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Abstract

The objective of this paper is to study the dynamics and dynamic instability of a slider-crank mechanism
with an initially curved coupler under parametric resonance. An attention is given to the phenomena arising
due to initial curvature, geometric imperfection, of a connecting rod and modal interactions produced by
the existence of two-component parametric resonance.

The two-component parametric resonance can occur, for example, when the fundamental frequency of the
flexible part of a slider-crank mechanism is close to one-half of the excitation frequency and simultancously
the difference between the first and the second natural frequencies is near the frequency of excitation.

It is known that for the case of one-component parametric resonance, an initially curved connecting rod
enlarges the amplitude of fundamental mode of vibration significantly only if the motion is in the vicinity of
the secondary region of instability. In other words, the initial curvature of a coupler plays no effects to the
fundamental response of the system if the oscillation is near the primary region of instability. However,
result of present study shows that under the condition of two-component parametric resonance, unlike the
case of one-component parametric resonance, an initially curved linkage can result significant effects to the
vibration of the system even if the motion is close to the primary region of instability. In addition, the result
also indicates that the growth of small amplitude vibration into large motion regime occurs if vibrations
arise near the boundary of stable region.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrations of planar mechanisms such as slider-crank mechanisms have been the subjects of
many studies. Typically due to the effect of inertia, these elastic links are subject to axial and
transverse periodic forces. The mathematical model of the problem then reduces to a multi-
degree-of-freedom dynamical system with time-periodic coefficients.

E-mail address: wangym@cc.ncue.edu.tw (Y.-M. Wang).

0022-460X/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsv.2003.12.037



816 Y.-M. Wang | Journal of Sound and Vibration 280 (2005) 815-835

Badlani and Midha [1] discussed the dynamic instability of a slider-crank mechanism with an
initially curved connecting rod under the assumptions of Euler—Bernoulli beam theory. They
developed a simple model that neglects the higher modes of vibrations and the interactions among
amplitudes. Their results show that the transient and steady state responses of fundamental mode
of vibration are amplified significantly by the initial curvature of a coupler only if the steady state
response is close to the secondary region of instability.

Zhu and Chen [2] considered the problem of dynamic stability of a slider-crank mechanism with
an elastic connecting rod. The authors applied perturbation method to the resulting equations of
motion and obtained the Mathieu-type equations. Regions of dynamic instability then are
determined on the basis of Mathieu equations.

Hsieh and Shaw [3] analyzed the dynamic response and correspondingly the stability of a slider-
crank mechanism by the method of multiple time scales. They discussed the phenomena produced
by the occurrence of primary, superharmonic and subharmonic resonances. However, only single
resonant mode was considered in their modelling.

Halbig and Beale [4] carried out an experimental model to study the dynamics of slider-crank
mechanism at very high speed. They observed the occurrence of parametric resonance and the
amplification of response. Fung [5] investigated dynamic responses of a slider-crank mechanism
with time-dependent boundary condition.

In Refs. [6,7], the authors studied the dynamic buckling of an imperfect column under different
loading conditions. The results of their studies show that, as expected, the initial imperfection
amplifies the amplitude of response.

Wang [8] employed the Newtonian method to study the mechanics of a slider-crank mechanism
with a perfect straight elastic coupler. The multiple time scales method was applied to study the
dynamic instability of response and the occurrence of two-component parametric resonance.

It is known that on the problem of parametric excitations of flexible members for planar
mechanisms, the determination of dynamic instability is a crucial question. In general, under the
condition of one-component parametric resonance (single mode of parametric resonance), the
initial curvature of a coupler to the vibration of a slider-crank mechanism plays an important role
only if the vibration is close to the secondary region of instability. In other words, the effects
produced by the initial imperfection of a coupler and the existence of two-component parametric
resonance to the vibration near the primary region of instability have not been studied yet.

In this study, an analytical method that determines the primary region of instability is
developed and applied. The method of multiple time scales is employed to consider the steady
state solutions and the occurrence of multi-component parametric resonance of the multi-degree-
of-freedom dynamical system with time-dependent coefficients. Various effects, such as structural
damping, geometric imperfection of a connecting rod, crank ratio, and piston mass ratio, to the
response of a slider-crank mechanism are investigated. The occurrence of the growth of small
amplitude vibration into large motion regime is also studied.

