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Abstract

The well-established Wittrick–Williams (W–W) algorithm guarantees accurate convergence on natural
frequencies or critical buckling loads of structures in the transcendental eigenproblems arising from the use
of exact member stiffnesses, i.e. dynamic member stiffnesses for vibration. The associated mode
calculations had no such guarantee until they were recently greatly improved by solving the transcendental
eigenproblem exactly, by reducing it to a generalised linear eigenproblem which is solved by a guided
recursive Newton method involving inverse iteration. The present paper demonstrates the benefits of using
frequency squared, rather than frequency, as the eigenparameter. Next, exact substructuring is introduced
into the recursive Newton method, with accuracy retained because the inverse iteration includes the
substructure nodes. If member fixed end eigenvalues lie close to the sought eigenvalue they can cause
inaccuracy, or even wrong results, and so they are removed efficiently by inserting interior nodes to create
simple substructures. Numerical results for a moderately large structure show that exact substructuring
reduces the transcendental eigensolution time without reducing accuracy. Simpler examples designed to be
numerically ill conditioned in the absence of interior nodes show that such ill conditioning is almost
removed by inserting interior nodes within substructures. Exact substructuring is also applicable to other
inverse iteration and W–W algorithm-based methods.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The Wittrick–Williams (W–W) algorithm [1–3] is a reliable and efficient tool to obtain
eigenvalues (natural frequencies in free vibration problems or critical load factors in buckling
problems) of transcendental eigenproblems to any required accuracy, in contrast to alternative
methods which can miss eigenvalues. The algorithm does not directly compute the eigenvalues,
but instead simply finds J, the total number of eigenvalues below an arbitrarily given trial value.
In this way upper and lower bounds are established on each required eigenvalue, after which
various iterative procedures can be used to converge on the eigenvalue to the required accuracy.
An important feature of the algorithm has always been that it permits substructuring [1–3],
including powerful multi-level substructuring [4,5]. However a recent advancement uses the W–W
algorithm extremely efficiently, because it is analogous to inverse iteration for the linear
eigenproblem. The present paper gives a substructuring strategy which is compatible with this
recent method. However, earlier work is surveyed first.
One well-known convergence method is the bisection method, which has the advantage that it

converges with certainty to any specified accuracy in a predictable number of iterations, but
has the disadvantage that it is time consuming when high accuracy is required. Williams
and Kennedy [6] developed the multiple determinant parabolic interpolation method which
retained the certainty and was shown to offer substantial time savings over bisection for non-
coincident eigenvalues. Later the work was extended to efficiently deal also with clusters of close
or coincident eigenvalues [7]. Further research on the transcendental eigenvalue problem has
recently led to the development of a new member property called the member stiffness
determinant [8,9], which can be used to remove the poles in the plot of the determinant of the
transcendental overall stiffness matrix against the eigenparameter, leading to simpler and faster
eigenvalue location.
Thus the calculation of the eigenvalues for the transcendental eigenproblem has benefited

greatly from the W–W algorithm, because it enabled the development of many logical procedures
that guarantee convergence on all required eigenvalues with certainty and to any desired accuracy.
In contrast, the calculation of the corresponding eigenvectors (i.e. modes) lacked such precision
and elegance. The random force method of Hopper and Williams [10] is simple, fast and cheap
and so has often been used. However, its mode calculations are much (e.g. 2 significant figures)
less accurate than the eigenvalue calculations and the method fails (or is of low accuracy) when
the required eigenvalue of a structure coincides with (or is close to) a fixed end eigenvalue of one
of its members.
To improve the random force method, Ronagh et al. [11] introduced the interior nodes strategy.

This involves inserting interior nodes into members whose fixed end eigenvalues are close to or
coincident with the structure eigenvalue and therefore it expands the transcendental stiffness
matrix of the structure. This removes the possibility of failure or acute inaccuracy due to
coincidence or close proximity of structure and fixed end member eigenvalues, but the modes
obtained remain much less accurate than the eigenvalues.
Yuan et al. [12–14] have developed several improved mode calculation methods. The best of

these are a new second-order method [13] and its recursive extension [14]. The second-order
method uses the circular frequency of vibration, o; as the eigenparameter in standard inverse
iteration, with approximate natural frequencies and the interior node strategy to obtain the
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corresponding vibration modes reliably to second-order accuracy. Because this also enables a
second-order accuracy natural frequency to be estimated, it led naturally to the recursive method
[14], which simultaneously converges to high accuracy on both the required natural frequency and
its associated mode. This involves reducing the transcendental eigenproblem to a generalised
linear eigenproblem, which is solved with second-order convergence by a guided recursive Newton
method involving inverse iteration. Note that the interior node strategy is a substantial advance
on earlier [15,16] inverse iteration and Newton-based transcendental eigensolution methods,
because it removes an important source of potential ill conditioning.
The present paper primarily extends the recursive Newton method to include exact

substructuring, one important application of which is to handle nodes inserted into members
as a consequence of the interior node strategy described above. The methods presented are
applicable to the many other disciplines in which the W–W algorithm is used (e.g. fluid vibrating
in pipes [17], heat and mass diffusion [18,19] and Sturm–Liouville-type mathematical problems
[20]), and to buckling [3] as well as vibration problems in structural analysis. However for
convenience, but without loss of generality, the theory and applications given in this paper are
presented in the context of the free vibration of structures.
In order to present the new contribution of this paper it is necessary to first summarise in

concise and suitable form (in Sections 2–4, respectively) the W–W algorithm, exact substructuring
and the recursive Newton method. Section 5 then proves for the first time, and illustrates by
examples, that the inverse iteration used in the recursive Newton method converges faster if o2;
rather than o; is used as the eignenparameter. Therefore Section 6 details the new substructuring
method in the context of o2; while Section 7 presents the results that this method gives for a
demanding choice of numerical examples.
2. The W–W algorithm

