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Abstract

The objective of this paper is to study the dynamics and dynamic instability of a slider-crank mechanism
with an initially curved coupler under parametric resonance. An attention is given to the phenomena arising
due to initial curvature, geometric imperfection, of a connecting rod and modal interactions produced by
the existence of two-component parametric resonance.
The two-component parametric resonance can occur, for example, when the fundamental frequency of the

flexible part of a slider-crank mechanism is close to one-half of the excitation frequency and simultaneously
the difference between the first and the second natural frequencies is near the frequency of excitation.
It is known that for the case of one-component parametric resonance, an initially curved connecting rod

enlarges the amplitude of fundamental mode of vibration significantly only if the motion is in the vicinity of
the secondary region of instability. In other words, the initial curvature of a coupler plays no effects to the
fundamental response of the system if the oscillation is near the primary region of instability. However,
result of present study shows that under the condition of two-component parametric resonance, unlike the
case of one-component parametric resonance, an initially curved linkage can result significant effects to the
vibration of the system even if the motion is close to the primary region of instability. In addition, the result
also indicates that the growth of small amplitude vibration into large motion regime occurs if vibrations
arise near the boundary of stable region.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrations of planar mechanisms such as slider-crank mechanisms have been the subjects of
many studies. Typically due to the effect of inertia, these elastic links are subject to axial and
transverse periodic forces. The mathematical model of the problem then reduces to a multi-
degree-of-freedom dynamical system with time-periodic coefficients.
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Badlani and Midha [1] discussed the dynamic instability of a slider-crank mechanism with an
initially curved connecting rod under the assumptions of Euler–Bernoulli beam theory. They
developed a simple model that neglects the higher modes of vibrations and the interactions among
amplitudes. Their results show that the transient and steady state responses of fundamental mode
of vibration are amplified significantly by the initial curvature of a coupler only if the steady state
response is close to the secondary region of instability.
Zhu and Chen [2] considered the problem of dynamic stability of a slider-crank mechanism with

an elastic connecting rod. The authors applied perturbation method to the resulting equations of
motion and obtained the Mathieu-type equations. Regions of dynamic instability then are
determined on the basis of Mathieu equations.
Hsieh and Shaw [3] analyzed the dynamic response and correspondingly the stability of a slider-

crank mechanism by the method of multiple time scales. They discussed the phenomena produced
by the occurrence of primary, superharmonic and subharmonic resonances. However, only single
resonant mode was considered in their modelling.
Halbig and Beale [4] carried out an experimental model to study the dynamics of slider-crank

mechanism at very high speed. They observed the occurrence of parametric resonance and the
amplification of response. Fung [5] investigated dynamic responses of a slider-crank mechanism
with time-dependent boundary condition.
In Refs. [6,7], the authors studied the dynamic buckling of an imperfect column under different

loading conditions. The results of their studies show that, as expected, the initial imperfection
amplifies the amplitude of response.
Wang [8] employed the Newtonian method to study the mechanics of a slider-crank mechanism

with a perfect straight elastic coupler. The multiple time scales method was applied to study the
dynamic instability of response and the occurrence of two-component parametric resonance.
It is known that on the problem of parametric excitations of flexible members for planar

mechanisms, the determination of dynamic instability is a crucial question. In general, under the
condition of one-component parametric resonance (single mode of parametric resonance), the
initial curvature of a coupler to the vibration of a slider-crank mechanism plays an important role
only if the vibration is close to the secondary region of instability. In other words, the effects
produced by the initial imperfection of a coupler and the existence of two-component parametric
resonance to the vibration near the primary region of instability have not been studied yet.
In this study, an analytical method that determines the primary region of instability is

developed and applied. The method of multiple time scales is employed to consider the steady
state solutions and the occurrence of multi-component parametric resonance of the multi-degree-
of-freedom dynamical system with time-dependent coefficients. Various effects, such as structural
damping, geometric imperfection of a connecting rod, crank ratio, and piston mass ratio, to the
response of a slider-crank mechanism are investigated. The occurrence of the growth of small
amplitude vibration into large motion regime is also studied.

2. Basic formulas

As shown in Fig. 1, a slider-crank mechanism with an inextensible initially curved elastic
coupler is considered. The mechanism consists of a rigid crank of radius r; an initially curved
elastic coupler of length c; and a frictionless piston of mass M:
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From Fig. 1, the equations governing the motion of the system in the moving co-ordinate frame
(xyz co-ordinates) can be derived from the dynamic equilibrium of forces and conservation of
momenta and are given as

F;s ¼ mR;tt þ #mR;t; 0osoc; t > 0; ð1aÞ

%M;s þ V ¼ 0; ð1bÞ

%M ¼ EIv;ss ð1cÞ
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with the inextensibility constraint r;s � r;s ¼ 1: The force F is given by

