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Abstract

In this paper, free vibration analysis of isotropic rectangular plates with different thickness ratios,
different boundary conditions and different aspect ratios has been investigated using a high-order
triangular element. The first-order shear deformation theory (FOSDT) is used to include the effect of
transverse shear deformation. The element has 18 nodes on the sides and six internal nodes. The geometry
of the element is expressed by three linear shape functions of area coordinates. The formulation is
displacement type and the use of area coordinates makes the shape functions for field variables to be
expressed explicitly. No numerical integration is required to get the element stiffness and consistent mass
matrices. The element has 51 degrees of freedom, which can be reduced to 39 degrees of freedom by Guyan
reduction, mass condensation, or eigenvalue economization scheme for the degrees of freedom associated
with the internal nodes. Rotary inertia has been included in the consistent mass matrix. Numerical
examples are presented to show the accuracy and convergence characteristics of the element.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Structures of plates and shells have wide applications in ships, aircrafts, bridges, etc. A
thorough study of their dynamic behavior and characteristics is essential to assess and use the full
potentials of plates and shells. The finite element method has been proved to be a more versatile
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tool in engineering fields [1,2]. Plate bending is one of the first problems where the application of
finite element was done in the early 60s. A number of difficulties were faced when Kirchoff’s
hypothesis was applied to analyze bending as well as free vibration of thin plates. These are mostly
associated with the satisfaction of normal slope continuity on the interfaces between various
elements. The above-mentioned slope continuity problem has been eliminated by applying the
well-known Reissner—Mindlin’s hypothesis for thick plates. In Reissner—Mindlin’s hypothesis the
transverse displacement (w) and rotations of normal (0, and 0,) are expressed as independent field
variables. A large number of published works on plate vibration are available as may be seen by
inspection of the excellent review articles by Leissa [3-9] and Liew et al. [10] and other
comprehensive works by Yamada and Irie [11], Leissa [12], Liew et al. [13], Dickinson and Blasio
[14], Lim et al. [15], Cheung and Zhou [16] and Zhou et al. [17]. Also, a large number of triangular
and quadrilateral finite elements were developed for analysis of thin as well as thick plates among
which isoparametric elements became more popular [18]. Shear locking, stress extrapolation and
spurious modes are some problems faced by these elements instead of having high elegacy. To
avoid the above-mentioned problems a number of thick plate bending elements have been
proposed by Petrolito [19], Yuan and Miller [20], Sengupta [21], Batoz and Katili [22] and
Zhongnian [23] and others. Sheikh et al. [24] have used mass lumping schemes to form the mass
matrix having zero mass and zero rotary inertia for the internal nodes of the element to facilitate
the condensation process without considering the off-diagonal terms of the mass matrix. The
results using the Guyan reduction scheme [25] by the element proposed by Sheikh et al. [24] have
not been reported in their work.

The present paper utilizes a triangular element with 18 nodes equidistantly placed on the sides
and six nodes internal to it. The element has three degrees of freedom (w, 0y, 0,) at the three nodes
on the vertices (nodes 1, 7 and 13), at six side nodes nearer to midside nodes (nodes 3,5,9,11,15
and 17) and at three internal nodes (nodes 22-24), two degrees of freedom (0., 0,) at midpoint
nodes (nodes 4, 10 and 16) and a single degree of freedom (w) at the remaining nodes (nodes 2, 6,
8, 12, 14 and 18-21). The element geometry is described by linear shape functions of area
coordinates including corner nodes only. In the proposed element the transverse displacement
field (w) and both 0, and 0, are expressed by a fifth-order polynomial and a fourth-order
polynomial, respectively. The nodes are placed on the sides and inside the proposed element such
that the mass and rotary inertia for the internal nodes are negligible and the well-known Guyan
reduction scheme [25] for the mass condensation is efficiently utilized to get highly accurate
natural frequencies of rectangular plates under all 21 boundary conditions involving all possible
combinations of clamped, simply supported and free edges.

2. Finite element formulation

The formulation is based on the Reissner—Mindlin plate theory. In this theory it is assumed that
the transverse deflection of the plate is small compared to the plate thickness and the normals to
the plate midsurface, which is taken as the reference plane, remain straight but may not remain
normal to the deformed midsurface. A 24 node triangular element is used to develop the finite
element analysis procedure. The element is shown in Fig. 1.
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Fig. 2. Area coordinates.