When using exact methods for undamped free vibration of structures, solution of the governing
differential equations results in the transcendental eigenvalue problem [1]

KðoÞD ¼ 0; ð1Þ

where D is the displacement amplitude vector and K is the transcendental dynamic stiffness
matrix, the coefficients of which include trigonometric and hyperbolic functions involving o and
the lengths, rigidities and distributed masses of the members.
This is a more demanding problem than the generalised linear eigenvalue problem of the

traditional finite element method (FEM), for which many well-established solution methods
are available [21] and whose reliability can be guaranteed using the Sturm sequence property [22].
Such methods cannot be applied directly to the transcendental eigenproblem of Eq. (1),
e.g. because natural frequencies may coincide with poles of jKðoÞj; i.e. values of o at which
jKðoÞj ! 1 [2,23]. These methods may also have difficulty in detecting natural frequencies of
high multiplicity.
To overcome such difficulties, the natural frequencies of the transcendental eigenvalue problem

are found with certainty by applying the W–W algorithm [1], which gives J; the number of natural
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frequencies below ot; a trial value of o; as

JðotÞ ¼ J0ðotÞ þ sfKðotÞg: ð2Þ

Here

J0ðotÞ ¼
X

m

JmðotÞ; ð3Þ

where the summation is over all members of the structure and JmðotÞ is the number of natural
frequencies of member m that are exceeded by ot if its ends are assumed to be fixed. Jm can be
calculated from simple formulae for most commonly used members, or otherwise numerical
procedures are available for its calculation [4]. Finally, sfKðotÞg is known as the ‘sign count’ of
KðotÞ and can be calculated as the number of negative leading diagonal elements of K

DðotÞ; the
upper triangular matrix obtained from KðotÞ by the usual form of Gauss elimination, without row
interchanges, scaling or pivoting.
Clearly ot is a lower bound o‘ on the rth natural frequency or if JðotÞor; and otherwise is an

upper bound ou: Hence the numbers of natural frequencies Nr and member fixed end natural
frequencies Nr0 lying in the interval ðo‘;ouÞ are given by

Nr ¼ JðouÞ 
 Jðo‘Þ; Nr0 ¼ J0ðouÞ 
 J0ðo‘Þ: ð4Þ

3. Exact substructuring

The W–W algorithm of Eq. (2) is readily extended [5], without approximation, to a problem
comprising ns substructures S1;S2; . . . ;Sns

which are each attached to a parent structure Sp at a
number of discrete connection nodes. It is well known from its static equivalent, that although
substructures are dealt with one by one in order to save computer storage and computation, the
whole process can be represented by writing the transcendental eigenproblem of Eq. (1) as

Kii1 0 � � � 0 ~Kic1

0 Kii2 � � � 0 ~Kic2

..

. ..
. . .

. ..
. ..

.

0 0 � � � Kiins
~Kicns

~K
T

ic1
~K
T

ic2 � � � ~K
T

icns
KpT

2
66666664

3
77777775

Di1

Di2

..

.

Dins

Dp

2
66666664

3
77777775
¼

Xi1

Xi2

..

.

Xins

Xp

2
66666664

3
77777775
; ð5Þ

where

KpT ¼ Kp þ
Xns

s¼1

~Kccs: ð6Þ

Here the right hand side of Eq. (5) is any vector of forces, which would be null at an eigenvalue,
but are shown here to help with the theory of Section 6; the subscripts i and c denote, respectively,
for substructure Ssðs ¼ 1; 2; . . . ; nsÞ internal degrees of freedom and degrees of freedom which are
connected to those of the parent structure; subscript p denotes the parent structure; superscript T
denotes the transpose of a matrix; and � above matrices indicates the addition of null rows and/or
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columns to denote the placement of substructure stiffness contributions at the connection nodes
of the parent structure. (Note that the null rows and columns indicated by � are needed for ease of
explanation but that coding would not normally introduce them, instead working only with the
non-zero coefficients of these matrices.)
Applying Gauss elimination to Eq. (5), but arresting it just before the rows containing Dp are

pivotal gives

KD
ii1 0 � � � 0 ~K

n

ic1

0 KD
ii2 � � � 0 ~K

n

ic2

..

. ..
. . .

. ..
. ..

.

0 0 � � � KD
iins

~K
n

icns

0 0 � � � 0 Kn

pT

2
666666664

3
777777775

Di1

Di2

..

.

Dins

Dp

2
66666664

3
77777775
¼

Xn

i1

Xn

i2

..