2. Basic formulas

As shown in Fig. 1, a slider-crank mechanism with an inextensible initially curved elastic
coupler is considered. The mechanism consists of a rigid crank of radius r; an initially curved
elastic coupler of length /; and a frictionless piston of mass M.
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From Fig. 1, the equations governing the motion of the system in the moving co-ordinate frame
(xyz co-ordinates) can be derived from the dynamic equilibrium of forces and conservation of
momenta and are given as

F,—mR,+ R, 0<s</,i>0, (1a)
M+ V=0, (1b)
M = Elv (1¢)

M(-) M+dM

€

i

Fig. 1. System configuration and force equilibrium diagram.
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with the inextensibility constraint r - r, = 1. The force F is given by
F = He; + Pe;
=[(T cos(0 + 0p) — V sin(0 + Op)]e; + [T sin(0 + 0p) + V cos(0 + 0p)]e;. )

In the above equations, M is the bending moment acting on the element; 7 and V are the axial
and transverse forces in the coupler, respectively; (i denotes damping coefficient; 6y and 0
represent the initial angle between the neutral axis of the coupler and the x-axis and the dynamic
angle from the static state, respectively; e; and e; represent the unit vectors of the moving co-
ordinate (xyz co-ordinates) system whose x (e;) co-ordinate is along the centroidal line of the
straight elastic link; m, £ and I are the mass per unit length, Young’s modulus and the area
moment of inertia of the connecting rod, respectively; the subscript s and ¢ denote the s and ¢
differentiation. R(s, ¢) is the position vector of point s along the link at time ¢ and has the form

R(s, 1) = re; +r = re; + (x(s) 4 u(s, t))ej + (To(s) + v(s, 1))e;, 3)
where u(s, t) and v(s, ¢) are the axial and transverse displacements of the rod from the dynamic
undeformed state, respectively; e, is the unit vector along the crank; Tig(s), To(s) = vy sin (ms//), is

the initial variation from straight axis with vj being the amplitude of initial deviation. The
relationship among e, e;, ¢;, i and j are given by

e, = cos(f + ¢)ej + sin(f + ¢)ej = cos Pi + sin fij,
e; = cos ¢i + sin ¢j,
ej = —sin @i + cos ¢j,

where f is the angular displacement of the crank; i and j represent the unit vectors of the Cartesian
frame in the plane of the mechanism. R; and R ;, are the velocity and acceleration of points along
the coupler in the moving coordinate system, respectively, and are obtained from

Ry = SIRGs 0] = [, sin(h+ 9) 10+ b, + (04 500 J

+[rB, cos(B+ §) — (x + u)p, + v,Jej = Ryei + Ry, 4)
2
R :%[R(s, D)= [—rpsin(B+ ¢) — ”ﬁzt cos(B+ @) +uy — (x + U)sz;
- 2U,t¢,z - (U + 60)¢,[z]ei + [rﬁ,n COS(ﬁ + Qb) - rﬁzz Sin(ﬁ + (:b) + Ut
+(x+ W, +2up, — v+ To)ple; = acei + aye, (5)

where sin( + ¢)~ sin f + 1(r/¢)sin 28 — X(r/¢)*sin® B and  cos(B + ¢)~ cos p — (r//)sin* B —
%(r//)zcos fsin® . In addition, the angle ¢ and its time derivatives in the above equation can
be eliminated from the following kinematic relationships [9]:

. ro.

sin p = —Zsmﬂ,
¥

¢,z = _Zﬁ’t COsS ﬁa

r . r
G = Bsin f— B cosp. (6)
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Substitution of Egs. (1b) to (6) into Eq. (1a), the equations of motion in directions e; and e; yield
{T[(l + u,s) - U,sﬁo,s] + EIU,SSS(U,S + 170,5)},3' = lin + mdy., O <s< /3 > 03 (7)

{[T(U,s + 170,5‘) - EIU,ssx[(l + u,s) - U,sl_JO,s]},s = ﬂRy + maya 0<s< /9 t> 09 (8)

where cos(0 + 0)i + sin(0 + 0o)j~[(1 + ;) — vsDosli + (Vs + vos)i; Ry, Ry, ay, and a, are defined
by Eqgs. (4) and (5). Therefore, Eq. (8) represents the motion of the linkage in the e; direction and
Eq. (7) determines the axial force T'(s, ) of the coupler.