The element has three degrees of freedom (w, 0,,0,) at nodes 1,3,5,7,9,11,13,15,17 and 22-24,
two degrees of freedom (0, 0,) at nodes 4,10 and 16 and a single degree of freedom (w) at nodes
2 6,8,12,14 and 18 21 The area coordinates (L, L, L3) of the nodes are (1,0, 0), (2, £0),(3.13.0),
2’ é’ 0) ( ; O) S ? ?) (07 1,0) (0, 6’ 6) ((1) f;z’l;) (10:13:1 2) (0: 63 6) (O 0 1) (6’ :6) (3, ’2) (37 ,3)

(27 » 2) (6, » 6) (37 6’ 6) (07 25 2) (69 3 6) (67 63 ) (27 3> 4) (49 25 4) and (4) ) 2 )

The coordinates of any point P (Fig. 2) within the element with respect to the global coordinate

system are given by
x =Lix; + Loxy + L3xs,

y =1Ly, + Ly, + Lsy;, (1)
where
Li=A;/4, i=1,23

and A is the area of the triangular element.
Again
=L+ L+ Ls. 2)
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From Egs. (1) and (2) we get
Li = (ai +bix+¢;y)/24, i=1,2,3,

where

A =Y (023 — x395) + (X33, — x103) + (X195 — x2))],

a; = X;y; — xkyj,bi =)= Yk and ¢; = x; — x; where the parameters 7,j and k follow cyclic order
of 1, 2 and 3.

The transverse displacement (w) and the rotations (0, and 0,) of the normal are chosen as the
complete fifth-order and fourth-order polynomials of area coordinates (L, L, L3), respectively,
and are expressed as follows:

w=[LO}e}, Oy=I[LI}{B} and 0, =[LI]{y}, 3)

where
(L0} = (L} L5 L] L{L, LiL3 L3L; LoL5 L3L, LsL}
372 7273 ¥372 7273 7372 7273
LiL,Ly L3LsLy L3 Ly L3L3L; L3130, L3L3 L),

(L1} ={L{ L3 L] LiL, L1 L3L; L,L3 131, L3135 L1L3
L5313 L3 LiLyLsy L3150 LiL, Ly},

T
o} = {o op o3 otg o5 Gl 07 0Lg 0o 0Ly OLp L1 %13 Cii4

015 016 017 Oy 019 G211},

{BY" = 1{B1 Ba By Ba Bs Bs B7 Bs Bo Bro Bi1 Bia Piz Bra Bush.

and

YT = {1 72 ¥3 Ya s Y6 V7 ¥8 Yo Y10 V11 Y12 V13 V14 Vis)-

Putting the values of nodal transverse displacements (w), nodal normal rotations (0, and 0,) and
nodal area coordinates (L, L, L3) in the above Egs. (3) the values of o’s, ’s and y’s can be
determined as follows:

() =[El{o}, {0} =[P} and {0,} = [PI(),

or
) = [0}, (B =[¥T"'{0.) and {y) =[¥]'(0,),
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where
T
(W} = {w1 w2 w3 ws wg w7 wg Wo Wip Wia Wiz Wis Wis Wi7

Wig Wig Wag W21 W22 W23 Wi},
AT
{0}" = {01 0,3 04 Oys 047 Ox9 Ox10 Ox11 Ox13 Ox15 Oxi6 Ox17 Ox22 0423 Ox24},

(0,37 = {0,1 0y3 Oy Oy5 047 Oy9 0,10 Op11 Oy13 Oy1s 0416 Oy17 0420 0,03 0,04}
and hence, the field variables (w, 0, and 0,) can be expressed in the following manner:
w=[N,(w), 60, =[Nol{0) and 6, = [No]{6,}, @)
where
[Nu] = [LO][Z]"  and [Ng] = [L1][¥]", (5)

where [Z]7! is a (21 x 21) matrix and [¥]"! is a (15 x 15) matrix.
Eqgs. (4) can be expressed in matrix form as below

w N, 0 0 w
O p=10 Ny 0 |40 =[Nl (6)
0, 0 0 Nyllo,

where
{6)" = (w0, 0,).

As rotations of the normal 0, and 0, are independent variables and they are not derivatives of
w, the effect of shear deformation can be easily incorporated as

¢x _ { ex - W,x } (7)
by Oy —wy )
where ¢, and ¢, are average shear strain over the entire plate thickness and 0, and 0, are the total

rotations of the normal.
The generalized stress—strain relationship may be expressed as

{o} = [CN{e}. ®)
In the above equation the generalized stress vector is
(o} = (M My My O, Q). ©)
The generalized strain vector {¢} in terms of displacement fields is
—0Ox
—0y
{e} = —(Oxy +0y) (10)
W — O
wy, —0,
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and the rigidity matrix [C] is given by
[Cy Cin O 0 ]

Cn Cxn O 0
[Cl=1] 0 0 Ci3 O
0 0 0 Cyu4 O

0O 0 0 0 Css]

oS O O

; (11

where for isotropic materials Cy; = El3/{12(1 — )}, Cia =vCyy, Cyp=Cyy, C33=(1—
v)C11/2, Cas = Et/{2k(1 +v)} and Css = Cus,k is the warping factor which is taken as 1.2,
assuming parabolic transverse shear strain distribution.