F ¼Hei þ Pej

¼ ½ðT cosðyþ y0Þ � V sinðyþ y0Þ�ei þ ½T sinðyþ y0Þ þ V cosðyþ y0Þ�ej: ð2Þ

In the above equations, %M is the bending moment acting on the element; T and V are the axial
and transverse forces in the coupler, respectively; #m denotes damping coefficient; y0 and y
represent the initial angle between the neutral axis of the coupler and the x-axis and the dynamic
angle from the static state, respectively; ei and ej represent the unit vectors of the moving co-
ordinate (xyz co-ordinates) system whose x ðeiÞ co-ordinate is along the centroidal line of the
straight elastic link; m; E and I are the mass per unit length, Young’s modulus and the area
moment of inertia of the connecting rod, respectively; the subscript s and t denote the s and t
differentiation. Rðs; tÞ is the position vector of point s along the link at time t and has the form

Rðs; tÞ ¼ rer þ r ¼ rer þ ðxðsÞ þ uðs; tÞÞei þ ð%v0ðsÞ þ vðs; tÞÞej; ð3Þ

where uðs; tÞ and vðs; tÞ are the axial and transverse displacements of the rod from the dynamic
undeformed state, respectively; er is the unit vector along the crank; %v0ðsÞ; %v0ðsÞ ¼ v�0 sin ðps=cÞ; is
the initial variation from straight axis with v�0 being the amplitude of initial deviation. The
relationship among er; ei; ej; i and j are given by

er ¼ cosðbþ fÞei þ sinðbþ fÞej ¼ cos biþ sin bj;

ei ¼ cosfiþ sin fj;

ej ¼ �sin fiþ cosfj;

where b is the angular displacement of the crank; i and j represent the unit vectors of the Cartesian
frame in the plane of the mechanism. R;t and R;tt are the velocity and acceleration of points along
the coupler in the moving coordinate system, respectively, and are obtained from

R;t ¼
d

dt
½Rðs; tÞ� ¼ ½�rb;t sinðbþ fÞ þ u;t þ v;tf;t þ ðv þ %v0Þf;t�ei

þ ½rb;t cosðbþ fÞ � ðx þ uÞf;t þ v;t�ej 	 ’Rxei þ ’Ryej; ð4Þ

R;tt ¼
d2

dt2
½Rðs; tÞ� ¼ ½�rb;tt sinðbþ fÞ � rb2;t cosðbþ fÞ þ u;tt � ðx þ uÞf2

;t

� 2v;tf;t � ðv þ %v0Þf;tt�ei þ ½rb;tt cosðbþ fÞ � rb2;t sinðbþ fÞ þ v;tt

þ ðx þ uÞf;tt þ 2u;tf;t � ðv þ %v0Þf
2
;t�ej 	 axei þ ayej; ð5Þ

where sinðbþ fÞE sin bþ 1
2
ðr=cÞsin 2b� 1

2
ðr=cÞ2 sin3 b and cosðbþ fÞE cos b� ðr=cÞsin2b�

1
2
ðr=cÞ2cos b sin2 b: In addition, the angle f and its time derivatives in the above equation can
be eliminated from the following kinematic relationships [9]:

sin f ¼ �
r

c
sin b;

f;t ¼ �
r

c
b;t cos b;

f;tt ¼
r

c
b2;t sin b�

r

c
b;tt cos b: ð6Þ
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Substitution of Eqs. (1b) to (6) into Eq. (1a), the equations of motion in directions ei and ej yield

fT ½ð1þ u;sÞ � v;s %v0;s� þ EIv;sssðv;s þ %v0;sÞg;s ¼ #m ’Rx þ max; 0osoc; t > 0; ð7Þ

f½Tðv;s þ %v0;sÞ � EIv;sss½ð1þ u;sÞ � v;s %v0;s�g;s ¼ #m ’Ry þ may; 0osoc; t > 0; ð8Þ

where cosðyþ y0Þiþ sinðyþ y0ÞjE½ð1þ u;sÞ � v;s %v0;s�iþ ðv;s þ v0;sÞj; ’Rx; ’Ry; ax; and ay are defined
by Eqs. (4) and (5). Therefore, Eq. (8) represents the motion of the linkage in the ej direction and
Eq. (7) determines the axial force Tðs; tÞ of the coupler.
In this study, two types of boundary conditions are considered. The first is that the coupler is

assumed to be hinged at each end. Therefore, the longitudinal displacement vanishes at s ¼ 0: The
moment and transverse displacement also vanish at s ¼ 0; c: The second is when Newton‘s second
law is employed to provide a force balance between the axial and shear forces of the rod and the
inertia force of the frictionless piston (e.g. Ref. [1]). The boundary conditions then are

uð0; tÞ ¼ vð0; tÞ ¼ vðc; tÞ ¼
@2vð0; tÞ
@s2

¼
@2vðc; tÞ
@s2

¼ 0; ð9Þ

ðH þ MaxÞcosfþ ðP þ MayÞsin f ¼ 0 at s ¼ c: ð10Þ

Substitution of H and P in Eq. (2) into Eq. (10), it yields

fT ½ð1þ u;sÞ � v;s %v0;s� þ EIv;sssðv;s þ %v0;sÞ þ Maxgcosf

� fTðv;s þ %v0;sÞ � EIv;sss½ð1þ u;sÞ � v;s %v0;s� þ Maygsin f ¼ 0 at s ¼ c: ð11Þ

Therefore, Eq. (11) determines the time dependent axial force at s ¼ c; Tðc; tÞ:
To determine the axial force Tðs; tÞ; one integrates Eq. (7) and uses the boundary constraint,

