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Abstract

In the response control of building structures subjected to strong excitations, the controller saturation
problem needs be considered in the design stage. The nonlinearity of saturated controllers, however, makes
the exact probabilistic evaluation of control effectiveness difficult. In this study, a stochastic nonlinear
control algorithm with bounded control force is proposed and the closed-loop system’s joint probability
density function (PDF) governed by the reduced Fokker–Planck equation is derived. Based on the derived
joint PDF, the bound of the control force that restricts the first-passage failure probability of the
displacement response to a prescribed value is determined. Numerical analyses results show that the
proposed controller reduces the maximum required control force considerably compared to the linear
controller for the same displacement reduction, and the proposed approximation of the failure probability
is considerably accurate.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Many active control methods have been developed and implemented in the field of civil
engineering in order to suppress excessive vibrations induced by earthquake or wind loads [1,2]. In
design of active control of structures, two important problems need to be considered due to the
probabilistic characteristics of such dynamic loads. The first problem is the controller saturation.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Since the magnitude of the dynamic loads cannot be known a priori, the control law may require
excessive control forces greater than the capacity of the control device in a real situation.
Consequently, the controller saturation problem needs to be considered in the design stage. The
second problem is the exact evaluation of control effectiveness taking into account the stochastic
nature of dynamic loads on civil structures. The nonlinearity of saturated controllers, which is
required to solve the first problem, makes the second one more difficult. This is due to the reason
that the joint probability density function (PDF) of the stationary response of the nonlinear
system under a white noise excitation can be exactly estimated by solving the reduced
Fokker–Planck equation (RFPE), while the solution of the equation is known only for a limited
number of cases [3–5].

The most widely known control algorithm with bounded control force is the bang–bang control
algorithm [6]. However, the abrupt change of the control force from the upper bound to the lower
bound or vice versa makes its actual implementation difficult. Wu and Soong [7] and Cai et al. [8]
proposed modified bang–bang type controllers to prevent the rapid change of the control force
considering actuator dynamics. But aforementioned researches do not address the stochastic
nature of the excitation in structural control.

Spencer et al. [9] and May and Beck [10] proposed controller optimizations based on the first-
passage failure probability for sdof and mdof structures, respectively, considering parameter
uncertainty of the controlled system. But the controller in their studies was restricted to the linear
one. Zhu and his co-workers [11–17] and Dimentberg et al. [18] applied the stochastic dynamic
programming principle to a variety of controlled systems simplified by the stochastic averaging
method. Resulting controllers were nonlinear in their general forms. In particular, bang–bang
type controllers were obtained in the minimization of the first-passage failure probability [16–18].
But these types of controllers may exhibit the abrupt control force change in the actual
implementation. In addition, the stochastic responses are predicted only for the stochastically
averaged system.

In this paper, the control of the sdof oscillator subjected to the Gaussian white noise excitations
is studied and a probability-based nonlinear control algorithm with bounded control force is
proposed. The exact solution of RFPE, i.e., the exact joint PDF of the closed-loop system is
derived. Using this joint PDF, bounds of the control force that restrict the first-passage failure
probability of the displacement response to a prescribed value are calculated. Numerical examples
are presented for the verification of the proposed controller and the accuracy of the approximated
first-passage failure probability.
2. Bounded nonlinear control

This study focuses on a linear sdof structure subjected to multiple white noise excitations of
which mass-normalized equation of motion is represented by

€x þ 2x0o0 _x þ o2
0x ¼ b1wþ b2u; ð1Þ

where o0, x0 are the natural frequency and the damping ratio of the structure, respectively, and x,
w, u, b1 and b2 are the displacement, the excitation vector, the control force, a constant vector, and
a coefficient, respectively.
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In general, the structural response control is achieved by changing dominant natural
frequencies or damping ratios of the structure. Particularly in civil structures, the latter is more
acceptable than the former, because changing natural frequencies may increase acceleration
response and requires relatively large control force. For comparison, velocity and displacement
feedback controllers are designed for an sdof structure with a mass of 1 kg, natural frequency of
0.5 Hz and a damping ratio of 2%. Control gains for both controllers are scaled to have the same
maximum control force for the El Centro earthquake. The displacement time histories of the sdof
system are presented in Fig 1. It is clear from the result that the velocity feedback is much more
effective in reducing displacement response than the displacement feedback. This implies that the
increase of damping ratio has a greater effect in reducing responses for the given sdof structure.

