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Abstract

An active control system is developed to control blade as well as rotor vibrations in a coupled
rotor–blade system where rotor lateral and blade flexible movements are coupled. In order to cope with the
periodic time-varying dynamics of such systems, a periodic modal controller, based on time-variant modal
analysis, is designed. The periodic time-varying equations of motion are transformed into a time-invariant
modal form, which is used for designing the periodic controller. The modal decoupling of the equations of
motion allows a system order reduction resulting in a simpler and more implementable controller
addressing only specific vibration modes, which can cause problems. Moreover, the time-varying modal
matrices, used for the modal decoupling, are also used for controllability and observability analyses in
order to achieve optimal actuator and sensor placement in the system. The applicability of the controller
design methodology is evaluated by a numerical example where a coupled periodic time-variant system
built by a rigid rotor with four flexible blades is simulated. In the simulation model tip masses are added at
the end of the blades with the aim of emphasizing the blade inertia effects and the time periodicity of the
system. Rotor angular movements and the gyroscopic effect are neglected for simplicity, and the blades are
modelled as flexible Bernoulli beams. Three different control schemes are designed using the described
methodology. The results demonstrate that the designed controllers are capable to cope with the time
periodicity of the system and suppress very efficiently only the vibration modes addressed.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Flexible rotating blades interacting with rotor lateral movement present some special dynamic
peculiarities, which have to be clearly understood before active systems for vibration control can
be properly designed and applied. Due to the centrifugal effects, the blade natural frequencies may
significantly change depending on the rotor angular velocity, the so-called stiffening effect.
Moreover, the variation of the blade position, when operating at constant angular velocities, leads
to periodic variation of the inertia distribution in time, which can induce the appearance of
parametric vibrations. Furthermore, the coupled rotor–blade mode shapes can occur extremely
close to the flexural blade modes, hindering a precise identification of the different frequencies and
introducing beating phenomena. The smaller the mass relationship between blades and rotor is,
the closer are the coupled rotor–blade modes and the flexural blade modes [1].
Active control of vibrations in flexible structures has been extensively studied for several

decades and applied to various types of systems [2–8] suppressing vibration among others in
flexible bladed rotors and rotating beams. Nevertheless, most of the reported work only deals with
linear time-invariant systems. For instance, active modal control of vibrations in a simple rotating
cantilever beam is studied by Khulief [6]. Vibrations in rotating flexible blades using active
piezoelectric actuation have been theoretically as well as experimentally investigated among others
by Chen and Chopra [7] and Baz and Ro [8]. In these three reported works, the rotor lateral
movement is neglected. When such a movement is also considered and the rotor operates at
constant angular velocity, the system becomes periodic time-variant but current literature has
dealt only with the problem of control design, with focus on blade vibration.
Several control methodologies, directed towards periodic systems, have been reported during

the last two decades. For instance, an optimal periodic controller for helicopter vibration
attenuation is designed by solving a periodic Ricatti equation [9] and a periodicH1 controller is
designed in Ref. [10]. Lyapunov–Floquet transformation of the periodic system into a time-
invariant form is used by many other authors. Hereby, linear time-invariant control techniques
can be applied for the controller design. A technique for designing a pole placement state feedback
controller by gain selection based on a modal transformation of the periodic system is described in
Ref. [11]. In order to avoid real-time estimation of state variables in the periodic system, a design
technique for an optimal output feedback controller with fixed gains based on a modal
transformation of the periodic system is proposed in Ref. [12]. A method for designing periodic
state feedback controllers using a Lyapunov–Floquet transformation method based on
Chebyshev polynomials is reported in Ref. [13]. The efficiency of this methodology has been
investigated in different types of systems, i.e. to control vibrations in a single parametrically
excited rotating flexible beam [14] and to reduce vibrations in bladed discs by shaft-based
actuation [15].
In the present paper, a periodic time-variant modal controller is designed, aiming to attenuate

vibrations in a coupled rotor–blade system comprising four flexible rotating blades. While
designing modal controllers, it is not always desirable to address and suppress all vibration modes,
but only those which can cause significant damages to the machines. In this framework, the aim is
to design a modal controller capable of addressing and suppressing specific selected vibration
modes. Such a selection minimizes the order, complexity and energy consumption of the
controller. By combining elements from the previously reported works, a state feedback controller
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is designed similar to the method presented in Ref. [13], based on Chebyshev polynomials.
However, in order to address the modal control concept, the system is transformed into a time-
invariant form by the modal transformation technique for periodic systems, as presented in Ref.
[12] and described in detail in Ref. [16]. The efficiency of applying this modal transformation for
analysing and mathematically explaining parametric vibrations in coupled rotor–blade systems is
described in [17] and for actively controlling them in Ref. [18]. Among the advantages of using the
modal transformation for the controller design, one can mention that it allows a straightforward
method for analysing the modal controllability and observability of the time-varying system.
Moreover, it gives better physical interpretation and visualization of the time-varying mode
shapes which are very useful, for example, for decisions regarding actuator and sensor placement.
Therefore, when designing active controllers for such a special kind of mechanical systems, the
periodic modal transformation becomes a very powerful tool.
2. Mathematical model