Eq. (11). After some manipulations, the result yields

Tðs; tÞ � ½ð1þ u;sÞ � v;s %v0;s� þ EIv;sssðv;s þ %v0;sÞ ¼
Z s

0

ðm ’Rx þ maxÞ ds þ CðtÞ; ð12Þ

where CðtÞ is constant of integration and is given by

CðtÞ ¼ Tðc; tÞ � ½ð1þ u;sÞ � v;s %v0;s�js¼c þ EIv;sssðv;s þ %v0;sÞjs¼c �
Z c

0

ð #m ’Rx þ maxÞ ds;

where Tðc; tÞ is able to be obtained from Eq. (11). This result now can be inserted into Eq. (8).
The equations of motion of the system with constant angular velocity, #o ¼ constant; in

dimensionless form can be obtained by introducing the following dimensionless quantities:

t ¼ #ot; #u ¼
u

c
; #v ¼

v

c
; #%v0 ¼

%v0

c
; #x ¼

r

c
; Z ¼

s

c
;

#Im ¼
EI

mc4 #o2
; #IM ¼

EI

Mc3 #o2
; #M ¼

M

mc
: ð13Þ
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Substitution of Eq. (13) into Eq. (8), one gets

#v;tt þ #Im
@4 #v

@Z4
� #x2ðcos2tÞð#v þ #%v0Þ �

@TðZ; tÞ
@Z

@vð#v þ #%v0Þ
@Z

� TðZ; tÞ
@2ð#v þ #%v0Þ

@Z2

� 2#xcos t #u;t þ #xsin t #u � #m#v;t � #m#xcos t #u

¼ #xsin tð1� ZÞ þ 1
2
#x2sin 2tþ 1

2
#x3sin3 t; ð14Þ

where @TðZ; tÞ=@Z and TðZ; tÞ are given in the appendix.
Now, the condition of small deformations is assumed. For this, one neglects the non-linear

terms when compares these terms with the linear terms of #vðZ; tÞ and unit. The crank ratio #x and
the damping coefficient #m are also assumed to be small quantities. Eq. (14) then becomes

#v;tt þ #m#v;t þ #Im

@4 #v

@Z4
þ #x cos t

@ð#v þ #%v0Þ
@Z

þ #x cos t½ðZ� 1Þ � #M�
@2ð#v þ #%v0Þ

@Z2

¼ #x sin tð1� ZÞ þ 1
2
#x2 sin 2t: ð15Þ

Examination of the dynamics governed by Eq. (15) is the main aim in this study.
Representing #v as continuous functions and letting

#v ¼
XN
i¼1

AiðtÞsin ipZ; 0oZo1; t > 0: ð16Þ

The boundary condition, Eq. (9), then is satisfied. In the following, the Galerkin’s method is to
be applied to obtain the approximate solutions of the slider-crank mechanism. Following
Galerkin’s procedure for minimizing error, one substitutes Eq. (16) into Eq. (15) and multiplies
Eq. (15) by sin jpZ and integrates it with respect to Z from zero to 1. The result yields

.AjðtÞ þ #m ’AjðtÞ þ ½o2
j þ #x cos tð jpÞ2ð #M þ 1Þ�AjðtÞ

þ 2#x cos t
XN
i¼1

ðipÞacs
ij AiðtÞ � 2#x cos t

XN
i¼1

ðipÞ2aZss
ij AiðtÞ

¼
2

jp
#x sin tþ #x cos t½2paZss

1j � 2pacs
1j � ð #M þ 1Þp2d1j�#v0

þ
2

jp
½1� ð�1Þj�#x2 sin 2t; t > 0; j ¼ 1; 2; 3;y; ð

:
Þ ¼

d

dt
; ð17Þ

where o2
j ¼ ð jpÞ4 #Im; #v0 ¼ v�0 =c; dij is the Kronecker delta symbol; acs

ij and aZss
ij are the integration

of cosine and sine functions and are given in the appendix.
To analyze the system governed by Eq. (17), one allows the response of the system to be

small but finite. Thus, the method of multiple time scales can be used to predict the responses
of the system. According to this method, one assumes that the amplitude, AjðtÞ; has the
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expansion [10]