The strain—displacement relationship may be expressed as follows:

0 —Non O
0 0 —Ne,y
{ey=1 0 —Ny, —Ny, |{0} (12)
Nux —Ny 0
[ Nw, O —Ny |

or {¢} = [B]{0} where [B] is a (5 x 51) matrix.
Derivatives of Ny and N,, with respect to the global coordinates can be presented in matrix
form as

N@,x = {E}[E], me = {H}[@]’ Nﬂ,y = {E}[@] and Nw,y = {H}[@],

where

(L2} ={L} I3 13 L?L, L1} L5L; LyL3 L3L, L3} LiL,Ls).

The matrices Q, and Q5 are of order of 10 x 15 and the matrices Q, and Q, are of order of
15 x 21.
The matrix [B] can be written as

[B] = [FI[Q].

where
(12 0 0 0 0]
0 I2 0 0 0
[Fl=|0 0 12 0 0 (13)
0 0 0 L1 0
0 0 0 0 LI|
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and
0 o 0]
0 0o -0,
Q=0 -0, -0;| (14)
0 -0s 0
[0, 0 —0s]

where Qs is equal to [E]7".
Thus, the element stiffness matrix [K]® is given by

KY = / [BI"[CI[B]dA = [O]" / (FIT[CIF] dA[D). (15)
Eq. (15) can be depicted as
[Ciipy Ciapy 0 0 0
Cnp; Cnp 0 0 0
KF=[@'| 0 0 Cuwp 0O 0 |[O)
0 0 0 C44,02 0
0 0 0 0 C55p2_

where
pi= [ T4 and p, = [(TDTTT)dA

Carrying out the integrations p, and p, can be evaluated explicitly.
Finally the element stiffness matrix has got the following form:

—T — —T — AT &
Cy40; p,0; —Cu0; p,0s —Cs50, p,0s
_T —_—
+Cs550, p,0,
R
CiQ; p10s T
. —T — ——T — C
[K] = | =C1405 p>0;  +C30, p,0; IZQilei (16)
—T — +C ’
+C1405 p,0s Fn0s 719
_T —_—
—T1 — i C»04 p0
_c gT o Ci20Q4 p105 iT1 .
ssUs pats —1 — +C3305 p,0;
+C3305 p,04 —T —
+Cs50s p,Q0s
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In a similar manner the element consistent mass matrix of an element can be derived explicitly
using the above shape functions and can be expressed as

[ pt2~ " p = 0 0 ]
14 pt3 -T
M]" = v Ty
[M] 0 o 0 , (17)
P ot
P y-T, p
I 0 0 2 %] |

where p; = [ {LO}T{L0}d4 which can also be determined explicitly by carrying out the
integration.

Stiffness and mass matrices obtained from Eqgs. (16) and (17), respectively, are of the order of
51 x 51. These matrices have been reduced to the required matrices ([K]" and [M]%) of the order
of 39 x 39 by applying the Guyan reduction scheme [25] for global assembly. The reduced element
stiffness ([K]°") and element consistent mass ([M]") matrices can be assembled into the following
final form for free vibration:

[K] — w*[M] = 0. (18)

The above equation has been solved by the simultaneous iterative technique of Corr and Jenning
[26] after substitution of boundary conditions to get the first few frequencies for the lower modes
of the plate.

3. Numerical examples

3.1. Patch test for constant bending moment, pure shear and twisting moment

For all the examples Poisson’s ratio of the plate material is taken as 0.3 and the warping factor
(k) is assumed to be 1.2. To show the convergence characteristics and robustness of the element

A _’I 0.4a |"—
-_——-"'.-—-__-_\__

| 0358 |<+
_L N 34 o3 o3z o 30 " ¥
35\ - " % 0.3a
0.3a 4l 17 . 26 23
N 38 39 yo28 KR
4 40 22 a
TN 2 s T
4 3 2] a
K 17 0.4a
“ 4 16 20
4546 15 19 —l— —v
N 14 w028 | |
{ - v v - v - X f a |
8 2 10 n 12 13

(a) [ a | (b)