In the velocity feedback control, the control force is assumed to have the following form in
order to guarantee the stability of the closed-loop system:

u ¼ �f 0ðHÞ _x; ð2Þ

where f0 is the feedback gain and H is the non-negative total energy of the structure represented by

H ¼ 1
2
_x2 þ o2

0x2
� �

: ð3Þ

From the definition of the total energy presented in Eq. (3), the absolute value of the velocity is
bounded as follows:

_xj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � o2

0x2

q
p

ffiffiffiffiffiffiffi
2H

p
; ð4Þ

where the equality is satisfied for the zero displacement. As a result, the upper bound of the
control force magnitude is given by

uj jpf 0ðHÞ
ffiffiffiffiffiffiffi
2H

p
: ð5Þ

Therefore, the nonlinear control gain function, f0(H), is proposed in this study as follows so that
the control force in Eq. (2) does not exceed a given maximum control force limit:

f 0ðHÞ ¼
umaxffiffiffiffiffiffiffi
2H

p ; ð6Þ

where umax is a design variable representing the upper bound of the control force magnitude. As
the increased damping ratio of the closed-loop system with a nonlinear gain of Eq. (6) is also a
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Fig. 1. Comparison of the velocity and the displacement feedback controls.
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function of the total energy, authors name the proposed control algorithm Energy Damping

Control. This new control algorithm generates the positive or negative maximum control forces
whenever the displacement becomes zero. This means that the controller exerts its full capacity
whenever the velocity reaches its maximum amplitude for harmonic response, even for low-level
vibration.

The abrupt change of the control force direction due to the sudden change of the velocity sign,
which may cause instability for the control system with time delay effect, is prevented by
introducing an energy function that represents the level of structural response. This function is
given by

V ðHÞ ¼
Hp

Hp þ a2p
p40; a40ð Þ; ð7Þ

where p and a are design parameters related to the function shape. Multiplication of V(H) to the
original gain, Eq. (6), yields the following modified gain:

f ðHÞ ¼ V ðHÞf 0ðHÞ ¼
umaxffiffiffi

2
p

Hp�1=2

Hp þ a2p
ð8Þ

and corresponding control force

u ¼ �f ðHÞ _x: ð9Þ

V(H) has a non-negative value smaller than 1.0 and approaches to 0.0 and 1.0 as the total
energy goes to zero and infinity, respectively. Therefore, the control force settles down or exerts its
full capacity for low or high level of structural response, respectively. Some examples of V(H) for
several values of p and a are plotted in Fig. 2. It can be observed that the range of H
corresponding to the flat range of V(H) close to 1.0 increases for smaller a and larger p. Also,
increasing the value of p makes the separation of two flat ranges of H clearer, one close to 0.0 and
the other close to 1.0. But the inflection point does not change by changing the value of p.

Modified control gains, f(H), for different values of parameter p and a are plotted in Fig. 3. It
can be observed that, for smaller a and larger p, the peak of f(H) increases. Since a large control
gain is unfavorable for the stability if uncertainty exists in the plant to be controlled, the choice of
proper p and a is important.
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Fig. 2. Shape of V(H). (a) a ¼ 0:5; (b) a ¼ 0:25:
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3. Joint PDF of the closed-loop system

The closed-loop system for the equation of motion, Eq. (1), is represented by

€x þ hðx; _xÞ ¼ b1w; ð10Þ

where w is assumed to be a vector of stationary Gaussian white noise processes and hðx; _xÞ is given
by

hðx; _xÞ ¼ 2x0o0 þ b2f ðHÞ
� �

_x þ o2
0x: ð11Þ

Then, the joint PDF of this closed-loop system is governed by the following RFPE [19]:

0 ¼ _x
qPðx; _xÞ

qx
�

q hðx; _xÞPðx; _xÞ½ 	

q _x
� pb1Swb

T
1

q2Pðx; _xÞ

q _x2
; ð12Þ

where Pðx; _xÞ and Sw are the joint PDF and the power spectral density (PSD) matrix of w,
respectively. Since the coefficient of the velocity term in Eq. (11) is a function of the total energy,
H, the closed-loop system belongs to the class of generalized stationary potential and its analytical
solution is given by [3]

Pðx; _xÞ ¼ Ce�jðHÞ; ð13Þ

where C is a normalization coefficient and f(H) is a function of the total energy of which the
derivative is represented by

j0ðHÞ ¼
1

pb1Swb
T
1

2x0o0 þ
b2umaxffiffiffi

2
p

Hp�1=2

Hp þ a2p

� �
: ð14Þ

To obtain the joint PDF presented in the Eq. (13), the integration of the derivative in Eq. (14) is
required. Since the analytical integration of Eq. (14) for the general value of p is very difficult, it is
induced from the integration results for the p’s of 1, 2, 3, and 4 and given by

jðHÞ ¼

ffiffiffi
2

p
ab2umax

ppb1Swb
T
1

ffiffiffi
2

p
px0o0

ab2umax
H þ

p

a

ffiffiffiffiffi
H

p
"