Ajðt; eÞ ¼ eA1jðt0; t1; t2;yÞ þ e2A2jðt0; t1; t2;yÞ þ e3A3jðt0; t1; t2;yÞ þ?;

tn ¼ ent; n ¼ 0; 1; 2;y;

d

dt
¼

@

@t0
þ e

@

@t1
þ e2

@

@t2
þ? 	 D0 þ eD1 þ e2D2 þ?;

d2

dt2
	 D2

0 þ 2eD0D1 þ e2ðD2
1 þ 2D0D2Þ þ?; ð18Þ

where e is a measure of the amplitude of the response and is small compared to unity.
For the purpose of studying the parametric resonance of the differential equations, one

substitutes Eq. (18) into Eq. (17) and sets #x ¼ ex; #v0 ¼ ev0 and #m ¼ em: After manipulating these
equations, one equates coefficients of equal power of e and obtains to order one and two:

e1 : D2
0A1j þ o2

j A1j ¼
2

jp
x sin t0; ð19Þ

e2 : D2
0A2j þ o2

j A2j ¼ � mD0A1j � 2D0D1A1j

� x cos t0fð jpÞ2ð #M þ 1ÞA1j þ 2
XN
i¼1

ðipÞ½acs
ij � ðipÞaZss

ij �A1ig

� x cos t0K1jv0 þ
1

jp
½1� ð�1Þ j�x2 sin 2t0; ð20Þ

where K1j ¼ ½p2ð #M þ 1Þd1j þ 2pacs
1j � 2p2aZss

1j �: It is shown in Eq. (19) that unbounded oscillation
occurs when the frequency oj is 1. Therefore, in the following, the conditions considered are
related to the cases when the natural frequency oj is not close to 1.
From Eq. (19), it is seen that the amplitude A1j is harmonic in t0 and its solution can be

represented as

A1j ¼ aj cosðojt0 þ fjÞ þ
2x

ð jpÞðo2
j � 1Þ

sin t0 	 aj cos bj þ xLj sin t0; ð21Þ

where aj ¼ ajðt1; t2;yÞ is the amplitude of response; fj ¼ fjðt1; t2;yÞ is the phase angle and
Lj ¼ 2=ðð jpÞðo2

j � 1ÞÞ: Here, for convenience, rewriting Eq. (21) as

A1j ¼Hjðt1; t2;yÞexpð#iojt0Þ þ %Hjðt1; t2;yÞexpð�#iojt0Þ

� #i 1
2
#xLjðexpð#it0Þ � expð�#it0ÞÞ; j ¼ 1; 2; 3;y; ð22Þ

where #i ¼
ffiffiffiffiffiffiffi
�1

p
and %Hj is the complex conjugate of Hj: Hj ¼ 1

2
aj expð#ifjÞ with fj being the phase

of the jth mode.
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To seek the solution of A2j defined by Eq. (20), one substitutes Eq. (21) into Eq. (20). After
some manipulations, the result yields

D2
0A2j þ o2

j A2j ¼ majoj sin bj þ 2oj½ðD1ajÞsin bj þ ajðD1fjÞcos bj

� x 1
2
ð jpÞ2ð #M þ 1Þajðcos b

þ
1j þ cos b�1jÞ þ

XN
i¼1

½ðipÞacs
ij � ðipÞ2aZss

ij �

(

� aiðcos b
þ
1i þ cos b�1iÞ

)
� xK1jv0 cos t� x2 1

2ð jpÞ2ð #M þ 1ÞLj

(

þ
XN
i¼1

½ðipÞacs
ij � ðipÞ2aZss

ij �Li �
1

jp
½1� ð�1Þj�

)
sin 2t0; ð23Þ

where bþ1j ¼ ðoj þ 1Þt0 þ fj and b�1j ¼ ðoj � 1Þt0 þ fj:
It is known that a multi-degree-of-freedom dynamic system with parametric excitation will

experience multi-components parametric resonance when two or more internal frequencies and
the excitation frequency are commensurable or nearly commensurable. For a dynamic system
with finite degrees of freedom similar to that defined by Eq. (23), parametric resonance may exist
when omE1

2
; on � omE1 ðn > mÞ: Here om is the dimensionless internal frequency of the mth

mode of vibration.
In order to express the commensurable relations of om to 1

2
and on � om to 1, the detuning

parameters sm and smn are introduced:
1
2
¼ om þ esm; ð24Þ

1 ¼ on � om þ esmn; ð25Þ

where on ¼ ðn=mÞ2om: The relationship between sm and smn can be determined from Eqs. (24)
and (25) which yields

esmn ¼ 3�
n

m

� �2	 

om þ 2esm 	 Bmnom þ 2esm: ð26Þ

Further, multiplying Eq. (25) by t0; it yields

t0 ¼ 1�
m

n

� �2	 

ont0 þ esmnt0 	 %Bmnont0 þ esmnt0: ð27Þ

From Eq. (27), one finds that if %Bmn is near 1 the resonance occurs in the nth mode of vibration.
For this, one sets %Bmn ¼ 1þ e #smn:
Returning to Eq. (23), for the sums and differences of the arguments of the cosine and sine

functions of unequal arguments one has

b�1m ¼ ðom � 1Þt0 þ fm ¼ �ðomt0 þ fmÞ � 2ðsmt1 � fmÞ 	 �ðbm þ 2dmÞ; ð28Þ

bþ1m ¼ ðom þ 1Þt0 þ fm ¼ ðont0 þ fnÞ þ ðsmnt1 þ fm � fnÞ 	 bn þ dmn; ð29Þ

b�1n ¼ ðon � 1Þt0 þ fn ¼ ðomt0 þ fmÞ � ðsmnt1 þ fm � fnÞ ¼ bm � dmn; ð30Þ

t0 ¼ ðom þ 1Þt0 þ fm ¼ ðont0 þ fnÞ þ ðs�mnt1 � fnÞ 	 bn þ d�mn; ð31Þ
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where dm ¼ smt1 � fm; dmn ¼ smnt1 þ fm � fn; and d�mn ¼ ð #smnon þ smnÞt1 � fn 	 s�mnt1 � fn:
Therefore dm ¼ dmðt1; t2;yÞ; dmn ¼ dmnðt1; t2;yÞ and d�mn ¼ d�mnðt1; t2;yÞ are three new phase
angles. From the definition of sm and smn one has