.

Xn

ins

Xn

p

2
66666664

3
77777775
; ð7Þ

where

Kn

pT ¼ KpT 

Xns

s¼1

~K
T

icsK

1
iis

~Kics; ð8Þ

KD
iis is the upper triangular form of Kiis; while ~K

n

ics; X
n

is and Xn

p are modified forms of Kics; Xis and
Xp; respectively.
Hence Eqs. (2) and (3) are replaced by

J ¼ J0 þ s Kn

pT

n o
; ð9Þ

J0 ¼
Xns

s¼1

sfKiisg þ
X
m2ss

Jm

 !
þ
X
m2sp

Jm: ð10Þ
4. Recursive Newton method in the absence of substructures

Suppose a frequency interval ðo‘;ouÞ has been identified, for example by bisection, which
contains one natural frequency og (i.e. Nr ¼ 1) and no member fixed end frequencies (i.e.
Nr0 ¼ 0). Let oa denote the best available approximation to og in ðo‘;ouÞ: (Initially oa is set to
the mid-point of ðo‘;ouÞ to ensure that og is the closest natural frequency to oa:) Then better
approximations to og and the mode vector Dg are found by solving the generalised linear
eigenvalue problem

KaD ¼ m½K0
aD�; ð11Þ

where

Ka ¼ KðoaÞ; K0
a ¼

dKa

do
; ð12Þ
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and estimating the eigenvalue og by

om ¼ oa 
 m: ð13Þ

The force vector ½K0
aD� is assembled by summing contributions from each member of the structure

so that there is no need to form K0
a explicitly. The necessary derivatives of the element stiffness

matrices are obtained fairly easily, either in closed form [14], or by differencing [13], with the
former used to obtain the results given in this paper.
Eq. (11) is a typical formulation of Newton’s method, and is solved by convergence on og using

the inverse iteration procedure

�D
ðkþ1Þ

¼ K
1
a K0

aD
ðkÞ

� 

; ð14Þ

where superscripts (k) denote values at iteration k and the iterative procedure starts with Dð0Þ as a

random vector. �D
ðkþ1Þ

is normalised to give Dðkþ1Þ; whose numerically largest element is unity.
mðkþ1Þ is given by the Rayleigh quotient

mðkþ1Þ ¼
�D
ðkþ1Þ

� �T
K0

aD
ðkÞ

� 

�D
ðkþ1Þ

h iT
K0

a
�D
ðkþ1Þ

h i : ð15Þ

Convergence is terminated when

jmðkþ1Þ 
 mðkÞjo� ð16Þ

for some pre-defined tolerance �: The final step of the Newton method uses an alternative
expression [14] for mðkþ1Þ to improve convergence on Dg:
In Refs. [11–14], interior nodes were automatically inserted in members during the solution

process whenever they were required to remove poles of jKðoÞj: Such poles correspond to fixed
end natural frequencies of individual members, i.e. to trial values of ot where Jm increases, and
hence so does J0; in Eq. (3). Alternative strategies for where to place the interior nodes have
already been presented [13,14]. Interior nodes only need to be inserted temporarily for
convergence on particular natural frequencies lying close to the fixed end natural frequencies of
individual members. However, for convenience in obtaining the results presented in this paper,
any necessary interior nodes have been pre-defined and used during convergence on all the
required natural frequencies, and also during the initial separation of the eigenvalues.
Fig. 1 illustrates that, by numbering the interior nodes before the original nodes of the

structure, any member containing interior nodes may be regarded as a simple substructure, with
no change to the node numbering of its parent structure.
5. Use of o2 as the eigenparameter

In the recursive Newton method of Section 4, the eigenvalues are the natural frequencies og of
the structure. This approach seems natural from a physical viewpoint. In contrast, the usual FEM
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Fig. 1. Interior node substructuring: (a) original frame, with four nodes, showing the number of interior nodes (nm) to

be inserted in each member; (b) addition of interior nodes; (c) parent structure Sp and substructures S1 and S2; with
node numbers shown in brackets.
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gives the linear eigenvalue problem

ðK
 LMÞD ¼ 0; ð17Þ

where L ¼ o2 and the static stiffness matrix K; the mass matrix M and the displacement
amplitude vector D relate to a finite number (N) of degrees of freedom at nodes of the structure.
Here the eigenparameter is clearly Lð¼ o2Þ rather than o:
In the transcendental eigenvalue problem of Eq. (1), the dynamic stiffness matrix KðoÞ has

often been recognised [15,24] as being identical to the matrix that would be obtained by starting
with a hypothetical infinite-order FEM formulation (i.e. letting N ! 1 in Eq. (17)), and using
arrested Gauss elimination to eliminate all nodes internal to members. This simple identity must
be true, because both matrices relate the same sets of displacement and force amplitudes for any
choice of the displacements. Hence it may be better to think in terms of the transcendental
stiffness matrix as KðLÞ rather than KðoÞ; i.e. to treat it as a function of o2 rather than o:
This hypothesis is supported by a closer study of the elements of KðoÞ (e.g. for Bernoulli–Euler