þ
Xn

i¼1

cos
2i � 1

2n
p

� �
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H � 2 cos

2i � 1

2n
p

� �
a
ffiffiffiffiffi
H

p
þ a2

s

�
Xn

i¼1

sin
2i � 1

2n
p

� �
arctan

ffiffiffiffiffi
H

p

a
csc

2i � 1

2n
p

� �
� cot

2i � 1

2n
p

� �� �#
ð15Þ
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Fig. 4. Displacement PDF’s of the closed-loop system. (a) PDF for p ¼ 1 and various a’s; (b) PDF for a=10�0.5 and
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The resulting joint PDF of the closed-loop system displacement for various p’s and a’s are plotted
in Fig. 4. Only one excitation with Sw=0.5p cm2/s3 is considered and other parameters are chosen
as follows; x0=0.02, o0=p rad/s, b1=�1, b2=0.01 kg�1 and umax=1 N. In Fig. 4(a), it is shown
that the PDF concentrates more to the center as a becomes smaller implying higher reduction of
the response. On the other hand, Fig. 4(b) shows that p has insignificant influence on the
responses. However, since p influences the peak control gain, which is closely related to the
stability of closed-loop system, as shown in Fig. 3, its value should be selected carefully.
4. Design and evaluation of the controller

To design a structural controller for given random excitations, the peak response of the
structure needs to be defined stochastically. To define the peak response for the design of the
proposed stochastic control strategy, the first-passage failure probability is employed. This
probability is difficult to obtain analytically and thereby the solution is often obtained numerically
[20,21]. In this study, to make the design process simple, the following failure probability
proposed by Vanmarke for the first-passage problem of the Gaussian narrow band process [22] is
employed:

PF ðxb; tsÞ ¼ 1 � exp �n Xj jðxbÞts

1 � exp �q1:2
ffiffiffiffiffiffiffiffi
p=2

p
xb=sX

� �
1 � exp �x2

b=ð2s
2
X Þ

� �
 !

; ð16Þ
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where ts is the duration time, n|X|(xb) is the double-barrier crossing rate of the process, X, over the
barrier level, xb, sX is the standard deviation, and q is a parameter associated with the frequency
band size. n|X|(xb) can be calculated exactly by using the joint PDF of the closed-loop system given
by Eq. (13), while q can be calculated only approximately by using the formula for a linear sdof
oscillator as [23]

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

1

1 � x2
eq

1 �
2

p
tan�1

xeqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

eq

q
0
B@

1
CA

2
vuuuut ; ð17Þ

where xeq is an equivalent damping ratio derived from the well-known formula on the crossing
rate of a linear sdof oscillator subjected to the Gaussian white noise excitation, and is given as

xeq ¼ �
pb1Swb

T
1

x2
bo

3
0

ln
pn xj j xbð Þ

o0

� �
; ð18Þ

It should be noted that the failure probability presented in Eq. (16) is an approximation for the
closed-loop system with the proposed controller and Gaussian random excitation, since the
response of such a nonlinear system to the Gaussian random excitation is non-Gaussian.

The design of the proposed controller involves determinations of three parameters associated
with the nonlinear control gain in Eq. (8), i.e., umax, a and p, that meet the required first-passage
failure probability of the controlled structure. At the initial design stage, umax, meeting the target
failure probability of the structure for prescribed a and p, is searched using an appropriate
method. As an example, a process to determine umax based on the bisection algorithm is illustrated
in Fig. 5, where umax,u and umax,l are the upper and lower bounds of umax, respectively, and P0 is
the target failure probability.
Fig. 5. Determination of umax by the bisection algorithm.
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5. Numerical analysis

To investigate the influence of design parameters, a and p, on the transient response property, a
time history analysis of an sdof structure is performed. Structural parameters are chosen as
follows: x0=0.02, o0=p rad/s, b1=�1, b2=0.01 kg�1. A sample function of the ground
acceleration is generated by passing a white noise excitation through the Kanai–Tajimi filter
rather than using the original white noise directly, for more realistic simulation. This can be
justified by the fact that the response of the sdof structure has little difference for the white noise
and the filtered white noise, if the natural frequency of the Kainai–Tajimi filter is sufficiently
larger than that of the sdof structure. The natural frequency and damping ratio of the filter are set
to be 15.6 rad/s and 0.6, respectively, as suggested by Kanai representing the firm soil condition
[24]. The PSD of the filter input white noise is assumed to be 0.5p cm2/s3. For comparison, a linear
velocity feedback controller that provides the closed-loop system with 8% damping ratio is
designed as well. The control force bound, umax, of the nonlinear controller is set to be 0.9212N,
which is the maximum control force of the linear controller for the aforementioned ground
acceleration.