D1fm ¼ sm � D1dm and D1fn ¼ smn þ D1fm � D1dmn: ð32Þ

Returning to Eq. (23) the solvability conditions are the vanishing of the secular terms. These
are, in complex form:

4om
#i D1Hm þ 1

2
mHm

� �
þ 2xf �mm

%Hm expð2#ismt1Þ � 2xfnmHn expð�#ismnt1Þ ¼ 0; ð33Þ

4on
#iðD1Hn þ 1

2
mHnÞ þ 2xfmnHmexpð#ismnt1Þ ¼ �2xK1nv0expð#is�mnt1Þ; ð34Þ

where f �mm ¼ 1
2
ðmpÞ2ð #M þ 1Þ þ fmm and fnm ¼ ½ðnpÞacs

nm � ðnpÞ2aZss
nm�:

The main purpose of Eqs. (33) and (34) is to determine the response of motion in steady state
and regions of instability.
To determine the solutions and correspondingly the local stability of parametric resonance one

follows the procedure outlined in Ref. [10] and lets

Hk ¼ 1
2
ðxk � #izkÞexpð#iykt1Þ; k ¼ m; n: ð35Þ

Here xk and zk are real and yk ¼ dfk=dt1:
For the resonant condition, one substitutes Eq. (35) into the resonant equations defined by

Eqs. (33) and (34) and separates the real and imaginary parts. The result yields

x0
m þ 1

2 mxm þ ym þ
x

2om

f �mm


 �
zm �

x
2om

fnmzn ¼ 0; ð36Þ

z0m þ 1
2
mzm þ �ym þ

x
2om

f �mm


 �
xm þ

x
2om

fnmxn ¼ 0; ð37Þ

x0
n þ

1
2
mxn þ ynzn �

x
2on

fmnzm ¼ 0; ð38Þ

z0n þ
1
2
mzn � yn #xn þ

x
2on

fmnxm ¼ �
x

2on

K1nv0; ð39Þ

where ð Þ0 ¼ d=dt1:
The local stability of a fixed point with respect to a small perturbation for each resonant case

hence can be determined by the eigenvalues l which are given by the zero of the determinant of the
perturbation equations. For this, a small perturbation is superimposed on xk and zk ðk ¼ m; nÞ
and one has

xk ¼ x0
k þ #xk and zk ¼ z0k þ #zk: ð40Þ

Here x0
k; z

0
k; #xk and #zk are the fixed points and the disturbances, respectively. The determinant

of the perturbation equations can be obtained by substituting Eq. (40) into Eqs. (36)–(39).
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The result yields

#l ym þ
x

2om

f �mm 0 �
x

2om

fnm

�ym þ
x

2om

f �mm
#l

x
2om

fnm 0

0 �
x

2on

fmn
#l yn

x
2on

fmn 0 �yn
#l

�����������������

�����������������

¼ 0; ð41Þ

where #l ¼ lþ 1
2
m; ym ¼ D1fm ¼ sm; and yn ¼ D1fn ¼ sm þ smn: Thus, the characteristic

equation of Eq. (41) has the form

#l4 þ r2 #l2 þ r4 ¼ 0; ð42Þ

where

r2 ¼ s2m þ ðsm þ smnÞ
2 �

x
2om

f �mm


 �2

þ
x2

2omon

fmnfnm;

r4 ¼ smðsm þ smnÞ �
x2

4omon

fmnfnm

	 
2
�

x
2om

f �mmðsm þ smnÞ
	 
2

: ð43Þ

The root of Eq. (42) is

l ¼ � 1
2
m7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
½�r27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � 4r4

q
�

r
:

It is known that the stability of response determines the existence of steady state reaction.
Hence, boundaries of stable and unstable solutions have to be determined. Those are given as
follows:

1. For the condition when r2 > 0:
1.1.

In the case when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � 4r4

q
> r2; the steady state solutions are stable ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2½�r27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � 4r4

q
�

r
om=2 and unstable if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2½�r27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � 4r4

q
�

r
> m=2:

1.2. For the case when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � 4r4

q
or2; the responses are stable.