Fig. 3. Cantilever plate with edge loading.
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developed in this paper a cantilever plate is considered (Fig. 3). The plate extends to infinity in the
positive and negative y directions and is clamped along the edge x = 0, i.e., along the y-axis. The
plate is subjected to a uniformly distributed constant moment M per unit length at the edge x = a.
Two types of mesh geometries are solved for constant bending moment patch test. For the mesh
geometry of Fig. 3(a), the boundary conditions are w = 0 at nodes 7,35,41,42,44 and 45,0, = 0 at
nodes 7,35,42,43 and 44 and 0, = 0 at nodes 7,9,10,11,13,20,21,22,24,31,32 33,35,42,43 and 44.
The boundary conditions and constant moment condition are similarly assigned for the mesh
geometry of Fig. 3(b). The non-dimensional transverse edge deflections (Ef*w/Ma?) at the edge
x = a are numerically matching with the exact solutions (5.46000) for different thickness ratios
(t/h =0.01,0.1,1.0,10.0,100.0 and 1000.0) as expected. The same plate and the same mesh
geometries are utilized for the shear patch test. In this case, a shear loading of V" per unit length is
applied on the edge x = a. Computed vertical displacements in non-dimensional form (Gtw/Va)
at nodes 13, 19, 20, 22, 23 and 24 exactly agree with the elementary solutions including both shear
and bending, and for shear only. The value of warping factor (k) is taken as unity for this example
to correspond to the elementary solution and to simulate the effect of pure shear; the terms in the
rigidity matrix corresponding to the bending stiffness are multiplied by a large quantity. For
twisting patch test the plate geometry is shown in Fig. 4(a). Young’s modulus of the plate
material is taken as 10000 psi and the plate thickness is 1in. The plate is simply supported
at points A, B and C (w=0) and is subjected to a transverse load of 5Ib at D. The

<
I
il

8"

() (b)

[ o |
@ I 8 ~

Fig. 4. Twisting of a square plate.
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Table 1
Twisting patch test
Element type Deflection (in) M, M, M,
Point D Point O (Ib-in/in) (Ib-in/in) (Ib-in/in)
Fig. 3(a) 0.024960 0.06240* 0o° 0° 2.50000
Fig. 3(b) 0.024960 0.06240% 0° 0° 2.50000
Fig. 4(b) 0.024960 0.06240° 0° 0° 2.50000
Fig. 4(c) 0.024960 0.06240 0o° 0° 2.50000
Fig. 4(d) 0.024961 0.06240 0° 0° 2.50000
Fig. 4(c) 0.024960 0.06240 0° 0° 2.50000
DK T*—Fig.4(c) 0.024960 0.06240 0 0 2.50000
HSM°—Fig. 4(c) 0.024960 0.06240 0 0 2.50000
ACM®—Mesh 8 x 8 0.024972 0.06244 — — —
HCTYMesh 8 x 8 0.025002 0.06254 — — —
Thin plate theory 0.24960 0.06240 0 0 2.50000

nterpolated values of the central deflections (Point O).
Zero up to 4 significant digits after decimal point.
“Batoz et al. [27].

dClough and Tocher [28].

<

»l

A

Fig. 5. Rectangular plate (Mesh 3 x 2).

terms C44 and Css in the rigidity matrix are multiplied by a large number (10°). The plate is solved
for the mesh divisions as shown in Figs. 3(a), 3(b), 4(b), 4(c), 4(d) and 4(e). The deflections at
point O and D and the moments are compared with thin plate solutions and other available
published results (Table 1).