In this study, two types of boundary conditions are considered. The first is that the coupler is
assumed to be hinged at each end. Therefore, the longitudinal displacement vanishes at s = 0. The
moment and transverse displacement also vanish at s = 0, /. The second is when Newton‘s second
law is employed to provide a force balance between the axial and shear forces of the rod and the
inertia force of the frictionless piston (e.g. Ref. [1]). The boundary conditions then are

(0, 1) B P, 1) B

(H + May)cos ¢ + (P + May)sinp =0 at s ="/. (10)
Substitution of H and P in Eq. (2) into Eq. (10), it yields
{T[(l + u,s) - U,sﬁo,s] + E[U,sss(v,s + l_)O,S) + Max}COS (:b
—{T (v + Do) — Elvg[(1 + uy) — vsDos] + Mayjsing =0 at s=/7. (11)

Therefore, Eq. (11) determines the time dependent axial force at s = 7, T'(/, ©).
To determine the axial force T(s, ¢), one integrates Eq. (7) and uses the boundary constraint,
Eq. (11). After some manipulations, the result yields

N
7.0 [0+ 10) = vt ] + Elovu 1) = [t mayds €. 12
0
where C(¢) is constant of integration and is given by
/
C(t) = T(/9 t) X [(1 + u,s) - U,SI_JO,S]L;‘:/ + EIU,SSS(U,S + l_)O,S)|s:/ - / (:aR‘c + max) dS,
0

where T'(Z, ) is able to be obtained from Eq. (11). This result now can be inserted into Eq. (8).
The equations of motion of the system with constant angular velocity, & = constant, in
dimensionless form can be obtained by introducing the following dimensionless quantities:

5t . u .0 A Do (f r Ky
T = i, u=-, vV=-, Vo = —, ) -
/ ;s 0Ty s 177
. EI . EI .M
i, = i - 13
"t M T MAK m/ (13)
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Substitution of Eq. (13) into Eq. (8), one gets

A - 0% 2 2 Nen & 0T (n,7) du(b + Bo) 0*(b + o)
0zc + I ot ¢7(cos t)(D + vo) — p . T(ﬂ,f)Tz
- 2fcos T, + ésin T — [0, — ﬂécos T
= &sint(1 — n) + 1%in 2t + 1&sin’ 1, (14)

where 6T (n,t)/0n and T'(n,t) are given in the appendix.

Now, the condition of small deformations is assumed. For this, one neglects the non-linear
terms when compares these terms with the linear terms of #(#, t) and unit. The crank ratio ¢ and
the damping coefficient fi are also assumed to be small quantities. Eq. (14) then becomes

L0 . AB+D0) - D+ b
Boet iBet Ay 0 4 Ecos 1 2O 42 ot — 1) — A )
’ ’ on’ on n?
= Esint(1 —n) + 4 & sin 2t (15)

Examination of the dynamics governed by Eq. (15) is the main aim in this study.
Representing ¢ as continuous functions and letting

B=>) Advsinimy, 0<p<l,7>0. (16)
i=1

The boundary condition, Eq. (9), then is satisfied. In the following, the Galerkin’s method is to
be applied to obtain the approximate solutions of the slider-crank mechanism. Following
Galerkin’s procedure for minimizing error, one substitutes Eq. (16) into Eq. (15) and multiplies
Eq. (15) by sin jny and integrates it with respect to n from zero to 1. The result yields

Aj(v) + [d;(r) + [a)_,2 + & cos t(jm)2(M + 1)]4,(x)
+2&cost g (im)o; Ai(t) — 2écost E (in)zagf”Ai(r)
i=1 i=1
2 : BN
= ¢sin t 4 £ cos t[2na}’ — 2mof; — (M + 1)n?51,1d0

2 . . d
+ =1 —(=1))¢*sin27, ©>0, j=1,23,..., () =—, (17)
Jn dt

where wJZ = (jm)*L,; By = vl /¢; J; is the Kronecker delta symbol; o and o are the integration
of cosine and sine functions and are given in the appendix.

To analyze the system governed by Eq. (17), one allows the response of the system to be
small but finite. Thus, the method of multiple time scales can be used to predict the responses
of the system. According to this method, one assumes that the amplitude, A4;(r), has the
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expansion [10]

) 2
Aj(ty8) = eA1/(T0,T1, T2, -..) + 82 A2{(T0, T1, T2, -o0) + 8 A3(T0, T1, T2 00) F o,
o, =¢7, n=0,12,...,

d o o 5,0
— -=Dy+¢eD) + Dy + -
i aro—i-?a_cl—l- 812+ o +eDr+e&Dr+ -,
dZ
= D} + 2eDoDy + (D3 +2DyD3) + -+, (18)

where ¢ is a measure of the amplitude of the response and is small compared to unity.

For the purpose of studying the parametric resonance of the differential equations, one
substitutes Eq. (18) into Eq. (17) and sets & =¢&, 0y = evy and g = eu. After manipulating these
equations, one equates coefficients of equal power of ¢ and obtains to order one and two:

2, .
el D(2)A1j+w]2A1j :J.—nfsmfoa (19)

& Dydy+ Ay = — uDoAy; — 2DoD1 Ay

— &cos ro{(jn)z(M—i- 1)Ay; + 2 XOC: (in)[oc — (ln)oc"“]Al,}
i=1

— & cos 1oKj;v0 + : [1 — (—=1)71€? sin 21, (20)

where Ky; = [r2(M + 1)dy; + 2mafy — 270f"]. Tt is shown in Eq. (19) that unbounded oscillation
occurs when the frequency w; is 1. Therefore, in the following, the conditions considered are
related to the cases when the natural frequency w; is not close to 1.