2. For the condition when r2o0:
2.1. The steady state solutions are unstable if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � 4r4

q
> 0:

2.2.
For the case when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � 4r4

q
o0; the steady state solutions are stable ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
½�r27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � 4r4

q
�

r
om=2 and unstable if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
½�r27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � 4r4

q
�

r
> m=2:

The transition curves and steady state responses of the system corresponding to conditions 1
and 2 then can be obtained and are summarized as follows:

ARTICLE IN PRESS

Y.-M. Wang / Journal of Sound and Vibration 280 (2005) 815–835824



Case 1: For the state when r2a0 and ma0: In this case, the steady state solutions of the system
are

am ¼
2ðx=omÞK1nv0

D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4 þ G1m2 þ G2

p
; ð44Þ

an ¼
2K1nv0

D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m6 þ G�1 m4 þ G�2 m2 þ G�3

q
; ð45Þ

where D1 ¼ m4 þ 4r2m2 þ 16r4; K1n ¼ ½p2ð #M þ 1Þd1n þ 2pacs
1n � 2p2aZss

1n �; r2 and r4 are given by
Eq. (43); G1;G2;G�1 ;G

�
2 ; and G�3 are given in the appendix.

It is observed from Eq. (44) that the growth of small amplitude of vibrations into large
amplitude regime occurs if the denominator D1 is close to zero and unbounded solutions exist if
D1 ¼ 0: In other words, the steady state response of the system may become large amplitude
vibrations even if the geometric imperfection of the coupler is tiny.
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Fig. 2. Transition curves emanating from o1 ¼ 0:5 and o2 ¼ 4o1 in the ex–o plane for #M ¼ 0:5 and em ¼ 0 (lower plot)

and em ¼ 0:05 (upper plot).
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Returning to the stability analysis, the transition values that separate the stable and unstable

motion of the steady state response are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
½�r27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � 4r4

q
�

r
¼ m=2 or

m4 þ 4r2m2 þ 16r4 ¼ 0: ð46Þ

Note that Eq. (46) is the same result as D1 defined by Eq. (44). From Eq. (44), it is observed that
unbounded solutions exist if D1 ¼ 0 and the growth of small amplitude of vibrations into large
motion regime occurs if the denominator D1 is close to zero. Hence, the transition curves that
separate unbounded and bounded solutions are determined by D1 ¼ 0: Multiplying Eq. (46) by e4
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Fig. 3. Time history of the amplitude a1 for #M ¼ 0:5; o1 ¼ 0:25 and three different values of the crank ratio ex;
ex ¼ 0:015 (bottom plot), 0.024 (middle one), and 0.025 (top plot).
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and substituting Eq. (26) with Eqs. (24) and (25) to eliminate esmn in Eq. (46), the result yields

e4ðm4 þ 4r2m2 þ 16r4Þ ¼
fmnfnm

ðn=mÞ2o2
m

 !2

ðexÞ4 � ðemÞ2
f �mm

om


 �2

�2
fmnfnm

ðn=mÞ2o2
m

" #(

þ 8ðesmÞðKmnom þ 3esmÞ
fmnfnm

ðn=mÞ2o2
m

 !
þ 4

f �mm

om

ðKmnom þ 3esmÞ
	 
2)

ðexÞ2

þ fðemÞ4 þ 4ðemÞ2½ðesmÞ
2 þ ðKmnom þ 3esmÞ� þ 16ðesmÞ

2ðKmnom þ 3esmÞ
2g

¼ 0: ð47Þ
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Fig. 4. Time history of the amplitude a1 for #M ¼ 0:5; o1 ¼ 0:75 and three different values of the crank ratio ex;
ex ¼ 0:05 (bottom plot), 0.075 (middle one), and 0.08 (top plot).
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In the above equation, ex is the crank ratio and has to be no less than zero. Therefore, the positive
roots of Eq. (47) of ex imply the existence of transition values.

Case 2: For the state when r2a0 and m ¼ 0: In this case, the steady state solutions of the system
are

am ¼
x

8om


 �
K1nv0

r4

ffiffiffiffiffiffi
G2

p
; ð48Þ

an ¼
K1nn0
8r4

ffiffiffiffiffiffi
G�3

q
: ð49Þ
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Fig. 5. Time history of the amplitude a1 for #M ¼ 0:5; o1 ¼ 0:25 and ex ¼ 0:015: Three different values of dimensionless
amplitude of geometric imperfection of a connecting rod ev0 are selected. Those are ev0 ¼ 0:0 (geometric perfect, bottom
plot), 0.005 (middle one), and 0.01 (top plot).
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Similar as previous case, the growth of small amplitude of vibrations into large amplitude motion
occurs if the denominator r4 is near zero and unbounded solutions exist if r4 ¼ 0:
The transition values that divide the stable and unstable motion of the steady state solution are

r4 ¼ 0 or

smðsm þ smnÞ �
x2

4omon

fmnfnm ¼ 7
x

2om

f �mmðsm þ snÞ: ð50Þ

Similar to that done in Case 1, multiplying Eq. (50) by e2 and substituting Eq. (26) with Eqs. (24)
and (25) to eliminate esmn in Eq. (50), the result yields

fmnfnm

4ðn=mÞ2o2
m

ðexÞ27
f �mm

2om

ðKmnom þ 3esmÞðexÞ � esmðKmnom þ 3esmÞ ¼ 0: ð51Þ

Therefore, the positive roots of Eq. (51) of ex represent the existence of transition values.
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Fig. 6. Time history of the amplitude a1 with the same parameters as used in Fig. 5, except o1 ¼ 0:75:
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It is mentioned here that in the absence of internal resonance, Kmn ¼ fmn ¼ fnm ¼ 0; Eq. (51)
reduces to the result of Badlani and Midha [1] for omD1