M.C. Manna | Journal of Sound and Vibration 281 (2005) 235-259 245
Table 2
Frequency parameters [A = (wb? /n%)/(pt/D)] for square plates
Boundary condition t/b Source Mode sequences
1 2 3 4 5 6
SSSS 0.001 PS-2 2.000 5.009 5.012 8.190 10.072 10.129
PS-4 2.000 5.000 5.000 8.001 10.001 10.001
PS-6 2.000 5.000 5.000 8.000 10.000 10.000
PS-8* 2.000 5.000 5.000 8.000 10.000 10.000
Ps-8° 2.000 5.000 5.000 8.000 10.000 10.000
[12] 2.000 5.000 5.000 8.000 10.000 10.000
[29] 2.000 5.000 5.000 8.000 10.000 10.000
0.20 PS-4 1.770 3.891 3.891 5.663 6.724 6.724
PS-6 1.769 3.877 3.877 5.622 6.656 6.656
PS-8 1.769 3.872 3.872 5.607 6.632 6.632
PS-10 1.768 3.870 3.870 5.600 6.621 6.621
PS-12 1.768 3.868 3.868 5.596 6.615 6.615
PS-14* 1.768 3.868 3.868 5.594 6.611 6.611
PS-14° 1.807 4.000 4.000 5.807 6.867 6.867
[29] 1.768 3.866 3.866 5.588 6.601 6.601
[30] 1.768 3.876 3.876 5.600 6.633 —
CCcCC 0.001 PS-2 3.696 7.541 7.712 12.756 13.813 14.238
PS-4 3.647 7.438 7.444 10.993 13.346 13.427
PS-6 3.646 7.436 7.436 10.966 13.332 13.397
PS-8* 3.646 7.436 7.436 10.965 13.332 13.395
Ps-8° 3.646 7.436 7.436 10.965 13.332 13.395
[12] 3.647 7.438 7.438 10.970 13.338 13.339
[29] 3.646 7.436 7.436 10.965 13.332 13.395
0.20 PS-4 2.696 4.736 4.736 6.406 7.332 7.438
PS-6 2.691 4.711 4711 6.347 7.248 7.350
PS-8 2.690 4.702 4.702 6.326 7.217 7.318
PS-10 2.689 4.698 4.698 6.316 7.203 7.303
PS-12 2.688 4.696 4.696 6.311 7.195 7.295
PS-14* 2.688 4.694 4.694 6.308 7.190 7.290
PS-14° 2.726 4.808 4.308 6.438 7.425 7.496
[29] 2.688 4.691 4.691 6.299 7.177 7.276
[30] 2.688 4.700 4.700 6.310 7.232 —
CSFF 0.001 PS-2 1.540 2.088 4.039 5.016 5.715 7.912
PS-4 1.540 2.086 4.027 5.011 5.704 7.836
PS-6 1.540 2.086 4.026 5.011 5.703 7.835
PS-8* 1.539 2.086 4.026 5.010 5.702 7.834
PS-8° 1.539 2.086 4.026 5.010 5.703 7.835
[12] 1.549 2.095 4.030 5.040 5.737 7.839
[29] 1.540 2.087 4.027 5.011 5.704 7.835
0.20 PS4 1.326 1.704 3.064 3.647 4.031 5.264
PS-6 1.326 1.703 3.058 3.636 4.015 5.233
PS-8 1.326 1.702 3.056 3.631 4.010 5.221
PS-10 1.325 1.702 3.055 3.629 4.007 5.216
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Table 2 (continued)

Boundary condition t/b Source Mode sequences
1 2 3 4 5 6
PS-12 1.325 1.702 3.054 3.628 4.006 5.213
PS-14* 1.325 1.702 3.054 3.628 4.005 5.211
PS-14° 1.342 1.749 3.241 3.729 4.156 5.512
[29] 1.325 1.702 3.053 3.626 4.003 5.206

“Present study with rotary inertia with mesh division (8 x 8).
Present study without rotary inertia.

Table 3
Frequency parameters A = (wbz/nz)\/(pt/D) for rectangular plates: boundary conditions (SSSS)
alb t/b Source Mode sequences
1 2 3 4 5 6
1.0 0.001 PS-8 2.000 5.000 5.000 8.000 10.000 10.000
[29] 2.000 5.000 5.000 8.000 10.000 10.000
0.10 PS-14 1.932 4.609 4.609 7.075 8.622 8.622
[24] 1.931 4.606 4.606 7.066 8.611 8.611
[29] 1.932 4.608 4.608 7.072 8.616 8.616
0.20 PS-14 1.768 3.868 3.868 5.594 6.611 6.611
[24] 1.767 3.861 3.861 5.573 6.576 6.576
[29] 1.768 3.866 3.866 5.588 6.601 6.601
1.5 0.001 PS-8 1.444 2.778 4.444 5.000 5.778 8.000
[29] 1.445 2.778 4.445 5.000 5.778 8.000
0.10 PS-14 1.408 2.649 4.131 4.610 5.267 7.076
[29] 1.408 2.649 4.130 4.608 5.266 7.072
0.20 PS-14 1.317 2.362 3.514 3.869 4.345 5.597
[29] 1.316 2.361 3.512 3.866 4.341 5.588
2.0 0.001 PS-8 1.250 2.000 3.250 4.250 5.000 5.000
[29] 1.250 2.000 3.250 4.250 5.000 5.000
0.10 PS-14 1.223 1.932 3.077 3.962 4.610 4.610
[29] 1.223 1.932 3.076 3.961 4.608 4.608
0.20 PS-14 1.152 1.768 2.704 3.387 3.869 3.869
[29] 1.152 1.768 2.702 3.385 3.866 3.866
2.5 0.001 PS-8 1.160 1.640 2.440 3.560 4.160 4.640
[29] 1.160 1.640 2.440 3.560 4.160 4.640
0.10 PS-14 1.136 1.594 2.340 3.354 3.884 4.301
[29] 1.136 1.594 2.340 3.353 3.883 4.299
0.20 PS-14 1.075 1.478 2.109 2.921 3.328 3.641