From Eq. (19), it is seen that the amplitude A4;; is harmonic in 7y and its solution can be
represented as

2

Ajj = ajcos(w;tg+ @) + —————
Y J 7 J ( ]17:)(@12 —1)

sin g = a; cos fi; + £A; sin 1o, (21)

where a; = aj(rl,rz, ...) is the amplitude of response; ¢; = ¢,(t1, 12, ...) is the phase angle and
A;=2/(( ]n)(w — 1)). Here, for convenience, rewriting Eq (21) as

Ay = Hj(t1, 12, ...)exp(iwjro) + Hj(t1, 12, ...)exp(—fwjro)
— f%é/lj(exp(fro) —exp(—itg)), j=1,2.3, ..., (22)

where 1 = /—1 and H; is the complex conjugate of H;. H; = a] eXp(1¢ ) with ¢; being the phase
of the jth mode.
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To seek the solution of Ay; defined by Eq. (20), one substitutes Eq. (21) into Eq. (20). After
some manipulations, the result yields

D8A2/ + w}Agj = Ha;m; sin ﬁj + 2wj[(D1q,)sin ﬁj + a_,-(le,sz)cos ﬁj

—¢ {%(jn)Z(M + Daj(cos B + cos Bi) + > [(im)ay — (im)*a)"]
i=1
x aj(cos B; + cos [3”)} — EKjjvg cos T — 62{%(jn)2(1191+ 1)4;

+ le; [(m)o; — (in)zocg-ss]/li —jin[l - (—l)i]}sin 270, (23)

where f; = (w; + Do + ¢; and B}, = (w; — Do + ¢

It is known that a multi-degree-of-freedom dynamic system with parametric excitation will
experience multi-components parametric resonance when two or more internal frequencies and
the excitation frequency are commensurable or nearly commensurable. For a dynamic system
with finite degrees of freedom similar to that defined by Eq. (23), parametric resonance may exist
when wmz%, op — ou~1 (n>m). Here w,, is the dimensionless internal frequency of the mth
mode of vibration.

In order to express the commensurable relations of w,, to % and w, — w,, to 1, the detuning

parameters o, and g,,, are introduced:
1
7 = W + &0 m, (24)

1 = w, — wn + €0, (25)

where w, = (n/m)2wm. The relationship between ¢, and o, can be determined from Egs. (24)
and (25) which yields

2
E0ym = [3 — <£> ]wm + 266, = Bymm + 2e0,,. (26)
m
Further, multiplying Eq. (25) by 1y, it yields
m\ 2 -
70 = [1 — (;) ]a)nro + €0, T0 = BinwnTo + €6mm70. (27)

From Eq. (27), one finds that if B,,, is near 1 the resonance occurs in the nth mode of vibration.
For this, one sets B, = | + &6,

Returning to Eq. (23), for the sums and differences of the arguments of the cosine and sine
functions of unequal arguments one has

ﬁl_m = ((Um - I)TO + d)m = —((Dm’L'() + (rbm) - 2(0-11171 - ¢m) = _(ﬁm + 251%)’ (28)
;rm - (wm + 1)70 + qu = (wnTO + ¢n) + (amnTI + ¢m - ¢n) = ﬁn + 5mn> (29)
ﬁl_n = (w” - I)TO + d)n = ((Dml'() + (/)m) - (O-m’l’cl + d)m - ¢n) = ﬁm - 5"’”’!9 (30)

To = (@ + D10 + by = (@70 + §,) + (03,71 — b)) = By + 5, (D)
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where 5m =0mT1 — d)ma 5mn = OpnT1 + ¢m - an: and 5:7,1 = (6mnwn + O'mn)fl - d)n = O';,kmfl - (:bn-
Therefore 6,, = 9,,(t1,72, ...), Omn = Opm(T1,72, ...) and (5;,1 = 5:;”(11,12, ...) are three new phase
angles. From the definition of ¢,, and o,,, one has

D](ﬁm =0, — Did, and D]QZ’)H = Opn + D1¢m — D16, (32)

Returning to Eq. (23) the solvability conditions are the vanishing of the secular terms. These
are, in complex form:

4wmi(D1Hm + %.UHm) + 2éfy:x:mﬁm exp(ziam‘fl) - 2§fann eXp(_iamrﬂ:l) - O, (33)