2: That is, they reduce to

esm ¼ 7
exfmm

2om

¼ 7
ex
2om

1
2
ðmpÞ2 #M þ 1

2

� �� �
: ð52Þ

3. Numerical results and discussions

Without loss of generality and considering the commensurable relations among frequencies and
the probability of occurrence in nature, for the case of omD1

2
and on � omD1; one chose m ¼ 1
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Fig. 7. Time history of the amplitude a1 for #M ¼ 0:5; ex ¼ 0:015; ev0 ¼ 0:005; and three different values of the

fundamental frequency o1; o1 ¼ 0:25 (lowest plot), 0.4 (middle one) and 0.65 (top plot).
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and n ¼ 2 to present the basic characteristics of the occurrence of two-component parametric
resonance. It is recalled that the parameter ex is the crank ratio. oj is the dimensionless natural
frequency and is defined by oj ¼ ð jpÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðml4 #o2Þ

p
; where #o is the constant angular velocity of

the crank.
In addition to the stability analysis, the existence of perturbation solutions is verified by

numerically integrating the modulation equations, Eqs. (36)–(39), by the Runge–Kutta method.
Fig. 2 presents the transition curves that separate the regions of bounded and unbounded

(shaded area) motions emanating from o1 ¼ 1
2
and o2 ¼ 4o1 in the ex–o parameter plane for

#M ¼ 0:5; and em ¼ 0 (lower plot) and em ¼ 0:05 (upper plot). The solid and dash lines denote the
transient curves for the first mode of vibration under the condition of two- and one-component
parametric resonances, respectively. From this figure, one finds that there exists only minor
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Fig. 8. Time history of the amplitude a1 for #M ¼ 0:5; o1 ¼ 0:75; en0 ¼ 0:005; and three different values of the crank

ratio ex; ex ¼ 0:065 (lowest plot), 0.0.073 (middle one) and 0.075 (top plot).
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difference between zero and non-zero values of em: Hence, the coefficient of damping em used in
the numerical examples, unless otherwise specified, is set to be zero.
This figure also shows that if the natural frequency o1 is smaller than one-half of the excitation

frequency, the occurrence of two-component parametric resonance enlarges the region of
instability when compares it with the region of instability produced by one-component parametric
resonance. In other words, unstable motion may occur even if the fundamental frequency is far
less than the excitation frequency when there exists the occurrence of two-component parametric
resonance. This is, perhaps, due to the variation of energy between modes and is not found in the
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Fig. 9. Transition curves emanating from o1 ¼ 0:5 and o2 ¼ 4o1 in the ex–o plane for #M ¼ 0:5 (solid lines), 1.0 (dash
lines), and 1.5 (chain dot lines). Three different values of damping coefficients are selected, em ¼ 0 (lower plot) ,

em ¼ 0:05 (middle one), and em ¼ 0:1 (top plot).
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condition of one-component parametric resonance. The validity of the model is verified by
numerically integrating the modulation equations. The results are shown in Figs. 3 and 4.
Fig. 3 shows the long-time behavior of the amplitude a1 for o1 ¼ 0:25 with three different

values of crank ratio, ex ¼ 0:015 (bottom plot), ex ¼ 0:024 (middle one), and x ¼ 0:025 (top plot).
Fig. 4 illustrates similar information to that shown in Fig. 3, except in this figure o1 is set to be
0.075. In addition, three different values of crank ratio ex are selected. Those are ex ¼ 0:05 (lowest
one), 0.075 (middle plot), and 0.08 (top one). These two figures clearly show the existence of
bounded (stable) and unbounded (unstable) solutions.
In the following numerical examples, various effects produced by the variation of

parameters, such as geometric imperfection of a coupler, detuning parameter of frequency,
crank ratio, and piston mass ratio, to the response of the system are taken into account and
studied.
Fig. 5 shows the time history of the amplitude a1 for #M ¼ 0:5; es1 ¼ 0:25 ðo1 ¼ 0:25Þ; and

ex ¼ 0:015: In this figure, three different values of initial imperfection of the coupler are chosen,
which are ev0 ¼ 0:0 (initial straight, lowest plot), ev0 ¼ 0:005 (middle one), and ev0 ¼ 0:01 (top
plot). Fig. 6 presents similar information to that shown in Fig. 5, except in this figure es1 ¼
�0:25 ðo1 ¼ 0:75Þ:
From these two figures, it is observed that under the condition when the fundamental frequency