[8] and Timoshenko [9] members), when all the trigonometric and hyperbolic functions are
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replaced by their expansions. It is seen that every element has an expansion containing only even
powers of o; and so can be regarded as a function of o2:
An alternative, KðLÞ; formulation of the generalised linear eigenvalue problem of Eqs. (11) and

(12) is therefore given by

KaD ¼ m� MaD½ �; ð18Þ

where

Ka ¼ KðLaÞ; La ¼ o2a ð19Þ

and, by Leung’s theorem [16],

Ma ¼ 

dKa

dL
¼ 


1

2oa

dKa

do
: ð20Þ

As in Section 4, the force vector ½MaD� is assembled without the need to form Ma explicitly, and
the same is true for the other force vectors shown in square brackets ½ � in Sections 5 and 6.
The eigenvalue problem may be solved for m� by modifying the inverse iteration procedure of

Eqs. (14)–(16), so that

�D
ðkþ1Þ

¼ K
1
a MaD

ðkÞ
� 


; ð21Þ

m�ðkþ1Þ ¼
�D
ðkþ1Þ

� �T
MaD

ðkÞ
� 


�D
ðkþ1Þ

� �T
Ma

�D
ðkþ1Þ

h i ; ð22Þ

and the natural frequency og is estimated by

o�
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
La þ m�

p
: ð23Þ

Comparison of Eqs. (18)–(20) and (23) with Eqs. (11)–(13) shows that

om ¼
o2a þ o�2

m

2oa

; ð24Þ

so that the estimates om and o�
m differ by

ðom 
 o�
mÞ ¼

ðoa 
 o�
mÞ
2

2oa

: ð25Þ

The KðLÞ formulation is exactly equivalent to using exact shape functions in the usual FEM
approach. Because the FEM solution is known to yield an upper bound on the required natural
frequency, it follows from Eq. (25) that

om4o�
m4og: ð26Þ

Thus, for sufficiently close lower and upper bounds ðo‘;ouÞ; the KðLÞ formulation is expected to
be superior to the KðoÞ formulation.
Two simple examples were used to compare the estimates om and o�

m obtained, respectively,
from the KðoÞ and KðLÞ formulations. The examples are a cantilever and a cross-shaped plane
frame consisting of four identical members, two being vertical and two horizontal, which are
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Table 1

Accuracy of om and o�
m for the first two axial natural frequencies of a cantilever and for the fundamental flexural natural

frequency of a cross-shaped frame

Structure Cantilever Cross

i 1 2 1

oi (rad/s) 1.5707963 4.7123890 15.418206

oa=oi 1.0693875 1.0085152 1.0012210

om=oi 1.0085152 1.0000803 1.0000026

o�
m=oi 1.0066765 1.0000447 1.0000018
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rigidly connected together at their common node and built in at the other ends. For simplicity, the
members for both examples have length and mass per unit length equal to unity. Additionally,
EA ¼ 1 for the cantilever, for which the natural frequencies o1 and o2 are the first two axial ones;
and EI ¼ 1 for the cross-shaped frame, for which EA ¼ 106 was used to simulate inextensible
members and the fundamental (flexural) natural frequency o1 was found.
The results in Table 1 confirm the predictions of Eq. (26) that using KðLÞ instead of KðoÞ gives

significantly closer approximations to the exact natural frequency. Because the method is
recursive, this benefit will accumulate as successive inverse iteration problems are solved, where
each problem more closely represents the true transcendental one because its formulation uses the
results from the previous problem. For this reason, use of the KðLÞ formulation will be assumed
for the remainder of this paper.
6. Recursive Newton method with substructures

The normal form of substructuring implies the partitioning of Ka shown in Eq. (5) which, with
Eq. (7), defines the subscripts and superscripts used in this section for this and the analogous
partitioning of Ma: As in Section 4, the subscript a denotes quantities evaluated at o ¼ oa:
The substructuring leads to the final structure matrix ðKn

pT Þa of Eq. (7), which then replaces Ka in
Eq. (11), so that Ma is replaced analogously by ðMn

pT Þa; which must be found by differencing.
However Eq. (8) shows that ðKn

pT Þa; and hence ðM
n

pT Þa; will be ill conditioned whenever any Kiis is
close to being singular, i.e. whenever the required natural frequency of the structure is too close to
a natural frequency of a substructure when the nodes at which it is connected to its parent
structure are clamped. Therefore traditional exact substructuring is unreliable, and hence not
viable, when used with the recursive Newton method [14], or indeed with the second-order method
either [13]. The remainder of this section overcomes this deficiency by using substructure matrices
in a manner which is analogous to working with Eq. (5), i.e. without substructuring, during
inverse iteration in order to improve the numerical conditioning.
When substructures S1;S2; . . . ;Sns

are present, the new method solves Eq. (18) but with
its Ka replaced by the square matrix on the left hand side of Eq. (5) and Ma replaced by an
analogously partitioned matrix. Thus the inverse iteration procedure of Eq. (21) is implemented
as follows.