4wni(DlHn + %.UHn) + 2§fmnHmeXp(iamnfl) = —26K1,,voexp(i0';’;nrl), (34)
where f* = Ymn)* (M + 1) + foum and fo = [(nm)0SS, — (nm)*ell3s].

mm nm nm
The main purpose of Egs. (33) and (34) is to determine the response of motion in steady state
and regions of instability.
To determine the solutions and correspondingly the local stability of parametric resonance one

follows the procedure outlined in Ref. [10] and lets

Here x; and zj are real and 0, = d¢, /dz1;.
For the resonant condition, one substitutes Eq. (35) into the resonant equations defined by
Eqgs. (33) and (34) and separates the real and imaginary parts. The result yields

X+ 3 X + <9m + < f,;km>zm < Sfomzn = 0, (36)
20 20m
/ 1 6 * i o
Zm + 7 HZm + _Qm + fmm Xm + fnmxn =0, (37)
20, 20,
/o ¢ _
Xn + 7 HXn + ann - fngm - 09 (38)
2w,
;o . < S
Z, + 5 UZp — 00X + 5 fonXm = — 5— Kinvo, (39)
2w, 2w,

where () = d/dr.

The local stability of a fixed point with respect to a small perturbation for each resonant case
hence can be determined by the eigenvalues A which are given by the zero of the determinant of the
perturbation equations. For this, a small perturbation is superimposed on x; and z; (k = m,n)
and one has

X = x2 + X, and z; = 22 + Z. (40)

Here x,(z,z,‘z,fck and Z; are the fixed points and the disturbances, respectively. The determinant
of the perturbation equations can be obtained by substituting Eq. (40) into Egs. (36)—(39).
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The result yields

. ¢ ¢
)» m = f* — A~ . Jmnm
Om + 20, "™ 0 2a)mf
_gm + 2i ’;km i B é fnm 0
o : o =0, (1)
- mn i Qn
0 2a)nf
f ”
mn 0 —9,1 2
2a)nf

where 4= /+ % u, 0, =D\¢p,, =0, and 0,= D¢, =0, + . Thus, the characteristic
equation of Eq. (41) has the form

P2+ =0, (42)

where

2 2
= an + (O-m + O-Vnn)2 - ( é f;:<m> + i fmnfrzm,

2w, 20,0y,
2

£ ¢ ’
r4 = |0p(Om + Omn) — 7fmnfnm:| - [ﬁf;m(am + O'mn):| . (43)

4w, w,

The root of Eq. (42) is

A= —%Mi\/%[—rzi\/rﬁ — 4ry].

It is known that the stability of response determines the existence of steady state reaction.
Hence, boundaries of stable and unstable solutions have to be determined. Those are given as
follows:

1. For the condition when r, > 0:
L1 In the case when 1/;’% —4r4 >ry, the steady state solutions are stable if

\/%[—Vzi« /13 — 4r4]<p/2 and unstable if \/%[—rzi\/i% — 4rg] > p/2.

1.2. For the case when r% — 4r4 <r,, the responses are stable.
2. For the condition when r; <0:
2.1. The steady state solutions are unstable if y/r3 — 4r4 > 0.

22 For the case when \/r§—4r4<0, the steady state solutions are stable if

\/%[—rzi r3 — 4ry]<p/2 and unstable if \/%[—rzi r3 —4rg] > p/2.

The transition curves and steady state responses of the system corresponding to conditions 1
and 2 then can be obtained and are summarized as follows:
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Case 1: For the state when ry #0 and u#0. In this case, the steady state solutions of the system
are

2 mKn
= 2SR ST, @4

A4

0 2K1,00
n — A

where Ay = u* + dryu® + 16r4; Ky, = [R2(M + 1)01, + 2n0, — 220> ro and ry4 are given by
Eq. 43); I'1, 5, Ty, I3, and I'y are given in the appendix.

It is observed from Eq.(44) that the growth of small amplitude of vibrations into large
amplitude regime occurs if the denominator 4; is close to zero and unbounded solutions exist if
A1 = 0. In other words, the steady state response of the system may become large amplitude
vibrations even if the geometric imperfection of the coupler is tiny.