[29] 1.075 1.478 2.109 2919 3.325 3.638
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Table 4
Frequency parameters 4 = (wbz/nz)J(pt/D) for rectangular plates: boundary conditions (SSCF)
alb t/b Source Mode sequences
1 2 3 4 5 6
1.0 0.001 PS-8 1.285 3.350 4.225 6.385 7.335 9.181
[29] 1.285 3.350 4.225 6.385 7.335 9.181
0.10 PS-14 1.241 3.081 3.915 5.656 6.358 7.961
[29] 1.241 3.081 3.915 5.654 6.356 7.957
0.20 PS-14 1.151 2.610 3.334 4.535 4918 6.168
[29] 1.151 2.610 3.333 4.532 4914 6.160
1.5 0.001 PS-8 0.758 2.040 2.748 4.157 4.225 6.385
[29] 0.758 2.040 2.748 4.157 4.225 6.385
0.10 PS-14 0.736 1.950 2.556 3.781 3.915 5.656
[29] 0.736 1.950 2.556 3.780 3.915 5.654
0.20 PS-14 0.694 1.766 2.195 3.152 3.335 4.536
[29] 0.694 1.766 2.195 3.151 3.333 4.532
2.0 0.001 PS-8 0.578 1.285 2.502 2.527 3.350 4.225
[29] 0.578 1.286 2.502 2.527 3.350 4.225
0.10 PS-14 0.563 1.241 2.365 2.377 3.081 3.915
[29] 0.563 1.241 2.365 2.377 3.081 3.915
0.20 PS-14 0.536 1.151 2.043 2.122 2.611 3.335
[29] 0.536 1.151 2.042 2.121 2.610 3.333
2.5 0.001 PS-8 0.497 0.942 1.711 2.423 2.8306 2.964
[29] 0.497 0.942 1.711 2.423 2.806 2.964
0.10 PS-14 0.485 0913 1.643 2.275 2.654 2.745
[29] 0.485 0913 1.643 2.274 2.654 2.744
0.20 PS-14 0.464 0.856 1.504 1.971 2.345 2.348
[29] 0.464 0.856 1.503 1.970 2.344 2.348

3.2. Convergence study

For all the examples Poisson’s ratio of the plate material is taken as 0.3 and the warping factor
(k) is assumed to be 1.2. The geometry of the rectangular plate is shown in Fig. 5. The boundary
conditions of the plate with clamped edge (x = 0), simply supported edge (x = a), clamped edge
(y = 0) and free edge (y = b) are symbolized as CSCF. The eigenvalues obtained in the present
investigation have been expressed in the non-dimensional form which is defined by the parameters
Ji = (wib? /1) /(pt/ D). Several case studies have been investigated for isotropic rectangular plates
with  different thickness ratios (¢#/b=0.001, 0.1 and 0.2), different aspect ratios
(a/b=0.4,0.6,0.8,1.0,1.5,2.0 and 2.5) and 21 different combinations of simply supported (S),
clamped (C) and free (F) boundary conditions.
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Table 5
Frequency parameters, 4 = (wb*/n%)./(pt/D) for rectangular plates: boundary conditions (SSFF)
alb t/b Source Mode sequences
1 2 3 4 5 6
1.0 0.001 PS-8 0.976 1.635 3.721 3.946 4.735 7.167
[24] 0.976 1.632 3.707 3.944 4.728 7.143
[29] 0.977 1.636 3.722 3.946 4.736 7.167
0.10 PS-14 0.957 1.559 3.431 3.684 4.337 6.299
[24] 0.956 1.557 3.417 3.681 4.327 6.271
[29] 0.957 1.559 3.431 3.684 4.336 6.297
0.20 PS-14 0.910 1.428 2.953 3.169 3.645 5.026
[24] 0.910 1.426 2.941 3.164 3.634 4.997
[29] 0.910 1.428 2.952 3.168 3.644 5.022
1.5 0.001 PS-8 0.430 0.974 1.744 2.470 2.963 3.946
[29] 0.433 0.975 1.744 2.470 2.963 3.946
0.10 PS-14 0.426 0.934 1.687 2.332 2.780 3.684
[29] 0.426 0.934 1.687 2.332 2.780 3.684
0.20 PS-14 0.416 0.874 1.555 2.081 2.456 3.170
[29] 0.416 0.874 1.555 2.081 2.455 3.168
2.0 0.001 PS-8 0.241 0.697 0.976 1.635 2.211 2.672
[29] 0.244 0.698 0.977 1.635 2.211 2.672
0.10 PS-14 0.240 0.670 0.957 1.559 2.122 2.531
[29] 0.240 0.670 0.957 1.559 2.122 2.531
0.20 PS-14 0.236 0.631 0.910 1.428 1.924 2.264
[29] 0.236 0.631 0.910 1.428 1.924 2.263
2.5 0.001 PS-8 0.154 0.545 0.622 1.219 1.410 2.113
[29] 0.160 0.547 0.624 1.220 1.411 2.114
0.10 PS-14 0.153 0.524 0.614 1.168 1.371 2.005
[29] 0.153 0.524 0.614 1.168 1.371 2.005
0.20 PS-14 0.152 0.496 0.593 1.084 1.281 1.809
[29] 0.152 0.496 0.593 1.084 1.281 1.808