ARTICLE IN PRESS

M.S. Djoudi et al. / Journal of Sound and Vibration 280 (2005) 883–902892
Force vectors

Xis ¼ ðMiisÞaD
ðkÞ
is

h i
þ ð ~MicsÞaD

ðkÞ
p

h i
ðs ¼ 1; 2; . . . ; nsÞ ð27Þ

and

Xp ¼
Xns

s¼1

~Mics

� �T
a
D

ðkÞ
is

h i
þ ½ðMpT ÞaD

ðkÞ
p � ð28Þ

are formed for the substructure and parent structure, respectively, by summing contributions
from individual members. Eq. (18) now has the form of Eq. (5) and is solved, after transformation
to the form of Eq. (7), as follows.
First the displacements of the parent structure are found by

�D
ðkþ1Þ

p ¼ ðKn

pT Þ

1
a Xn

p; ð29Þ

and then the internal displacements �D
ðkþ1Þ

is of each substructure are found efficiently by back-
substitution into

ðKD
iisÞa

�D
ðkþ1Þ

is ¼ Xn

is 
 ð ~K
n

icsÞa
�D
ðkþ1Þ

p ðs ¼ 1; 2; . . . ; nsÞ: ð30Þ

The partitioned form of Eq. (5) permits the Rayleigh quotient of Eq. (22) to be calculated, by
efficiently separating the contributions from each of the substructures and the parent structure, as

m�ðkþ1Þ ¼

Pns

s¼1

�D
ðkþ1ÞT

s ½ðMsÞaD
ðkÞ
s � þ �D

ðkþ1ÞT

p ½ðMpÞaD
ðkÞ
p �

Pns

s¼1

�D
ðkþ1ÞT

s ½ðMsÞa
�D
ðkþ1Þ

s � þ �D
ðkþ1ÞT

p ½ðMpÞa
�D
ðkþ1Þ

p �

; ð31Þ

where

�D
ðkþ1Þ

s ¼
�Dis

�Dp

" #ðkþ1Þ
; DðkÞ

s ¼
Dis

Dp

� �ðkÞ
; ðMsÞa ¼

Miis
~Mics

~M
T

ics
~Mccs

" #
a

: ð32Þ

Since the inverse iteration involves triangulating KðLaÞ; JðoaÞ can easily be found, so that it is
immediately known from the W–W algorithm whether oa is an upper or lower bound on og: Thus
the frequency interval o‘;ouð Þ can be updated for use in subsequent convergence tests. To prevent
an excessive number of iterations being required when convergence is in one direction, a minimum
step size is enforced, as in Ref. [14].
This section has illustrated the use of exact substructuring in an exact KðLÞ formulation of the

recursive Newton method. Such substructuring tools could similarly be implemented in any
inverse iteration method, e.g. in conjunction with: exact or linear approaches; KðLÞ or KðoÞ
formulations; and recursive or second-order convergence.
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7. Examples

This section contains numerical examples to illustrate the substructuring theory. The structures
used are all rigidly jointed plane frames. Also, the term mode is interpreted to mean the
amplitudes of vibration at the nodes, i.e. D of Eq. (1), although members also vibrate between
nodes and often have their largest displacements there. Therefore all modes referred to are
normalised such that their largest element, i.e. the largest element of D; is unity. All the results
were obtained using double precision arithmetic on a computer giving at least 14 significant
figures of accuracy. Where appropriate, natural frequencies and modes are printed to two figures
more than the specified solution tolerance, in order to demonstrate convergence. Relative
differences are given to three significant figures, except where this would imply precision beyond
the solution tolerance.
The first example is used to validate the method and to demonstrate its efficiency for general

substructures. Next, the second example illustrates the use of substructuring to insert interior nodes
into members. Then Examples 3 and 4 are ones which were specially designed to explore the
possibility of ill conditioning for some special cases. They are relevant to substructuring in general,
but are specifically for interior nodes substructuring. Such ill conditioning is known [14] to be
avoided by numbering the interior nodes last and including them when assembling the dynamic
stiffness matrix of the structure, which is thus expanded by the addition of extra rows at its bottom
and extra columns at its right hand boundary. The examples investigate whether it is also avoided
by numbering the interior nodes first, as implied by the substructuring methods of this paper.

Example 1. This example is used to validate the general substructuring method. The fairly large
frame shown in Fig. 2(a) has 153 nodes (the last three of which are fixed) and 330 members. All
horizontal members are 1:50m in length and all vertical members are 1.00m in length. The
properties for the members are EA ¼ 9:0� 108 N; EI ¼ 5:0� 106 Nm2 and mass per unit
length=35kg/m. The tolerance used for the solution was � ¼ 10
10:
In the absence of any known exact solution for this structure, the first five natural frequencies

(o12o5) and the corresponding modes of vibration for the full structure without using
substructuring were first computed to be used as a datum. The structure was then modelled
as a parent structure Sp and the two substructures S1 and S2 each repeated five times, as shown in
Fig. 2(b).
The computed results are shown in Table 2. These results show that the natural frequencies and

modes obtained using substructuring fully agreed with the datum ones obtained by modelling the
full frame. The mode shapes are not shown in detail, but the first, second, fourth and fifth were
sway modes and so were anti-symmetric about the vertical axis of symmetry of the frame, while
the third mode was a symmetric one in which the ‘trunk’ extended and each ‘branch’ flexed
upwards.
Further investigations to assess the reduction in solution time were carried out with and

without substructuring for three cases:
(a)
 First five natural frequencies (o12o5) and modes, using the general substructuring of
Fig. 2(b).
(b)
 Five close natural frequencies (o1092o113) and their modes, again using the general
substructuring of Fig. 2(b).
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Fig. 2. Frame of Example 1: (a) original frame; (b) substructuring as parent structure Sp and five substructures of each

of types S1 and S2:

Table 2

Accuracy of natural frequencies and modes obtained by substructuring for Example 1, to which Fig. 2 relates

Natural frequency

no., i

Datum natural frequency

oi; with no substructuring
(rad/s)

Relative difference between

substructuring and datum

natural frequencies

Maximum absolute

difference between

substructuring and datum

mode elements

1 9.972655692 
3� 10
12 5� 10
13

2 51.21750639 4� 10
13 5� 10
13

3 106.7960373 
3� 10
14 7� 10
13

4 108.2997767 6� 10
14 6� 10
13

5 142.3326898 
2� 10
14 5� 10
13
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(c)
 One natural frequency (o170) and mode where an interior node is required in every diagonal
member.
Solution times and iteration counts for the various stages of the solution are given in Table 3,
together with percentage reductions in the total solution time obtained by using substructuring. It
is seen that modest time savings result from the use of general substructuring in cases (a) and (b),
largely due to improved efficiency in the triangulation of K during the initial separation of
eigenvalues. In case (c) there is also a substantial time saving in the inverse iteration phase when
the interior nodes are handled efficiently by substructuring instead of being numbered last.
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Table 3

Efficiency of substructuring for three cases of Example 1, to which Fig. 2 relates

Solution type Case (a) (b) (c)

Natural frequencies o12o5 o1092o113 o170

Datum Time for initial eigenvalue separation (s) 0.22 0.32 0.15

No substructures used Time for inverse iterations (s) 1.10 1.09 7.24

For case (c) interior nodes are used

and numbered last

Total time (s) 1.32 1.41 7.39

No. of iterations for initial eigenvalue

separation

13 19 8

No. of Newton iterations 20 22 6

No. of inverse iterations 65 58 39

Substructures used Time for initial eigenvalue separation (s) 0.13 0.19 0.12

For cases (a) and (b) the

substructures are those of Fig. 2(b)

Time for inverse iterations (s) 0.96 1.04 2.16

For case (c), substructures are used

to handle the interior nodes

Total time (s) 1.09 1.23 2.28

No. of iterations for initial eigenvalue

separation

13 19 8

No. of Newton iterations 18 22 6

No. of inverse iterations 61 60 39

Reduction of total time (%) 17.4 12.8 69.1
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Example 2. This example is used to validate the interior nodes substructuring. Fig. 3(a) shows a
frame with three nodes and two members. The length L of each member is 1m. The member
properties are EA ¼ 1:0� 106 N; EI ¼ 1:0Nm2 and mass per unit length=1.0 kg/m. The
tolerance used was � ¼ 10
10:
Because the value of EA is artificially high and vertical and horizontal deflections of node 1 (see

Fig. 3(a)) were artificially constrained to be zero, the second natural frequency of the frame
coincides with the lowest fixed end frequency of each member, at 22:3732854481 rad=s: Therefore
an interior node must be added in each member, in order to remove poles of elements of KðLÞ by
shifting the member fixed end frequency.
The new frame to be analysed is given by Fig. 3(b). The interior nodes are inserted by analysing

the frame as substructures S1 and S2 plus the parent structure Sp; as shown in Fig. 3(c). This
effectively numbers the interior nodes first, as shown in Fig. 3(b). Note that S1 and S2 each consist
of two members and three nodes, while the parent structure Sp has no members and three nodes.
Datum values of the second natural frequency and the corresponding mode of vibration of the

frame were first computed from the whole frame numbered as shown in Fig. 3(d). Then the
substructuring of Fig. 3(c) was used. The results are shown in Table 4, which shows them to be in
full agreement.

Example 3. Example 3 covers vibration of the cross-shaped frame of Fig. 4. For simplicity all
masses per unit length, flexural rigidities and lengths L were taken as unity, while the extensional
rigidity EA was deliberately given the high value 106 to make the second and third natural
frequencies close to the fourth one, making the problem of finding the fourth natural frequency
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Fig. 3. Interior node substructuring for the frame of Example 2: (a) original frame, with three nodes; (b) addition of

interior nodes; (c) parent structure Sp and substructures S1 and S2; with node numbers shown in brackets; (d) original
frame with interior nodes but no substructuring.