\uS 4 Tt T3y 4+ T3, 43)

0.2 —
0.16 —1 &ep=0.05
f 0.12 —
3
~
E 0.08 — Unstable Region
0.04 —
7
0
' I ' I ' I ' |
0 0.25 0.5 0.75 1
Dimensionless frequency o,
0.2 —
__ I en=0.0
016 " ——— Linear solution
}:: 012 —
& K<
b N
E 008 =+ < Unstable Region
&) ~
~
~
» ~
0.04 — S o
N
l
0 T T T
0 0.25 0.5 0.75 1

Dimensionless Frequency o,

Fig. 2. Transition curves emanating from w; = 0.5 and w, = 4 in the eé—w plane for M = 0.5 and eu = 0 (lower plot)
and eu = 0.05 (upper plot).
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Returning to the stability analysis, the transition values that separate the stable and unstable

motion of the steady state response are \/ %[—rz +4/r3 —4r4] = u/2 or

it + 4y + 1674 = 0.

(46)

Note that Eq. (46) is the same result as 4; defined by Eq. (44). From Eq. (44), it is observed that
unbounded solutions exist if 4; = 0 and the growth of small amplitude of vibrations into large
motion regime occurs if the denominator 4; is close to zero. Hence, the transition curves that
separate unbounded and bounded solutions are determined by 4, = 0. Multiplying Eq. (46) by &*

10 —
££=0.025
8 — =025

Amplitude a,

0 T I T | T | T T T |
0 100 200 300 400 500

Dimensionless Time t

0.0008 =) 0024
®,=0.25
g 0.0002 —
£
5 0.0001 o
0 T T T I T | T | T |
0 100 200 300 400 500
Dimensionless Time t
0.0003 —
££=0.015
©.=0.25
< 0.0002 —
o
E
o
£ oom —NV\MW\AMWMMM
0 — 71 ' 1 ' T T ' 1
0 100 200 300 400 500

Dimensionless Time t

Fig. 3. Time history of the amplitude a; for M = 0.5, w; = 0.25 and three different values of the crank ratio ¢,
&€ = 0.015 (bottom plot), 0.024 (middle one), and 0.025 (top plot).
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and substituting Eq. (26) with Eqgs. (24) and (25) to eliminate ¢o,,, in Eq. (46), the result yields

2 2
fmﬂfnm )::m fm’lﬁ’m
ottt = (gl ) oo~ feo | (B) 2]

« 2
- 8(6m) Koo + 360m) (%) T 4[ Ko 3eom)] }(86)2
(n/m)y-w?, m

+ {(ep)* + 4(ep) [(e0m)* + Kymm + 366m)] + 16(60m) (K@ + 360m)*}
(47)

=0.

££=0.08
8 — =075

Amplitude a,

0 — 1 T T T T T T T ]
0 100 200 300 400 500

Dimensionless Time t

0.003 — ££20.075
©,=0.75
5— 0.002 —
E
[=5
5 0.001 —
0 — 71 1 ' T T T T 1
0 100 200 300 400 500
Dimensionless Time t
0.003 —
££=0.05
©,20.75
_g 0.002 —
|
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Fig. 4. Time history of the amplitude a; for M =05, w =0.75 and three different values of the crank ratio gé,
&€ = 0.05 (bottom plot), 0.075 (middle one), and 0.08 (top plot).
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In the above equation, &£ is the crank ratio and has to be no less than zero. Therefore, the positive

roots of Eq. (47) of &£ imply the existence of transition values.
Case 2: For the state when ry#0 and y = 0. In this case, the steady state solutions of the system

arc

i (i> Koo /7, (48)
4

8w, ) T
K1 Vo
ay ===/ T5. (49)
87‘4
0.08 — &£=0.015
©,=0.25
0.06 — £v,~=0.01
<
]
% 0.04 —
g
<
0.02 —
0 ' | ' | ' |
0 2000 4000 6000
Dimensionless Time T
0.08
€£=0.015
0.06 ©,=0.25
& €V;=0.005
]
=1
2 004 —
g
0.02 —
0 ' | ' | ' T
0 2000 4000 6000
Dimensionless Time t
0.0008
€£=0.015
_ 0.0006 ©,=0.25
b £V=0.0
3
£ 0.0004
[=5
£
<
0.0002
°T ' | ' | ' |
6000

0 2000 4000
Dimensionless Time ©

Fig. 5. Time history of the amplitude a; for M = 0.5, w; = 0.25 and ¢ = 0.015. Three different values of dimensionless
amplitude of geometric imperfection of a connecting rod v, are selected. Those are vy = 0.0 (geometric perfect, bottom

plot), 0.005 (middle one), and 0.01 (top plot).
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Similar as previous case, the growth of small amplitude of vibrations into large amplitude motion
occurs if the denominator r4 is near zero and unbounded solutions exist if r4 = 0.