First, simulations are carried out for varying a with fixed p. The results are presented in Fig. 6.
In case of a ¼ 1:25; the result is not as good as the linear controller. This is because the control
force is very suppressed by V(H) over a region of relatively small energy, H. In case of ap0:25; the
proposed controller is better than the linear controller, and the controlled responses are almost
the same regardless of a. However, in case of a=0.05, the abrupt direction change of the control
force occurs frequently, which is necessary to be prevented.
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Second, the effect of p on control performance is investigated for varying p with fixed a. The
result is shown in Fig. 7. Results indicate that the responses change little for the variation of p
while the required peak control forces are smaller as p becomes smaller.

Next, the effect of the excitation magnitude on control performance is investigated. Simulation
results for the scaled ground acceleration by the factor of 0.2 are presented in Fig. 8. This
investigation is important because the excitation with the magnitude smaller than the design level
happens more frequently from a probabilistic point of view. It is shown that as a decreases, more
response reduction is achieved. However, for a ¼ 0:05; the control force exhibits a lot of high-
frequency contents, which may cause a spillover effect on the higher structural modes when
applied to the control of mdof structure. Therefore, a should be selected carefully, considering the
magnitude of the excitation on which the controller operates. Additionally, simulation results for
the scaled ground acceleration by a factor of 2.0 are presented in Fig. 9. For comparison, the
control force of the linear controller is cut down at umax. Little difference between the response of
the linear control and that of the nonlinear control is observed due to the saturation effect of the
former.

Finally, statistical verification of the approximate failure probability calculation procedure is
performed for the sdof structure using the same Kanai–Tagimi filter for the preceding analyses.
The following envelop function is multiplied to the white noise input for the filter in order to
emulate the non-stationary characteristics of earthquake:

f envðtÞ ¼

ðt=t1Þ
2

ðtot1Þ;

1 ðt1ptpt2Þ;

e�cðt�t2Þ ðt2otÞ;

8><
>: ð19Þ
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Table 1

Maximum control force and first-passage failure probability

Target

displacement

reduction ratio

Maximum control force (N) First-passage failure probability (%)

Linear

control (A)

Nonlinear

control (B)

Ratio

(B/A)

Linear

control

Nonlinear

control

0.8 0.4278 0.2961 0.69 4.6 4.0

0.6 1.0242 0.7072 0.69 5.5 4.1

0.4 2.0750 1.4096 0.68 5.5 4.6
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where t1, t2 and c are set as 20s, 40s, and 0.15, respectively. This envelope function, proposed by
Jennings [25], has a stationary region in the middle where the stationary assumption of the
excitation used in the derivation of the joint PDF of the nonlinear closed-loop system is valid.
Further, if the frequency band of the excitation is sufficiently large compared to the natural
frequency of the structure, the excitation can be approximated by the white noise.

The uncontrolled maximum displacement is found to be 2.701 cm. Linear and nonlinear
velocity feedback controllers are designed to reduce the maximum displacement by 80, 60 and
40% with 5% first-passage failure probability. Parameters a and p of the nonlinear controller are
selected to be 0.01 and 1, respectively. The maximum control forces of the linear and the nonlinear
controller are compared in Table 1. The maximum control force for a linear controller is a
probabilistically estimated one by the sum of mean and standard deviation of the maximum
control force using Davenport’s formula [26]. Results show that the proposed nonlinear
controllers achieve same target displacement reduction ratios using only about 70% of the
maximum control force of linear controllers. Also, the first-passage failure probabilities calculated
from time history analyses for 1000 sample functions of ground acceleration is provided in Table
1. Results indicate that the failure probabilities are close to the design failure probability, 5%, and
the proposed approximation method is considerably accurate.
6. Conclusions

A new nonlinear control algorithm, energy damping control, is proposed for the sdof structure
subjected to random excitations. For the design and evaluation of the proposed controller, the
joint PDF of the closed-loop system is derived and the approximate first-passage failure
probability calculation procedure is proposed. By proper selection of the parameter a and p of the
nonlinear control gain, the abrupt change or waste of control force, which are important issues in
actual implementation, can be prevented.

Numerical analyses results indicate that the required maximum control forces expended by the
proposed nonlinear controllers are only about 70% of that of the linear controller in order to
achieve the same response reduction ratio. Further, simulation results show that the proposed
approximation of the failure probability for the nonlinear closed-loop system subjected to a
filtered Gaussian white noise excitation is considerably accurate.
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