Table 4

Second natural frequency (o2) and corresponding mode obtained for Example 2, to which Fig. 3 relates

No substructuring With substructuring

o2 (rad/s) 22.3732854481 o2 (rad/s) 22.3732854481

Nodes Normalised mode Nodes Normalised mode

u v y u v y

2 0.00000000000 1.00000000000 0.00000000000 S1 node 1 0.00000000000 1.00000000000 0.00000000000

4 1.00000000000 0.00000000000 0.00000000000 S2 node 1 1.00000000000 0.00000000000 0.00000000000

1, 3, 5 0.00000000000 0.00000000000 0.00000000000 Sp nodes 1–3 0.00000000000 0.00000000000 0.00000000000
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and mode more demanding. The fourth natural frequency o4 for the frame is exactly equal to
the fixed end frequency of its members, i.e. 22:373285448061 rad=s; while o2 ¼ o3 ¼
22:372318860018 rad=s:
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Fig. 4. Cross-shaped frame of Example 3: (a) interior nodes numbered last; (b) interior nodes numbered first; (c) correct

mode for fourth natural frequency o4:
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One interior node was inserted in each member slightly away from its centre and at the different
positions shown in Fig. 4, to give both non-zero rotations and translations at these nodes.
Two node numbering schemes were used; Fig. 4(a) shows the interior nodes numbered last and
Fig. 4(b) shows these nodes numbered first, as would effectively be done by using substructuring.
The mode is known to be that shown in Fig. 4(c), in which the four members are all vibrating as
shown, with their fixed end mode and equal amplitudes. This mode gives force and moment
equilibrium at the central node and so is clearly a possible mode of the frame. Therefore it is used
as the comparator for the computed results which are shown in Table 5. They were obtained using
a tolerance of � ¼ 10
12 and can be seen to be in good agreement, with the maximum difference in
any element of the mode being about 1:2� 10
12: Additional checks, involving subdivision of a
single member with fixed ends, showed that the mode was indeed that of Fig. 4(c) to an accuracy
of approximately 7:6� 10
13:
Example 4. Example 4 covers vibration of the quadrilateral frame shown in Fig. 5. The member
properties are the same as those for Example 3 and the dimensions are given via the node
coordinates shown in Fig. 5. Member 2–3 has a length of unity and a fixed end frequency
oFm ¼ 22:372854481 rad=s: The y coordinate h for node 4 was chosen to make oFm match o6; the
sixth natural frequency of the frame, to at least 12 significant figures, in order to test the
performance of the substructuring method when a natural frequency of a substructure when its
connection nodes to its parent structure are fixed coincides with the required natural frequency of
the structure. This gave h ¼ 0:6337117216087: The interior node divides member 2–3 in the ratio
ð0:45 : 0:55Þ: The effect of the required frequency o6 becoming close to oFm instead of coincident
with it was investigated by slightly varying h; as shown in Tables 6 and 7. The results when the
interior node was placed last are taken as a datum. Comparison with results obtained by bisection
showed that these datum results had converged on o6 to 12 significant figures and they were
therefore assumed to be free of ill conditioning. The normalised datum mode shape is listed in
Table 8. In contrast to the modes found for Examples 2 and 3, this is not a mode for which the
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Table 5

Fourth natural frequency (o4) and corresponding mode for the cross-shaped frame of Example 3, to which Fig. 4 relates

o4 Interior nodes numbered last o4 Interior nodes numbered first

(rad/s) 22.373285448061 (rad/s) 22.373285448061

Nodes Normalised mode Nodes Normalised mode

u v y u v y

1 0.000000000000 0.000000000000 0.000000000000 5 0.000000000000 0.000000000000 0.000000000000

2* 0.000000000000 
0.6102776993977 
0.2618886484244 1* 0.000000000000 
0.6102776993987 
0.2618886484249

3* 0.6005017678035 0.000000000000 0.5189912997972 2* 0.6005017678035 0.000000000000 0.5189912997973

4* 0.000000000000 0.5844075037588 
0.7665730088954 3* 0.000000000000 0.5844075037579 
0.7665730088942

5* 
0.5622911149409 0.000000000000 1.000000000000 4* 
0.5622911149409 0.000000000000 1.000000000000

The asterisks denote interior nodes.
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Fig. 5. Quadrilateral frame of Example 4, showing node numbers and coordinates. � denotes an interior node.

Table 6

Accuracy of the sixth natural frequency o6 and of the corresponding mode for the quadrilateral frame of Example 4, to
which Fig. 5 relates

No interior node Interior node numbered first

h Relative

difference

between

substructuring

and datum

natural

frequencies

Maximum

absolute

difference

between

substructuring

and datum

mode elements

Number of

inverse

iterations

Relative

difference

between

substructuring

and datum

natural

frequencies

Maximum

absolute

difference

between

substructuring

and datum

mode elements

Number of

inverse

iterations

0.6337 
1.81� 10
9 1.93� 10
8 24 
4� 10
14 4� 10
13 9

0.6337038 
7.50� 10
10 2.85� 10
8 12 
4� 10
13 3� 10
12 11

0.6337064 
5.92� 10
9 7.72� 10
8 42 3� 10
13 6� 10
12 10

0.6337082 1.95� 10
8 1.09� 10
7 67 
2� 10
13 2� 10
12 10

0.6337093 2.32� 10
8 1.62� 10
7 37* 
8� 10
14 1.0� 10
11 12

0.6337101 3.80� 10
8 4.43� 10
7 17 7� 10
13 5� 10
12 12

0.6337106 3.64� 10
8 1.08� 10
6 101 7� 10
13 7� 10
12 10

0.6337110 7.83� 10
8 5.77� 10
6 463* 2� 10
12 6� 10
12 34

0.6337112 2.01� 10
7 8.17� 10
6 409* 
5� 10
12 1.9� 10
11 18

0.6337114 5.90� 10
8 2.19� 10
4 603* 5� 10
12 3.6� 10
11 28

0.6337115 
4.15� 10
8 2.21� 10
3 558* 
2� 10
12 9.1� 10
11 26

The asterisks indicate that the inverse iteration procedure failed to converge on at least one Newton iteration.
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ends of member 2–3 are effectively fixed, the proximity of o6 and oFm being merely a numerical
coincidence.
Table 6 shows that, if the interior node is omitted, ill conditioning causes a loss of accuracy in