The transition values that divide the stable and unstable motion of the steady state solution are
rqs =0 or

& ¢
O-m(o'm + O'mn) - mfmnﬁim = i2w f,:m(o'm + O-n)- (50)

Similar to that done in Case 1, multiplying Eq. (50) by & and substituting Eq. (26) with Eqgs. (24)
and (25) to eliminate ¢a,,, in Eq. (50), the result yields
4(n/m)°w?, 2

Therefore, the positive roots of Eq. (51) of &£ represent the existence of transition values.
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Fig. 6. Time history of the amplitude a; with the same parameters as used in Fig. 5, except w; = 0.75.
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It is mentioned here that in the absence of internal resonance, K, = fun = fum = 0, Eq. (51)
reduces to the result of Badlani and Midha [1] for w,, =~ % That is, they reduce to

ng}’n sé 9
&0, = + 2o, =+ o, [%(mn)2 (M+%)] (52)

3. Numerical results and discussions

Without loss of generality and considering the commensurable relations among frequencies and
the probability of occurrence in nature, for the case of w,, ;% and w, — w,,~1, one chose m = 1
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Fig. 7. Time history of the amplitude a; for M =0.5, ¢£ =0.015, ¢vy = 0.005, and three different values of the
fundamental frequency w;, w; = 0.25 (lowest plot), 0.4 (middle one) and 0.65 (top plot).
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and n = 2 to present the basic characteristics of the occurrence of two-component parametric
resonance. It is recalled that the parameter &£ is the crank ratio. w; is the dimensionless natural

frequency and is defined by w; = ( jm)*\/EI /(ml*@®?), where @ is the constant angular velocity of

the crank.
In addition to the stability analysis, the existence of perturbation solutions is verified by

numerically integrating the modulation equations, Egs. (36)—(39), by the Runge—Kutta method.

Fig. 2 presents the transition curves that separate the regions of bounded and unbounded
(shaded area) motions emanating from :% and w; = 4w, in the ¢£—w parameter plane for
M = 0.5, and eu = 0 (lower plot) and eu = 0.05 (upper plot). The solid and dash lines denote the
transient curves for the first mode of vibration under the condition of two- and one-component
parametric resonances, respectively. From this figure, one finds that there exists only minor
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Fig. 8. Time history of the amplitude a; for M=05 w0 = 0.75, evgp = 0.005, and three different values of the crank
ratio &£, e = 0.065 (lowest plot), 0.0.073 (middle one) and 0.075 (top plot).
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difference between zero and non-zero values of ¢u. Hence, the coefficient of damping ¢u used in
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the numerical examples, unless otherwise specified, is set to be zero.

This figure also shows that if the natural frequency w; is smaller than one-half of the excitation
frequency, the occurrence of two-component parametric resonance enlarges the region of
instability when compares it with the region of instability produced by one-component parametric
resonance. In other words, unstable motion may occur even if the fundamental frequency is far
less than the excitation frequency when there exists the occurrence of two-component parametric
resonance. This is, perhaps, due to the variation of energy between modes and is not found in the

Crank Ratio €£

Crank Ratio €&

Crank Ratio €&

Fig. 9. Transition curves emanating from w; = 0.5 and w; = 4w in the eé—w plane for M=05 (solid lines), 1.0 (dash
lines), and 1.5 (chain dot lines). Three different values of damping coefficients are selected, eu = 0 (lower plot) ,
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en = 0.05 (middle one), and eu = 0.1 (top plot).
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condition of one-component parametric resonance. The validity of the model is verified by
numerically integrating the modulation equations. The results are shown in Figs. 3 and 4.

Fig. 3 shows the long-time behavior of the amplitude a; for w; = 0.25 with three different
values of crank ratio, ¢£ = 0.015 (bottom plot), ¢£ = 0.024 (middle one), and & = 0.025 (top plot).
Fig. 4 illustrates similar information to that shown in Fig. 3, except in this figure w; is set to be
0.075. In addition, three different values of crank ratio ¢ are selected. Those are ¢£ = 0.05 (lowest
one), 0.075 (middle plot), and 0.08 (top one). These two figures clearly show the existence of
bounded (stable) and unbounded (unstable) solutions.

In the following numerical examples, various effects produced by the variation of
parameters, such as geometric imperfection of a coupler, detuning parameter of frequency,
crank ratio, and piston mass ratio, to the response of the system are taken into account and
studied.

Fig. 5 shows the time history of the amplitude a; for M = 0.5, g0y = 0.25 (w; = 0.25), and
&&= 0.015. In this figure, three different values of initial imperfection of the coupler are chosen,
which are evy = 0.0 (initial straight, lowest plot), evy = 0.005 (middle one), and evy = 0.01 (top
plot). Fig. 6 presents similar information to that shown in Fig. 5, except in this figure eo; =
—0.25 (w; = 0.75).