A mechanical model of the coupled rotor–blade system considered is shown in Fig. 1. The rotor
shaft is assumed to be rigid and is mounted in a hub performing planar movement in the xy-plane.
Four identical flexible blades with tip masses are radially attached to the rigid rotor and the
motion of the blades is also assumed to be planar. Note that the movement of the rotor is assumed
to be strictly restricted to the xy-plane, neglecting rotor angular movements and gyroscopic
effects. This simplification allows a two-dimensional system to be used and also a system with a
minimum number of degree of freedom. However, for practical use in real rotor-blade
Fig. 1. Mechanical model of the coupled rotor–blade system: xh; yh; d1; d2; d3; d4 are the minimal coordinates for
describing the rotor–blade system dynamics; Fhx

;Fhy
;Fb1 ;Fb2 ;Fb3 ;Fb4 are the active control forces and

Kxh
;Kyh

;Dxh
;Dyh

are the damping and stiffness of the hub foundation.
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applications, the gyroscopic effects have to be considered. Nevertheless, neglecting the gyroscopic
effect does not affect the main aim of the present theoretical work, i.e. an investigation and
evaluation of a control design methodology for rotor–blade systems based on time-variant modal
analysis.
In order to control vibrations in the system six actuation forces acting on the hub (Fhx

and Fhy
)

and orthogonally on each of the blades (Fb1, Fb2, Fb3 and Fb4) are applied to the system. Whether
all six forces have to be applied to the system or only some of them, in order to be able to control
the vibrations of the structure, will be analysed in Section 4.1.
The equations of motion for the rotor–blade system are derived using Lagrangian dynamics.

Fig. 2 shows the coordinate systems and position vectors used to develop the model. Index I

denotes the inertial reference frame attached to the non-moving foundation. The systems Bi and
Ci denote auxiliary coordinate systems attached to the rotor, at the root of the ith blade, and to
the ith blade tip mass, respectively.
The kinetic energy of the assembly is given by a sum of three contributions: (I) the rotor kinetic

energy Tr; (II) the blade kinetic energy Tb and (III) the tip mass kinetic energy Tt. Axial elongation
of the blades as well as the blade inertia are neglected in Tt. The total kinetic energy then is
T ¼ Tr þ Tb þ Tt; where

Tr ¼
1
2
Jh

_y
2
þ 1
2
mh I _roh�I _roh; ð1Þ

Tb ¼
X4
i¼1

1
2
ri

Z Li

0
I _ropiðxiÞ�I _ropiðxiÞ dxi; ð2Þ

Tt ¼
X4
i¼1

1
2
mtiI

_roti
� _roti

þ 1
2
Jti

_yþ
q
qxi

_yi Lið Þ
� �� �2" #

; ð3Þ
I

Bi

Ci

o

rhpi

rti

Li, Ei, Ii, �i

mti,
Jti,
Lti,

roh
mh, Jh

Fig. 2. The inertial and moving reference systems and position vectors used for derivation of the dynamic model. The

geometrical and physical parameters Li; ri;Ei; I i and Lti
;mti

; Jti
relate to the ith blade and tip mass. The parameters mh

and Jh are the moment of inertia and the mass of the rotor and hub.
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where _r denotes the time derivative of the displacement vector r defined in Fig. 2. The vector
subscripts oh, opi and oti indicate that the vectors r and _r describe the position and velocity of the
rotor center point, a point located at the ith blade and the centre of gravity of the ith tip mass,
relative to the point o. Index I denotes that the vectors are represented in terms of coordinates of
the inertial reference frame.
The potential energy of the assembly consists also of three contributions: (I) the potential

strain energy due to the elastic deformation of the blades Ve; (II) the gravity potential energy Vgr
and (III) the geometric deformation potential energy Vg. The last term is required to take into
account the centrifugal stiffening of the blades, which results in an increase of the blade natural
frequencies as a function of the rotational speed [19]. Denoting the gravity vector Ig and the
normal force acting on the beams by NðxiÞ; the total potential energy is V ¼ Ve þ Vgr þ Vg;
where