is small, for example o1 ¼ 0:25 (Fig. 5), the geometric imperfection of a coupler plays an
important role to the amplitude of response. In general, the initial curvature of a linkage amplifies
the amplitude of vibration. However, the magnification of the amplitude in response decreases
with the increase of fundamental frequency, as shown in Fig. 6 ðo1 ¼ 0:75Þ: This is expected since
from Eqs. (33) and (34), one finds that the amplitude of response decreases as the frequency
increases. It is also evident in Fig. 7.
Fig. 7 shows the long-time behavior of the amplitude a1 for ex ¼ 0:015 and ev0 ¼ 0:005: Three

different values of fundamental frequency are chosen, which are o1 ¼ 0:25 (bottom plot), 0.4
(middle one), and 0.65 (top plot). It clearly indicates that the magnification in response produced
by the geometric imperfection of a connecting rod decreases with the increase of the frequency.
As shown in Eq. (44), unbounded solution occurs if the denominator D1 ¼ 0 and the growth of

small amplitude of vibration exists if the denominator D1 is close to zero. In other words,
unbounded solutions exist if the vibrations take place in the region of instability, including at
transient values. The enlargement of small amplitude of vibrations into large motion regime
occurs if the vibrations arise near the boundary of stable region.
Fig. 8 illustrates the time history of the amplitude a1 for #M ¼ 0:5; ev0 ¼ 0:005; and o1 ¼ 0:75:

Three different values of crank ratio are used. Those are ex ¼ 0:065 (lowest plot), 0.073 (middle
one), and 0.075 (top plot). It evidently indicates the growth of small amplitude of vibration into
large motion occurs if the oscillation takes place near the transient values.
The transition curves emerging from o1 ¼ 1

2
and o2 ¼ 4o1 in the ex–o parameter plane for

different values of #M and em are shown in Fig. 9. The values of #M used are 0.5 (solid lines), 1.0
(dash lines), and 1.5 (chain dot lines). The values of em selected are 0.0 (bottom plot), 0.05 (middle
one), and 0.1 (top plot). The result shows that the increase of piston mass ratio enlarges the region
of instability. In addition, it is interesting to find that under the condition when em ¼ 0; there exist
two values of detuning parameters (es1 ¼ 0:0 and 0.125) such that the motion of the system is
fully unstable.
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4. Conclusions

In this study, the mechanics of a slider-crank mechanism and the weak form of the occurrence
of two-component parametric resonance are obtained. The growth of small amplitude of
vibration into large motion regime is studied. Various effects, such as the existence of two-
component parametric resonance, piston mass ratio, crank ratio, and initial imperfection of a
coupler, to the response of the system are also investigated.
Result of the study shows that under the condition of two-component parametric resonance,

the excitation created by the geometric imperfection of a coupler can result significant effects to
the vibrations of the system near the primary region of instability. This is due to the interaction of
energy between modes and cannot be observed in the case of one-component parametric
resonance. The result also indicates that the magnification in response decreases as the
fundamental frequency increases. In addition, the growth of small amplitude vibration into large
motion regime occurs if the vibrations arise close to the boundary of stable region.

Appendix

@TðZ; tÞ
@Z

E� #x cos tþ #x2 sin2 t� #x2Z cos2 tþ 2#x#v;tcos t� #xð#v þ #v0Þsin tþ 1
2
#x3cos t sin2 t;

TðZ; tÞE � #xðZ� 1Þcos tþ #x2 sin2 tðZ� 1Þ � 1
2
#x2ðZ2 � 1Þcos2 t� 2#x

Z 1

Z
#v;t dZ


 �
cos t

þ #x
Z 1

Z
ð#v;t þ #v0Þ dZ

	 

sin tþ #Im

#x
@3 #v

@Z3

����
Z¼1

þ #M#xcos t� #M#x2cos 2t

� 1
2
#M#x3cos t sin2 tþ 1

2
#M#x3 sin t sin 2t;

acs
ij ¼

1

2

ð�1Þi�j � 1

ði � jÞp
�

ð�1Þiþj � 1

ði þ jÞp

	 

ð1� dijÞ; dij : the Kronecker delta symbol;

aZss
ij ¼ 1

4
dij þ

1

2

ð�1Þi�j � 1

ði � jÞ2p2
�

ð�1Þiþj � 1

ði þ jÞ2p2

	 

ð1� dijÞ;

a ¼ sm;

b ¼
x

2om

f �mm;

c ¼
x

2om

fnm;

d ¼
x

2on

fmn;
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e ¼ sm þ smn;

G1 ¼ 4ða2 þ b2 þ e2Þ � 8ðab � cd þ 2beÞ;

G2 ¼ 16½ðaeÞ2 þ ðbeÞ2 þ ðcdÞ2� þ 32e½bðae � cdÞ � acd�;

G�1 ¼ 8a2 � 8b2 þ 4e2 þ 8cd;

G�2 ¼ 32ðaeÞ2 � 32ðbeÞ2 þ 16ðcdÞ2 þ 32cdða2 � b2 þ be � aeÞ þ 16ða2 � b2Þ2;

G�3 ¼ 64e2ða2 � b2Þ2 þ 64ðcdÞ2ða � bÞ2 � 128cdeða3 � a2b � ab2 þ b3Þ:
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