From these two figures, it is observed that under the condition when the fundamental frequency
is small, for example w; = 0.25 (Fig. 5), the geometric imperfection of a coupler plays an
important role to the amplitude of response. In general, the initial curvature of a linkage amplifies
the amplitude of vibration. However, the magnification of the amplitude in response decreases
with the increase of fundamental frequency, as shown in Fig. 6 (w; = 0.75). This is expected since
from Egs. (33) and (34), one finds that the amplitude of response decreases as the frequency
increases. It is also evident in Fig. 7.

Fig. 7 shows the long-time behavior of the amplitude a; for ¢£ = 0.015 and evy = 0.005. Three
different values of fundamental frequency are chosen, which are w; = 0.25 (bottom plot), 0.4
(middle one), and 0.65 (top plot). It clearly indicates that the magnification in response produced
by the geometric imperfection of a connecting rod decreases with the increase of the frequency.

As shown in Eq. (44), unbounded solution occurs if the denominator 4; = 0 and the growth of
small amplitude of vibration exists if the denominator A4; is close to zero. In other words,
unbounded solutions exist if the vibrations take place in the region of instability, including at
transient values. The enlargement of small amplitude of vibrations into large motion regime
occurs if the vibrations arise near the boundary of stable region.

Fig. 8 illustrates the time history of the amplitude a; for M = 0.5, gvy = 0.005, and w; = 0.75.
Three different values of crank ratio are used. Those are ¢£ = 0.065 (lowest plot), 0.073 (middle
one), and 0.075 (top plot). It evidently indicates the growth of small amplitude of vibration into
large motion occurs if the oscillation takes place near the transient values.

The transition curves emerging from w, :% and w; = 4w, in the e¢—w parameter plane for
different values of M and eu are shown in Fig. 9. The values of M used are 0.5 (solid lines), 1.0
(dash lines), and 1.5 (chain dot lines). The values of ¢u selected are 0.0 (bottom plot), 0.05 (middle
one), and 0.1 (top plot). The result shows that the increase of piston mass ratio enlarges the region
of instability. In addition, it is interesting to find that under the condition when eu = 0, there exist
two values of detuning parameters (eo; = 0.0 and 0.125) such that the motion of the system is
fully unstable.
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4. Conclusions

In this study, the mechanics of a slider-crank mechanism and the weak form of the occurrence
of two-component parametric resonance are obtained. The growth of small amplitude of
vibration into large motion regime is studied. Various effects, such as the existence of two-
component parametric resonance, piston mass ratio, crank ratio, and initial imperfection of a
coupler, to the response of the system are also investigated.

Result of the study shows that under the condition of two-component parametric resonance,
the excitation created by the geometric imperfection of a coupler can result significant effects to
the vibrations of the system near the primary region of instability. This is due to the interaction of
energy between modes and cannot be observed in the case of one-component parametric
resonance. The result also indicates that the magnification in response decreases as the
fundamental frequency increases. In addition, the growth of small amplitude vibration into large
motion regime occurs if the vibrations arise close to the boundary of stable region.

Appendix

aT(’I, T) ~ 2

p T— 5211 cos’ T+ 25{7,1005 T— f(ﬁ + Dg)sin T + % 53005 Tsin’ 1,
n

—écosr—i—fzsin

1
T(n,7)~ — &n — Deost + Esin® t(n — 1) — 1 E(p* — 1)cos? T — 2¢ (/ 0. dn) COs T
n

1 3 A

X . . A0 . -

+ 5{/ (0 + Do) dn] sin T + Iméa—nz +Mécost — MEcos 2t
n

— L MEcos tsin® t + 1ME sin T sin 21,

s l|:(_1)l] — 1 o (_I)Hj —1

](1 —0j), 0;: the Kronecker delta symbol,

P20 (i—j)n i+ ))m
. 1[(-1)7 =1 (=) =1
OCZ' :%5ii+_[(.).2 *(.).2 ](151.7):
20— (+)n?
a=opm,
¢ x
b =
2wmfmm’
¢
c= 2wmﬁzma
¢
d=-— mns
2a)nf
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€= 0m+ O,
Iy = 4(d® + b* + &%) — 8(ab — cd + 2be),
I'> = 16[(ae)* + (be)* + (cd)*] + 32e[b(ae — cd) — acd],
If =8a* — 8b* + 4¢* + 8cd,
ry= 32(ae)* — 32(be)* + 16(cd)? + 32¢d(a® — b* + be — ae) + 16(a*> — b?)?,
I'f = 64e*(@® — b*)* + 64(cd)*(a — b)* — 128cde(a® — a*b — ab® + b°).
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