Ve ¼
X4
i¼1

Z Li

0

1
2
EiI i

q2yi

qx2i

� �2
dxi; ð4Þ

Vgr ¼ mh Ig�Iroh þ
X4
i¼1

mti Ig�Iroti
þ r

Z Li

0
Ig�Iropi

ðxiÞ dxi

	 

; ð5Þ

Vg ¼
X4
i¼1

1

2

Z Li

0

NðxiÞ
qyi

qxi

� �2
dxi: ð6Þ

The dynamic model is discretized by expressing the blade-bending deformation in terms of the n

lowest mode shapes, that is

diðt;xiÞ ¼
Xn

j¼1

qjiðtÞjjðxiÞ for i ¼ 1; 2; 3; 4 and 0pxipLi; ð7Þ

where n is the number of modes, qji and jjðxiÞ are the modal coordinate and the mode
shape function for the jth mode of the ith blade deflection, respectively. The general
equations of motion for the coupled rotor–blade system are time-varying and functions of the
rotor position y; the rotational speed O and the acceleration _O: The equations of motion are
written as

MðtÞ€zðtÞ þHðt;OÞ_zðtÞ þ Kðt;O; _OÞzðtÞ ¼ Pðt;O; _OÞ þQuðtÞ; ð8Þ

where zðtÞðN�1Þ ¼ fxh; yh; q1; q2; q3; q4g
T is a vector of generalized coordinates and uðtÞð6�1Þ ¼

fFhx
;Fhy

;Fb1 ;Fb2 ;Fb3 ;Fb4g
T is a vector of control forces acting on the structure.

Rotating at constant speed the model becomes periodic time-variant with rotational frequency
O ¼ 2p=T ; that is,

MðtÞ 
 Mðt þ TÞ;HðtÞ 
 Hðt þ TÞ;KðtÞ 
 Kðt þ TÞ;PðtÞ 
 Pðt þ TÞ: ð9Þ
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2.1. State space model for control

The equation of motion (8) is rewritten into a state-space form:

_xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ þ FðtÞ; ð10Þ

with the vector of state variables xðtÞTð2N�1Þ ¼ zðtÞT_zðtÞT
� �

and the system matrices

AðtÞð2N�2NÞ ¼
0 I

�MðtÞ�1KðtÞ �MðtÞ�1HðtÞ

	 

; ð11Þ

BðtÞð2N�6Þ ¼
0

MðtÞ�1Q

	 

; FðtÞð2N�1Þ ¼

0

MðtÞ�1PðtÞ


 �
: ð12Þ

The output equation is given by yðtÞ ¼ CxðtÞ; ; where C is defined in such a way that the outputs
are the lateral position of the hub and the tip point deflections of the blades yðtÞð6�1Þ ¼

fxh; yh; d1; d2; d3; d4g
T:
2.2. Modal transformed model

By using a periodic modal transformation Eq. (10) is transformed into a system of independent
equations of motion, where each equation represents one vibration mode. This modal formulation
is obtained by introducing a vector of modal state variables n(t) defined by xðtÞ ¼ RðtÞnðtÞ where
R(t) is the right modal matrix. Introducing this new state vector, the system is rewritten to the
form

_nðtÞ ¼ AnðtÞ þ BðtÞuðtÞ þ FðtÞ; yðtÞ ¼ CðtÞnðtÞ; ð13Þ

whereA ¼ ½LTðtÞAðtÞRðtÞ � LTðtÞ _RðtÞ
 is a constant diagonal matrix containing the eigenvalues of
A(t) along the diagonal,BðtÞ ¼ LTðtÞBðtÞ is the periodic oscillatory modal control matrix,FðtÞ ¼
LTðtÞFðtÞ is the periodic oscillatory vector of modal forces and CðtÞ ¼ CRðtÞ is the periodic modal
output matrix.
The right R(t) and left modal matrix LT(t) used for the transformation are periodic time-variant

and they are determined by solving the time-variant eigenvalue problem _rðtÞ þ ½lI� AðtÞ
 rðtÞ ¼ 0
using Hill’s method of infinite determinants [16, 17,20]. The efficiency of applying this modal
transformation technique for analysing coupled rotor–blade systems and for mathematically
explaining the presence of parametric vibrations of such systems is carefully investigated in Ref.
[17]. Using this methodology the modal matrices are given by

RðtÞ ¼ Rðt þ TÞ ¼
Xn

j¼�n

Rje
ijOt; RðtÞLTðtÞ ¼ I: ð14Þ

The Fourier coefficients Rj represent basis and parametric vibration mode components of the
system. The basis modes, corresponding to the eigenvalues l, are given by R0 and parametric
vibration modes are given by Rj, corresponding to the eigenvalues lþ ijO: That means the modal
coordinates nðtÞ of the transformed system address both type of modes, i.e. the basis modes and
the associated parametric modes. Therefore, reducing the vibration amplitude of hub and blades
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using the representation in the modal state coordinates nðtÞ implies that the basis as well as the
parametric modes will be reduced.