both the eigenvalue and the mode as o6 approaches oFm: Eventually the method fails as the
inverse iteration procedure either converges on frequencies outside the interval ðo‘;ouÞ or fails to
converge at all. Table 7 shows that, if the interior node is included but numbered first (as is
implied by the substructuring method of this paper), there is an acceptably small loss of accuracy,
i.e. it is unlikely to cause concern until the required natural frequency is pathologically close to the
member fixed end frequency.
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Table 7

Accuracy of the sixth natural frequency o6 and of the corresponding mode for the quadrilateral frame of Example 4, to
which Fig. 5 relates, with the interior node numbered first

h Relative difference between

substructuring and datum

natural frequencies

Maximum absolute

difference between

substructuring and datum

mode elements

Number of inverse

iterations

0.6337 
4� 10
14 4� 10
13 9

0.6337115 
2� 10
12 9.1� 10
11 26

0.63371172 2.34� 10
10 3.13� 10
9 306*

0.6337117216 5.74� 10
10 5.55� 10
8 500*

0.6337117216087 1.15� 10
10 2.07� 10
7 163*

The asterisks indicate that the inverse iteration procedure failed to converge on at least one Newton iteration.

Table 8

Normalised datum mode corresponding to the sixth natural frequency o6 for the quadrilateral frame of Example 4, to
which Fig. 5 relates, with the interior node numbered last

Nodes Normalised mode

u v y

1 0.000000000000 0.000000000000 0.000000000000

2 0.014619892935 0.029242904807 0.065226160330

3 
0.036140133916 0.096909238138 0.594243464856

4 
0.054130234999 0.059761731782 1.000000000000

5 0.018952777344 0.023461923532 
0.038732753519
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8. Conclusions

The exact substructuring approach has been successfully extended to the guided recursive
Newton method for solving transcendental eigenproblems, the principal objective being to
calculate modes accurately and efficiently. Performing inverse iteration on the degrees of freedom
of the parent structure alone is prone to numerical ill conditioning whenever a required eigenvalue
lies close to an eigenvalue of any of the substructures when clamped at its attachment nodes.
Therefore the inverse iteration algorithm presented includes all of the degrees of freedom at the
internal nodes of the substructures. This retains the established accuracy of the method when
substructures are not used, while improving the computational efficiency.
The substructuring method has been used to model the interior nodes which are inserted to

remove member fixed end eigenvalues whenever they are dangerously close to a sought eigenvalue
of the structure. Previously such nodes were numbered after the other nodes of the structure,
which adversely affects the banded nature of the dynamic stiffness matrix and so often greatly
increases the time taken by the inverse iteration. Treating the member and its interior node as a
simple substructure effectively numbers the interior nodes before the other nodes and so gives a
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much faster solution, both because it leaves the bandwidth of the stiffness matrix of the parent
structure unaltered and also because savings result when some of the substructures are identical.
In the transcendental eigenproblem of vibration, the elements of the dynamic stiffness matrix

contain trigonometric and hyperbolic functions of frequency o:However it has been shown that it
is preferable to use o2 rather than o as the eigenparameter when locally approximating the
transcendental eigenproblem as a generalised linear eigenproblem. This is true because:
polynomial expansions of the member stiffnesses contain only even functions of o; it follows
from an analogy with a hypothetical FEM model with an infinite number of degrees of freedom;
and it has been shown, both theoretically and numerically, that using o2 rather than o gives
significantly closer approximations to the exact eigenvalue at a typical step of the inverse iteration
algorithm.
Numerical results have validated the use of substructuring to analyse a moderately large

structure, giving no loss of accuracy in the eigenvalues or modes while making significant
reductions in the overall solution times, particularly when members with interior nodes are
modelled as substructures.
The use of substructures to model interior nodes has also been explored numerically on a

number of simple examples which were designed to trigger numerical ill conditioning because of
the proximity of structural eigenvalues to member fixed end eigenvalues. Such ill conditioning was
not completely removed by modelling the interior nodes within substructures, but the results show
that its effects are only likely to be significant when the member fixed end eigenvalues are
pathologically close to the structural eigenvalue being sought. In such circumstances, accuracy
could be improved by using the previous method of numbering the interior nodes after the other
nodes, without using substructuring.
The exact substructuring methods presented have been illustrated by their implementation in

one particular inverse iteration scheme, but they could equally well be applied to other forms of
inverse iteration. They are also applicable to various other areas of structural analysis to which
the W–W algorithm has successfully been applied (e.g. wave propagation), as well as to problems
in other disciplines, including fluid vibrating in pipes, heat and mass diffusion, and mathematical
problems involving Sturm–Liouville equations.
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