42 Sr:m:s:;½0;30� ¼ 0:9501 6.70%
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force and the other corresponds to a hysteretic system described by the Bouc-Wen model.
Both systems are subjected to an earthquake excitation. The numerical results show that the
combination of this uncertain description of the non-linearities and the backstepping
adaptive control law is satisfactory in that the response induced by the seismic action is
significantly reduced. These results are encouraging towards the applicability of the control
scheme proposed in this paper. In effect, both the Bouc-Wen model and the other non-parametric
approximations are widely used in structural dynamics, particularly in base isolation schemes
where non-linear and hysteretic behaviours pose challenging problems for designing active
control systems.
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Appendix A. Proofs of the main results

Proof of Theorem 1. Consider the Lyapunov’s function candidate

V ðz1; z2; *HÞ91
2

z21 þ
1
2

z22 þ
1
2
*HTC�1 *H; ðA:1Þ

where *H ¼ H � #H: Since ’*HTC�1 *HAR; we have that 1
2
’*HTC�1 *H þ 1

2
*HTC�1 ’*H ¼ *HTC�1 ’*H; hence

the orbital derivative of V is given by

’V ¼ z1 ’z1 þ z2 ’z2 þ *HTC�1 ’*H: ðA:2Þ

Using that ’z1 ¼ z2 � c1z1; ’a1 ¼ �c1z2 þ c21z1 þ .yr and ’z2 ¼ UTH þ R þ eþ u þ c1x2 � c1 ’yr � .yr;
the following is obtained:

’V ¼ z1ðz2 � c1z1Þ þ z2ðUTH þ R þ eþ u þ c1x2 � c1 ’yr � .yrÞ þ *HTC�1 ’*H: ðA:3Þ

Choosing the control law defined by Eq. (6) and using the fact that UTH ¼ UTð *H þ #HÞ; from
Eq. (A.3)

’V ¼ �c1z
2
1 � c2z

2
2 � z2sgðz2Þcfðjrz2jÞr þ z2U

T *H þ *HTC�1 ’*H þ z2ðR þ eÞ:

Observe that z2UT *H þ *HTC�1 ’*H ¼ *HTC�1ð ’*H þ CUz2Þ: Choosing the parameter estimate law
defined by Eq. (7), gives *HTC�1ð ’*H þ CUz2Þ ¼ sYðjj #HjjÞ *HT #H; and therefore

’V ¼ �c1z
2
1 � c2z

2
2 � z2sgðz2Þcfðjrz2jÞr þ sYðjj #HjjÞ *HT #H þ z2ðR þ eÞ: ðA:4Þ

Now consider the term D19z2ðR þ e� sgðz2Þcfðjrz2jÞrÞ appearing in Eq. (A.4). First observe
that if jz2j > e2=ð1þ rÞ þ 2e1=r; then sgðz2Þ ¼ signðz2Þ; and cfðjrz2jÞ ¼ 1; hence D1 ¼ ðR þ eÞz2 �
rjz2jp0; since jR þ ejpr:
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On the other hand, if jz2joe2=ð1þ rÞ þ 2e1=r; and since cfðjrz2jÞp1 and sgðz2Þp1; then

jD1jp jz2jðjR þ ej þ jsgðz2Þcfðjrz2jÞrjÞ

p 2rjz2jp2rðe2=ð1þ rÞ þ 2e1=rÞ

p 2ðre2=ð1þ rÞ þ 2e1Þp2e2 þ 4e1:

Hence, in any case D1p2e2 þ 4e1; and therefore

’V ¼ �c1z
2
1 � c2z

2
2 þ sYðjj #HjjÞ *HT #H þ 2e2 þ 4e1: ðA:5Þ

Now consider the term D29sYðjj #HjjÞ *HT #H appearing in Eq. (A.5). As shown in the proof of
Theorem 2, D2 is always negative. But for this purpose, at this point one need to use a more
conservative estimation. On one hand, if jj #HjjX2M then sYðjj #HjjÞ ¼ %s (from now on, denote
sY9sYðjj #HjjÞ). So using Assumption 2;

sY *HT #H ¼ sY *HTðH � *HÞ ¼ sYð *HTH � jj *Hjj2Þp %sðM jj *Hjj � jj *Hjj2Þ

¼ %s M jj *Hjj � 1
4
jj *Hjj2 � 3

4
jj *Hjj2

� �
¼ %s �

jj *Hjj
2

� M

� 	2
þM2

H � 3
4
jj *Hjj2

 !

p %sM2
H � 3

4 %sjj
*Hjj2:

On the other hand, if jj #Hjjp2M then jj *Hjj ¼ jjH � #HjjpjjHjj þ jj #Hjjp3M: Hence

sY *HT #Hp %sðjj *Hjj jjHjj � jj *Hjj2Þ ¼ %s jj *Hjj jjHjj � jj *Hjj2 � 3
4
jj *Hjj2 þ 3