2.3. Reduced order model

In order to reduce the order of the controller and state observer, the system is reorganized into a
subset of controlled modes and a set of residual modes, denoted by the indices c and r,
respectively. The controller is designed to suppress only specific vibration modes, thus considering
the remaining insignificant, non-controllable or non-observable modes as residual modes. The
reduced modal system is written as

_ncðtÞ

_nrðtÞ

( )
¼

Ac 0

0 Ar

	 
 _ncðtÞ

_nrðtÞ

( )
þ

BcðtÞ

BrðtÞ

	 

uðtÞ þ

FcðtÞ

FrðtÞ


 �
: ð15Þ

Such an order reduction implies that precautions have to be taken in order to avoid control and
observation spill-over problems. Moreover, for practical implementation, modelling errors and
non-modelled dynamics will also result in such problems. In this entirely numerical study, control
and observation spill-over will not cause significant problems and will therefore not be studied in
details. However, spill-over is an important topic when designing vibration controllers and has to
be considered for practical implementation. For such implementation, it might be necessary to
take precautions such as implementing band-pass filters to prevent excitation of non-controlled
modes and to prevent the presence of residual modes in the measured variables. Residual modes
mean all modes higher than those considered in the reduced mathematical model.

2.4. Model of non-complex coefficients

Due to the complex eigenvalues, and eigenvectors the modal model contains complex
coefficients. Therefore, for controller design reasons the complex model is rewritten into a real
form by separating the real and imaginary parts

_�nðtÞ ¼ �A�nðtÞ þ �BðtÞuðtÞ þ �FðtÞ; �yðtÞ ¼ �CðtÞ�nðtÞ; ð16Þ

where the new state vector and the matrices �A; �BðtÞ and �CðtÞ are given by

�nðtÞð2Nc�1Þ
¼ <ðnc;1Þ;Jðnc;1Þ;<ðnc;2Þ;Jðnc;2Þ; . . . ;<ðnc;Nc

Þ;Jðnc;Nc
Þ

� �T
; ð17Þ

�Að2Nc�2NcÞ ¼

. .
.

0

�Aii

0 . .
.

2
6664

3
7775 where �Aii ¼

<ðliÞ �JðliÞ

JðliÞ <ðliÞ

	 

; ð18Þ

�BðtÞð2Nc�6Þ
¼ <ðBc;1Þ;JðBc;1Þ . . .<ðBc;Nc

Þ;JðBc;Nc
Þ

� �T
; ð19Þ

�CðtÞð6�2NcÞ
¼ <ðCc;1Þ;�JðCc;1Þ . . .<ðCc;Nc

Þ;�JðCc;Nc
Þ

� �
: ð20Þ

Nc denotes the number of controlled modes.
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3. Active controller design

3.1. Modal controllability and observability

The controllability and observability depend on the number and location of actuators and
sensors. Therefore, in order to determine the minimum number and optimal placement of
actuators and sensors in the system, the modal controllability and observability are analysed.
Generally, the system is modal controllable if no row of the modal control matrix consists only

of zeros and all modes are observable if no column of the modal output matrix consists only of
zeros. However, these are poor measures of the modal controllability and observability. Better
measures are provided in [21], for time-invariant systems, which provides quantitative indices of
how controllable and observable a specific mode is from all inputs and outputs. For the time-
varying case, such measures are given by

MCiðtÞ ¼ norm
lTi ðtÞ � BðtÞ

jjlTi ðtÞjj

 !
; MOiðtÞ ¼ norm

C � riðtÞ

jjriðtÞjj

� �
; ð21Þ

where riðtÞ and lTi are the ith right and left eigenvectors, respectively.
As an alternative to this methodology of studying the controllability and observability by

calculating quantitative measures, the controllability and observability can be also studied by
observing the mode shapes. The larger the amplitude of the mode shape is at the location of
actuators or sensors, the more controllable or observable is the system.
3.2. Periodic controller design