Convergence studies have been carried out for three selected square plates. The plates are
analyzed with and without the rotary inertia. The first one is with all edges simply supported
(SSSS), the second one with all edges clamped (CCCC) and the third one with one edge (x = 0)
clamped, one edge (x = @) simply supported and the remaining two edges free (CSFF). The non-
dimensional frequency parameters (4;) for the first six modes are displayed with the available
published results of Leissa [12], Liew et al. [29] and Kanaka Raju and Hinton [30] for thickness
ratios (¢/b) of 0.001 and 0.2 in Table 2. It has been found from tables that the rotary inertia has an
almost null effect on the frequency response of thin plates (z/b = 0.001) but a great influence on
the aforementioned response when the plates become thick (¢/b = 0.2). For simply supported
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Table 6
Frequency parameters, A = (wb*/n%)/(pt/D) for rectangular plates: boundary conditions (CCCC)
alb t/b Source Mode sequences
1 2 3 4 5 6
1.0 0.001 PS-8 3.646 7.436 7.436 10.965 13.332 13.395
[29] 3.646 7.436 7.436 10.965 13.332 13.395
0.10 PS-14 3.296 6.288 6.288 8.816 10.389 10.488
[24] 3.294 6.277 6.277 8.786 10.340 10.438
[29] 3.295 6.286 6.286 8.810 10.379 10.478
0.20 PS-14 2.688 4.694 4.694 6.308 7.190 7.290
[29] 2.688 4.691 4.691 6.299 7.177 7.276
1.5 0.001 PS-8 2.736 4.225 6.700 6.740 8.086 10.215
[29] 2.736 4.226 6.700 6.740 8.086 10.214
0.10 PS-14 2.525 3.798 5.739 5.831 6.793 8.432
[29] 2.525 3.798 5.737 5.828 6.789 8.425
0.20 PS-14 2.120 3.074 4.326 4.4384 5.053 6.160
[29] 2.120 3.073 4322 4.480 5.046 6.148
2.0 0.001 PS-8 2.490 3.225 4.536 6.417 6.483 7.202
[29] 2.491 3.225 4.536 6.417 6.483 7.202
0.10 PS-14 2.309 2.952 4.072 5.573 5.609 6.129
[29] 2.309 2.952 4.071 5.571 5.607 6.126
0.20 PS-14 1.950 2.453 3.292 4.209 4.376 4.604
[29] 1.950 2.452 3.290 4.205 4.371 4.598
2.5 0.001 PS-8 2.396 2.818 3.589 4.729 6.232 6.392
[29] 2.396 2.818 3.589 4.729 6.233 6.392
0.10 PS-14 2.226 2.597 3.270 4.243 5.479 5.503
[29] 2.226 2.597 3.270 4.242 5.476 5.500
0.20 PS-14 1.883 2.178 2.703 3.431 4.159 4.310
[29] 1.883 2.177 2.702 3.428 4.154 4.305

square plates the maximum deviation of the nondimensional frequency parameters by the present
analysis with and without rotary inertia from those obtained by Liew et al. [29] is 0.15% and
4.03%, respectively. As the present element (with rotary inertia) predicts the frequency parameters
more accurately, all the plates are analyzed considering the rotary inertia. From Table 2 it is
found that the present element has good convergence characteristics and good accuracy to predict
the frequency parameters for thin plates (¢/b = 0.001) as well as thick plates (z/b = 0.2). It is also
observed that the frequency parameters (4;) monotonically decrease and approach the exact
values with the increase in the number of elements used.