4
jj *Hjj2

� �
p %s jj *Hjj jjHjj � 3

4 jj
*Hjj2 þ 3

4 jj
*Hjj2

� �
p %s 3M2 þ 3

4 9M2
� �

� 3
4 %sjj

*Hjj2

¼ 39
4 %sM2 � 3

4 %sjj
*Hjj2:

In summary, D2p39
4 %sM2 � 3

4 %sjj
*Hjj2; and then from Eq. (A.5) the following is obtained:

’Vp � c1z
2
1 � c2z

2
2 �

3
4 %sjj

*Hjj2 þ 39
4 %sM2 þ 2e2 þ 4e1

p �min c1; c2; 34 %s
� �

ðz21 þ z22 þ jj *Hjj2Þ þ 39
4 %sM2 þ 2e2 þ 4e1: ðA:6Þ

Notice that

Vp1
2

z21 þ
1
2

z22 þ
1
2
lmaxðC�1ÞjjHjj2p1

2
maxð1; lmaxðC�1ÞÞðz21 þ z22 þ jj *Hjj2Þ:

Hence, from Eq. (A.6), and using the previous observation

’Vp� c0V þ d0; ðA:7Þ

where

c092
min c1; c2; 34 %s

� �
maxð1; lmaxðC�1ÞÞ

;

d0939
4 %sM2 þ 2e2 þ 4e1:

From Eq. (A.7),

VpV ð0Þe�c0t þ
d0

c0
ð1� e�c0tÞpV ð0Þe�c0t þ

d0

c0
: ðA:8Þ
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From the above expression VðtÞ is shown to be uniformly bounded, which implies that z1; z2; *H
are bounded. Thus, the state variables x1; x2; and the parameter estimate #H; are also bounded. As
a consequence the boundedness of the control uðtÞ is obtained which ends the proof. &

Proof of Theorem 2. (a) First it is necessary to claim that D29sY *HT #Hp0: Indeed, if jj #HjjpM
then sY ¼ 0; and therefore D2 ¼ 0: On the contrary, if jj #HjjXM then sY > 0; and

*HT #H ¼ ðH � #HÞT #H ¼ HT #H � jj #Hjj2pjjHjj jj #Hjj � jj #Hjj2 ¼ jj #HjjðjjHjj � jj #HjjÞ:

Observe that from Assumption 2, jjHjjpM: Since the assumption that jj #HjjXM is made, *HT #Hp0
is obtained, and then D2p0; hence the claim is proved.
From Eq. (A.5), and using that D2p0;

’Vp� c1z
2
1 � c2z

2
2 þ 2e2 þ 4e1p� c1z

2
1 þ 2e2 þ 4e1: ðA:9Þ

From the last inequality,

z21p�
1

c1
’V þ

2e2 þ 4e1
c1

:

Integrating at both sides of the above inequality, and dividing by T ; gives

1

T

Z t0þT

t0

z21ðtÞ dtp�
1

c1

Vðt0 þ TÞ � V ðt0Þ
T

� 	
þ
2e2 þ 4e1

c1
: ðA:10Þ

Since (as proved in Theorem 1) V is uniformly bounded, then limT-N V ðt0 þ TÞ � Vðt0Þ=T ¼ 0;
hence taking limits at both sides of Eq. (A.10) we get Eq. (8), which ends the proof of statement (a).
(b) From Eqs. (A.8) and (A.10)

1

T

Z T

0

z21ðtÞ dtp�
1

c1

ð1� e�c0T ÞV ð0Þ
T

� 	
þ

d0

c0c1T
þ
2e2 þ 4e1

c1
:

Since 0pð1� e�c0T Þ=Tpc0;

1

T

Z T

0

z21ðtÞ dtp
d0

c0c1T
þ
2e2 þ 4e1

c1
:

Using the definition of the constants c0; d0; Eq. (9) is reached, which ends the proof of
statement (b). &

References

[1] M. Krstic, I. Kanellakopoulos, P. Kokotovic, Nonlinear and Adaptive Control Design, Wiley, New York, 1995.

[2] S.S. Ge, C. Wang, Uncertain chaotic system control via adaptive neural design, International Journal of Bifurcation

and Chaos in Applied Sciences and Engineering 12 (2002) 1097–1109.

[3] F. Ikhouane, M. Krstic, Robustness of the tuning functions adaptive backstepping design for linear systems, IEEE

Transactions on Automatic Control 43 (1998) 431–437.

[4] P.A. Ioannou, J. Sun, Robust Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ, 1996.

[5] H. Khalil, Nonlinear Systems, MacMillan, Upper Saddle River, NJ, 1992.

[6] E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos, Physical Reviews Letters 64 (1990) 1196–1199.

ARTICLE IN PRESS
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