Using the periodic oscillatory modal model, Eq. (16), a time-periodic controller for the original
periodic system, Eq. (10), is designed using the traditional time-invariant control technique. A
time-periodic state feedback controller is designed by a methodology similar to the method used
in Ref. [13], although, it is based on the modal transformed model. The time-variant state
feedback control law is defined by

uðtÞ ¼ �GðtÞ�nðtÞ: ð22Þ

Substituting �BðtÞ with a constant matrix �B0; i.e. given by the value of �BðtÞ at a specific instant
of time, and neglecting the modal force vector, the modal model, Eq. (16), is given by

_�nðtÞ ¼ �A�nðtÞ þ �B0u0ðtÞ: ð23Þ

If the system is non-controllable or only weakly controllable at specific instants of time, the
matrix �B0 has to be carefully chosen in order to avoid problems. For this time-invariant system,
Eq. (23), a control law is defined by

u0ðtÞ ¼ �G0
�nðtÞ; ð24Þ

where �G0 is a constant gain controller designed using traditional linear time-invariant control
technique, for instance by LQ design.
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By ‘equalizing’ the periodic oscillatory system, Eq. (16), and the rewritten time-invariant
system, Eq. (23), the constant gain controller is transformed into a periodic form. The periodic
controller gain matrix then is

�GðtÞ ¼ �B
T
ðtÞ �BðtÞ

h i�1
�B
T
ðtÞ �B0

�G0: ð25Þ

3.3. Periodic state observer design

All state variables are not directly measureable. Therefore, a deterministic time-periodic
observer is designed to estimate the state variables. The periodic observer equation is given by

_̂�nðtÞ ¼ �A �̂nðtÞ þ �BðtÞuðtÞ þ �FðtÞ þ �GobsðtÞ yðtÞ � �CðtÞ �̂nðtÞ
� �

; ð26Þ

where �̂nðtÞ denotes the estimated state variables, yðtÞ the measured variables and �GobsðtÞ the
observer gain matrix.
It is well known that the observer gain matrix for a time-invariant system can be determined by

designing a controller for the dual system. Using this property, the periodic time-varying observer
gain matrix can be designed by a procedure similar to the controller design procedure. The dual
system is given by

_�ndðtÞ ¼
�A
T �nd ðtÞ þ

�C
T
ðtÞudðtÞ: ð27Þ

Again introducing a constant matrix �C0; so that the dual system is time-invariant and
controllable, a constant gain controller �Ge;0 is designed for the dual system. The periodic observer
gain matrix is then given by

�G
T

obsðtÞ ¼
�CðtÞ �C

T
ðtÞ

h i�1
�CðtÞCT

0
�Ge;0: ð28Þ
4. Numerical results

The performance of the designed control methodology is examined by numerical simulations.
The parameters of the rotor–blade system used for this numerical analysis are given in Tables 1
and 2.

4.1. Sensor and actuator placement

Placement of actuators and sensors in an active controlled bladed rotor system is very
important from a machinery design point of view. The costs and difficulties related to the
implementation depend very strongly on the type, quantity and placement of the actuators and
sensors implemented in the system. For example, actuators and sensors can be located on the
blades monitoring and acting directly on them, or they can be located on the rotor, monitoring
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Table 1

Rotor properties

Rotor/Hub

Mass mhx
¼ 2:0 kg; mhy

¼ 2:0 kg

Stiffness Kxh
¼ 6� 103 N=m; Kyh

¼ 8� 103 N=m

Damping Dxh
¼ 10�6 N s=m; Dyh

¼ 10�6 N s=m
Inertia Jh=10

�2 kgm2

Excentricity e=10�3m; k=0rad
Diameter r=0.04m

Rotor mass mr=0.5 kg

Table 2

Blade properties

Blades and Tip masses

Length Li=80� 10
�3m

Width bi=25� 10
�3m

Thickness hi=10
�3m

Density r =7800 kg/m3

Elasticity Ei=2.0� 10
11N/m2

Locations ai ¼ ði � 1Þp=2 rad; i ¼ 1; 2; 3; 4
Tip mass mti

¼ 0:100 kg
Tip inertia Jti

¼ 3:35� 10�5 kg m2

Tip mass length Lti
¼ 30� 10�3 m

R.H. Christensen, I.F. Santos / Journal of Sound and Vibration 280 (2005) 863–882872
and acting directly on the rotor. Placing the actuators and sensors in the rotating blades
introduces several difficulties to be overcome compared to the alternative placement.
Measurement and control signals have to be transmitted between the rotating frame and the
control unit using slip rings or telemetric transmission techniques. This increases the machinery
complexity and development costs significantly. Moreover, when built into the rotating blades,
actuators and sensors have to be resistant to harsh working conditions, such as fatigue failure and
severe pressure, flow or temperature conditions.
Actuators and sensors can be implemented into active controlled rotor–blade systems using