3.3. Parametric study

To study the effect of boundary conditions, thickness ratios and aspect ratios, 21 different
boundary conditions with three different thickness ratios (z/b = 0.001,0.1 and 0.2) and seven
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Fig. 6. First six nondimensional frequency parameters (4;) of SSCC Mindlin plates with respect to aspect ratio (y).
(a) t/b=0.001, (b) /b =0.2.

w
=]
=
~

<

O I

- AN
10 1 \: o i
A R N

B RN NN
o ® o N &
—
IR
IS
o g s W
\ \ \
© S
\ !
1
R
T TR TR
OB WN P
, ,

8

6 1 \A\‘l‘;i \ . A\-

4 _\ .\ \ \ 2 4 l\l\ \.\
SN — A ] E—

2 — S

O 47— O r——————7—

0.5 1.0 15 2.0 25 0.5 1.0 15 2.0 25
@ X (b)

Fig. 7. First six nondimensional frequency parameters (4;) of SSCS Mindlin plates with respect to aspect ratio (y).
(a) t/b=10.001, (b) /b =0.2.

different aspect ratios (a/b) have been considered in the present investigation. The numerical data
for four different aspect ratios (a/b = 1.0, 1.5,2.0 and 2.5) from the present formulation have been
given in Tables 3—6 along with the published results of Liessa [12], Sheikh et al. [24] and Liew et al.
[29] for five different boundary conditions (SSSS, SSCF, SSFF and CCCC). From the tables it can
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be seen that the aspect ratios, thickness ratios and boundary conditions have great influences on
the normal modes of vibration of rectangular plates. It is also found that as the thickness of the
plate increases the frequency parameter decreases clearly showing the effect of rotary inertia and
shear deformation on free vibration of plates. It is further observed that the frequency parameters
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(a) t/b = 0.001, (b) t/b =0.2.
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for simply supported rectangular plates are much lower than those for clamped rectangular plates.
This implies that higher constraints on the edges increases the flexural rigidity of the plate and
results in higher frequency response. Liew et al. [29] analyzed the problems using Rayleigh—Ritz
procedure considering Mindlin’s plate theory. From the results it is found that higher mesh
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Fig. 13. First six nondimensional frequency parameters (4;) of CFCF Mindlin plates with respect to aspect ratio (y).
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divisions are required to get the converged results for thick (z/a =0.1 and 0.2) plates in
comparison with the thin (/@ = 0.001) plates. The results obtained from the present analysis are
given in graphical form in Figs. 6-22 for the remaining boundary conditions (SSCC, SSCS, SSSF,
CCCS, CCCF, CSCS, CSCF, CFCF, CCSF, CSSF, CFSF, CCFF, CSFF, CFFF, SFSF, SFFF
and FFFF). The first six non-dimensional frequency parameters are plotted as a function of
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aspect ratio (a/b) for two different thickness ratios (/b = 0.001 and 0.2) in sub-plots (a) and (b) in
each figure. From these figures it is observed that the frequency parameters decrease as the aspect
ratio increases.
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Fig. 16. First six nondimensional frequency parameters (4;) of CFSF Mindlin plates with respect to aspect ratio (y).

(a) t/b = 0.001, (b) #/b = 0.2.
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(a) 1/b = 0.001, (b) t/b = 0.2.

4. Conclusions

A 24 node triangular plate bending element with 51 degrees of freedom has been utilized to
investigate the free vibration of isotropic rectangular plates with different thickness ratios, aspect
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Fig. 19. First six nondimensional frequency parameters (/;) of CFFF Mindlin plates with respect to aspect ratio (y).
(a) t/b=0.001, (b) /b =0.2.

ratios and boundary conditions. The degrees of freedom associated with the six internal nodes are
condensed by the Guyan reduction scheme to get the reduced element stiffness and mass matrices
of the order of 39 x 39. A comparative study of present results with those of earlier investigators
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Fig. 20. First six nondimensional frequency parameters (4;) of SFSF Mindlin plates with respect to aspect ratio (y).

(a) t/b = 0.001. (b) 1/b = 0.2.
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Fig. 21. First six nondimensional frequency parameters (4;) of SFFF Mindlin plates with respect to aspect ratio (y).

(a) t/b = 0.001, (b) t/b =0.2.

shows the rapid convergence characteristics and accuracy of the present element for very thin to
thick plates. It can also be concluded that due to increase of node numbers on the edges of the
proposed element the mass and rotary inertia distribution at different nodes are such that the
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Fig. 22. First six nondimensional frequency parameters (4;) of FFFF Mindlin plates with respect to aspect ratio ().
(a) t/b=0.001, (b) /b =0.2.

mass as well as rotary inertia associated with the internal nodes are negligible compared to those
with the nodes on the edges. This helps the application of the Guyan reduction scheme to this
element efficiently and accurately.
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