various types of actuation and sensing techniques. Such implementation relies very much on the
specific rotor–blade system. In practice, blade actuation can be applied to rotor-blade systems
using variable geometry actuators [22] or piezo-electric actuators embedded into the blades [8].
Blade vibrations can be monitored using measurement techniques such as strain guages or piezo-
electric elements attached directly on the blades. For some large structures, the use of acceleration
measurements will also be possible. Alternatively, in order to avoid the transmission of
measurement signals from the rotating system to the inertial frame, sensors fixed in the inertial
frame can also be used in some practical applications [23]. A review of the current state of the art
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regarding rotor–blade vibration monitoring methods is provided in Ref. [24]. Monitoring and
controlling vibrations by placing actuators and sensors directly onto the rotor are much less
problematic. Many different types of active bearings have been developed, for instance, electro-
magnetic bearings [25,26], piezo-electric actuated bearings [27], active lubricated bearings [28] or
hydraulic actuated bearings [29,30], and can be used to achieve this goal.
The practical difficulties and increasing costs related to the implementation of actuators and

sensors in the rotating blades compared to the implementation of active controlled bearings
motivate this investigation: Answers to a number of questions are sought. These are: are actuators
and sensors fixed to the blades necessary? are the placement of such actuators and sensors in the
blades inevitable in order to monitor and control vibrations in bladed rotor systems? can the rotor
as well as blade vibrations be controlled solely by means of rotor/hub-based actuation? To
investigate this, the controllability and observability of the rotor–blade system are analysed in
order to determine where to place sensors and actuators capable of monitoring and controlling
the rotor–blade vibrations.
4.1.1. Time-variant modal analysis in the rotor–blade system

Figs. 3–5 show the basis mode shape components given by the Fourier coefficients R0 and the
parametric mode shape components of order +1 and �1 given by R+1 and R�1. Parametric
modes of higher order are not presented because these are very small and insignificant in the
system response. The number in the lower left corner of the plots in the figures denotes a
normalization factor. Generally speaking, the lower the normalization factor of a mode is, the
more significant will be the contribution of such a mode to the dynamic response of the system.
The factor ‘‘inf’’ means that the normalization factor is almost infinite, consequently, these modes
are not normalized and will not significantly influence the response of the system.
For a correct understanding of the physical meaning of M1yM10, P1yP10 and R1yR10,

these shapes have to be simultaneously analysed. For example, the first mode shape of the
rotor–blade system is built by M1, P1 and R2. M1 is associated to the stationary or non-rotating
part of the mode and contributes strongly to the system response, factor 1.0. P1 is associated to
x
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Fig. 3. Basis mode shapes for the coupled rotor–blade system given by R0.
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the forward rotating part of the mode shape, factor 1/10.2. The backward rotating part of the
mode, named R1, does not contribute much to the mode, once the factor is 1/16.4. By checking
the mode shapes, it is easy to see the necessity of mounting actuators which act on the hub as well
as on the blades in order to control all mode shapes. Naturally, the hub-based actuators are
necessary to control the rigid body motion of the rotor. Theoretically, modes 1, 2, 5, 6, 9 and 10
can be controlled by hub actuation only, due to the amplitude of rotor motion in the stationary
parts M1 and M2 of modes 1 and 2; in the backward rotating part R5 of mode 5; in the forward
rotating part P6 of mode 6; in the backward rotating part R9 of mode 9 and in the forward
rotating part P10 of mode 10. This implies that theoretically the mode components M5, M6, M9,
M10, P1, P2, R1 and R2 can also be controlled by hub actuation. However, the remaining
significant components M3, M4, M7 and M8 of the 3rd, 4th, 7th and 8th modes cannot be
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controlled by the hub-based actuators because these modes are decoupled from the hub
movement. Consequently, actuators have to act on the blades to control these modes. Similarly, it
is necessary to mount sensors on both the hub and on the blades to estimate all state variables.

4.1.2. Quantitative measures of controllability and observability
An indication of where to locate actuators and sensors was obtained from the mode shape

analysis. In order to make a definitive decision on where to locate the actuators and sensors, the
controllability and observability of four different actuator and sensor configurations, shown in
Fig. 6, are analysed. The actuators can be mounted so that they act on the rotor shaft,
configuration (a), act directly on the blades, configurations (b) and (c), or act on both rotor and
blades, configuration (d). Sensors are assumed to be mounted at the same positions to measure the
position of the hub or the deflection of the blades.
In general, the controllability and observability indices MCiðtÞ and MOiðtÞ are time-variant.

However, for the actual coupled rotor–blade system, the indices become almost constant,
oscillating only very slightly due to scaling difference among the constant and the periodic varying
components of the mode shapes. Table 3 shows the minimum values of the controllability indices
for the first 10 modes, using four different configurations related to actuator placement. Such
indices are normalized, allowing a direct comparison between the four configurations, and the
minimum values are obtained inside a time interval of one period. The higher the controllability
index, the more controllable is the mode. For comparison purpose the indices are all normalized
by referring to the most controllable mode which is mode 6 for configuration (b). The results show
(a) (b) (c) (d)

Fig. 6. The four actuator and sensor configurations analysed to obtain optimal actuator and sensor placement.

Table 3

Measure of controllability of each mode for the four system configurations — MC index.

Actuator configuration Mode no.

1 2 3 4 5 6 7 8 9 10

(a) 0.13 0.12 0.00 0.00 0.08 0.07 0.00 0.00 0.00 0.00

(b) 0.04 0.02 0.94 0.94 0.91 1.00 0.04 0.04 0.04 0.04

(c) 0.01 0.01 0.24 0.24 0.23 0.25 0.25 0.25 0.25 0.25

(d) 0.13 0.12 0.24 0.24 0.24 0.26 0.25 0.25 0.25 0.25
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Table 4

Measure of observability of each mode for the four system configurations — MO index.

Sensor configuration Mode no.

1 2 3 4 5 6 7 8 9 10

(a) 1.00 0.82 0.00 0.00 0.04 0.03 0.00 0.00 0.00 0.00

(b) 0.28 0.33 0.48 0.48 0.46 0.44 0.00 0.00 0.00 0.00

(c) 0.07 0.09 0.12 0.12 0.12 0.11 0.03 0.03 0.03 0.03

(d) 1.00 0.83 0.12 0.12 0.12 0.11 0.03 0.03 0.03 0.03
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that application of only hub-based actuation (a) implies that only modes 1, 2, 5 and 6 can be
controlled. For configuration (b) where actuators act at the tip of the blades, close to the node of
the blades’ 2nd mode shape, the indices show that only the modes related to the first mode of the
blades (modes 3–6 in Table 3) can be controlled. For configuration (c), where the actuators act on
the middle of the blades, all blade modes 3–10 can be controlled. Finally, when actuators act on
both the hub and the blades, configuration (d), all 10 modes of the system can be controlled.
Consequently, in the numerical example both hub and blade actuators are applied to the system.
The normalized result of the equivalent observability analysis, (Table 4), provides similar results.
Simultaneous sensing of hub and blade movements is necessary in order to estimate all state
variables.
By comparison of the result of this controllability and observability analysis with the

observations of the mode shapes in the Figs. 3–5, the validity of the controllability and
observability indices in Table 3 and 4 is easily verified.
4.2. Controller design

Using the controller design procedure described, active controllers are designed to control the
dynamics of specific selected vibration modes, thus treating the remaining modes as residual
modes. The controller gains are determined by the optimal quadratic control technique (LQR)
minimizing the cost function:

J ¼

Z
�n
T
Qx

�n þ uTQuu

� �
dt; ð29Þ

where the elements of the state variable weighting matrix Qx are shown in Table 5 and the control
signal-weighting matrix is given by Qu ¼ 10�2 � I6: Three different controller configurations are
designed and examined by numerical simulations. The first controller is designed to control only
the first mode, the second controller to reduce all modes primarily related to the first bending
mode of the blades (modes 3–6) and the third controller to reduce the first six modes of the
rotor–blade system. Modes 7–10 are considered as residual modes in all three controllers and for
the numerical evaluation of the performance of the designed controllers a model of 10 modes is
used.
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Table 5

Diagonal elements of the controller design weighting matrix Qx

Control scheme Modes basis frequency [Hz]

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

7.76 8.99 20.56 20.56 21.26 22.22 320.73 320.73 321.37 321.42
�G1 : 104 — — — — — — — —

�G2 : — — 102 102 102 102 — — —

�G3 : 104 104 102 102 102 102 — — —
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4.2.1. Time response analysis

Fig. 7 shows the transient response of the first six modal state variables for the non-controlled
system and for the system controlled using the three designed controllers. The rotor–blade system
rotates at the constant speed O=5Hz and the initial conditions of the position state variables are
z(0)={�5;�5; 5; 0; 5; 0;�5; 0; 5; 0}T � 10�3m and zero velocities _zð0Þ ¼ 0m=s: The responses in
Fig. 7 are difficult to discriminate, but the plots show the expected responses. The control scheme
1 reduces only the first mode significantly, while the other modal coordinates are almost
unaffected. Spill-over effects are observed in the modal state variables by the excitation of the
higher modes 7–10. These modes are excited in the numerical simulation only because the
actuators are considered to be ideal actuators acting instantaneously with no time delay and
because the sampling frequency (Ts=0.001 s) is higher than the excited frequencies. Control
scheme 2 reduces only modes 3–6 while scheme 3 suppresses all the first six modes.
Figs. 8–10 show the transient responses of the physical variables xh, yh and d2 of the non-

controlled and the controlled system for the three designed controllers. Mode 1 mostly contributes
to the hub movement in the x-direction, and therefore control scheme 1 primarily reduces this
movement. However, due to the vibration coupling between the rigid rotor and the blades, the
first mode of the system is not purely related to the hub movement in the x-direction, but also
slightly related to the blade motions, according to the mode shapes in Figs. 3–5. Therefore, the
blade deflection is also very slightly affected when controlling the first mode. For control scheme 2
the figures show that only the blade motions primarily related to modes 3–6 are suppressed, while
the hub movements are only slightly affected due to the coupling. For control scheme 3, the
transient responses show that xh, yh and d2 are all very efficiently reduced.

4.2.2. Frequency response analysis

The frequency response for the system subjected to an impulse excitation is given by [31]

XðoÞ ¼
Xn

v¼�n

Xn

u¼�n

Rv

:
1

jðo� vOÞ � li;0
:

2
64

3
75 LTu f0; ð30Þ

where f0 is a vector of frequency spectra of the exciting forces, which is constant for an impulse
excitation and li;0 denotes the basis eigenvalue for the ith mode. The matrices Rv and LTu now
represent Fourier expansion coefficients of the modal matrices for the closed form of the
controlled system. Neglecting the observer dynamics and transforming the controller into physical
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variables G(t), the closed form is given by

_xðtÞ ¼ ½AðtÞ þ BðtÞGðtÞ
xðtÞ þ FðtÞ: ð31Þ

Fig. 11 shows the frequency responses of the lateral movement of the rotor and the deflection of blade
2 for the controlled as well as the non-controlled system, when the system is subjected to an impulse
excitation acting on the rotor and on blade 2, respectively. Again, the lines of the spectra are difficult
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to separate from each other because in some cases they are coincident. The frequency responses of the
controlled system show that just those modes addressed by the controllers are suppressed, whereas the
residual modes are still present. The frequency components identified by the frequency responses in
Fig. 11 correspond exactly to the mode shapes shown in Figs. 3–5. The presence of parametric
vibration modes, at frequencies o� OHz; due to the strong coupling among blade and rotor motion,
is clearly observed. For example, mode 1 results in a hub movement in xh at the frequency o=7.76Hz
and in two parametric components of blade vibrations at the frequencies o=7.767OHz.
5. Conclusion

Application of active control for vibration suppression in coupled rotor–blade systems has been
investigated theoretically. A methodology for designing a periodic time-variant modal controller
for vibration suppression in this type of system has been presented.
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A mathematical model for a coupled rotor–blade system has been established and transformed
into a time-invariant modal form using a periodic modal transformation.
Using the transformed model a periodic modal state feedback controller, able to cope with the

periodicity, is designed with help of the linear time-invariant LQR-control technique.
Furthermore, the modal decoupling of the equations of motion implies that the controller order
is easily reduced.
The effectiveness of the designed control methodology is numerically examined using the

mathematical model and the numerical investigation shows that the rotor and blade vibrations
can be efficiently suppressed. Specific vibration modes, basis modes and their associated
parametric forward and backward rotating parts can be separately addressed and suppressed.
Moreover, the controller design methodology presented based on modal analysis in time-

variant systems, provides a very effective tool for analysis of the system modal controllability and
observability. The mode shapes are visually examined and modal controllability and observability
indices are easily calculated. This visual examination and the calculated measures are very useful
in order to identify suitable locations for sensors and actuators. For the rotor–blade system under
consideration with four identical blades, such analysis shows that actuators and sensors have to be
implemented, which act on both the hub and on each blade in order to control and observe all
state variables.
Finally, it can be concluded that, when designing active controllers for this special kind of

system, the modal transformation based on modal analysis in time-variant systems is very useful:
(I) it gives a mathematical explanation of all the frequencies and vibration modes of the system,
i.e. basis and parametric modes; (II) it provides the possibility of doing a ‘physical’ order
reduction so that only troublesome modes are controlled; (III) it provides an easy method for the
identification of optimal actuator and sensor placement.
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