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Abstract

Although the dynamic characteristics of a beam carrying multiple two degree-of-freedom (dof)
spring–damper–mass systems is one of the important topics in engineering, the information in this aspect is
rare. The object of this paper is to replace the effect of each 2-dof spring–damper–mass system, composed
of two springs, two dashpots and one lumped mass, by a set of equivalent dampers, so that the natural
frequencies of a beam carrying any number of 2-dof spring–damper–mass systems may be solved from a
beam supported by the same number of sets of equivalent dampers. Instead of using both the real part ðojRÞ

and the imaginary part ðojI Þ of a complex eigenvalue, this paper uses the implicit-form complex eigenvalue,
oj ; to derive the mathematical expressions, therefore, much more compact formulations were obtained. To
confirm the reliability of the presented theory, all the numerical results obtained from the equivalent-damper

method (EDM) were compared with those obtained from the conventional finite element method (FEM)
and good agreement was achieved. Since the order of the overall property matrices for the equations of
motion of the entire structural system derived from the EDM is much less than that derived from the FEM,
the computer time required by the EDM is much less than that required by the FEM, particularly in the
forced vibration analysis of a structural system using the step-by-step integration method, where the CPU
time consumed is proportional to the total number of time steps. In addition, the EDM also provides a
simple approach for evaluating the damping effect of each spring–damper–mass system. Furthermore, the
presented equivalent dampers will provide an alternative choice for the effective vibration absorbers,
because the damping effects of the equivalent dampers are dependent on the physical properties of their
see front matter r 2004 Elsevier Ltd. All rights reserved.
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constituent parts (i.e., the springs, the dashpots and the lumped masses) and will be more flexible (or
adjustable) than the damping effects of the classical dampers.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration analyses of structures with rigidly attached or elastically mounted equipments, such
as engines, motors, oscillators, etc., are the important topics in structural engineering and, in
general, each of the above-mentioned equipments can be simplified as a concentrated element,
thus, a lot of researchers devoted themselves to studying the dynamic characteristics of beams
carrying various rigidly attached or elastically mounted concentrated elements. For example,
Bapat and Bapat [1] have studied the free vibration characteristics of a beam carrying multiple
concentrated masses. Gürgöze [2] has obtained the exact solution for the natural frequencies of a
beam and robs with point masses. Laura et al. [3,4] have researched the free vibration
characteristics of an elastically restrain-free beam and a cantilever beam carrying a tip mass. Rossi
et al. [5] have studied the exact solutions for the frequencies and mode shapes of a Timoshenko
beam carrying a spring–mass system with three types of boundary conditions. Nicholson and
Bergman [6,7] have used the Green functions to determine the free and forced vibration responses
of an undamped and damped simply supported beam with an elastically mounted mass. Ozguven
and Candir [8] have determined the optimum parameters of a beam with two vibration absorbers
by modifying each of the vibration absorbers as a single-degree-of-freedom (dof) spring–-
damper–mass system. Dowell [9] has derived the frequency equation of a beam carrying a
spring–mass system by means of the Lagrange method. Wu et al. have determined the natural
frequencies and mode shapes of a Timoshenko beam carrying multiple 1-dof spring–mass systems
using the numerical assembly technique [10] and those of a Bernoulli–Euler cantilever beam
carrying multiple 1-dof spring–mass systems using the analytical-and-numerical-combined
method [11]. Laura et al. [12], Ercoli and Laura [13], Rossit and Laura [14] and Larrondo et
al. [15] have performed the free vibration analysis of a Bernoulli–Euler beam with elastically
mounted concentrated masses by means of various analytical approaches. The theoretical results
were compared with the experimental ones and satisfactory agreement was achieved. Gürgöze [16]
has used the Lagrange method to derive the frequency equation of a clamped-free Bernouli–Euler
beam mounted with a tip mass and a spring–mass system. Yoshimura et al. [17,18], Lin and
Trethewey [19,20] and Frýba [21] have studied the forced vibration responses of the beam under a
moving vehicle, where the vehicle is modelled as a lumped mass elastically supported by a spring.
Wu et al. [22,23] have studied the free vibrations of beams with 1-dof spring–damper–mass
systems with the analytical-and-numerical-combined method and the conventional finite element
method (FEM), while Chang et al. [24], Jen and Magrab [25], Wu and Whittaker [26] and Wu [27]
have investigated those of beams carrying single and multiple 2-dof spring–mass systems without

dampers by means of various approaches. In spite of the fact that the dynamic behaviours of
beams carrying multiple 2-dof spring–damper–mass systems are also important problems in
engineering, from the foregoing literature review, one sees that the material concerned is not
found yet. Therefore, this paper attempts to study the last problem and to present some
information in this aspect.
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For convenience, a beam without attachment is called the bare beam and that carries any
number of 2-dof spring–damper–mass systems is called the loading beam. In this paper, each 2-dof
spring–damper–mass system is firstly replaced by four effective dampers with damping coefficients
c
ðvÞ
eff ;ij ði; j ¼ 1; 2Þ: The last effective dampers are, in turn, replaced by a set of equivalent dampers

with damping coefficients, c
ðvÞ
eq;i and c

ðvÞ
eq;k: Incorporating the expansion theorem, the equation of

motion for the loading beam is derived analytically based on the last equivalent dampers together
with the natural frequencies and mode shapes of the bare beam. Since the damping coefficients
c
ðvÞ
eff ;ij ði; j ¼ 1; 2Þ for the effective dampers are functions of the eigenvalues of the loading beam, the
cut and trial procedure is used to find the eigenvalues of the loading beam. Because the loading
beam is a damped structural system, its eigenvalues are in complex form. Hence, one needs to
guess two values, one for real part and one for imaginary part, to determine the eigenvalue in each
iteration procedure. To overcome the difficulties encountered, the relation between the real part
and the imaginary part of a complex eigenvalue is derived. By means of the last relationship, one
only needs to guess one value to determine the desired eigenvalue in each cut and trial procedure.
2. Effective dampers for a 2-dof spring–damper–mass system

Fig. 1(a) shows a uniform beam carrying a 2-dof spring–damper–mass system located at x ¼

x
ðvÞ
i and x ¼ x

ðvÞ
k ; in which mðvÞ

e ; JðvÞ
e ; kðvÞ

y and cðvÞ are, respectively, the lumped mass, mass moment
of inertia, spring constants and damping coefficients of the spring–damper–mass system, while a

ðvÞ
1

and a
ðvÞ
2 are, respectively, the distances between the lumped mass mðvÞ

e and the two springs kðvÞ
y (or

dampers cðvÞ). Besides, uv and yv are, respectively, the translational and rotational displacements of
the lumped mass mðvÞ

e ; ui and yi are, respectively, the transverse displacement and rotational angle
(or slope) of the beam at node ; and uk and yk are those at node k . It is noted that all the
superscripts v in the foregoing symbols represent the vth 2-dof spring–damper–mass system
attached to the beam.
If the external loads on the 2-dof spring–damper–mass system are zero, i.e., Fv ¼ Mv ¼ 0; then

from Fig. 1(a) one obtains

mðvÞ
e €uv � F

ðvÞ
i � F

ðvÞ
k ¼ 0; ð1aÞ

JðvÞ
e
€yv þ F

ðvÞ
i a

ðvÞ
1 � F

ðvÞ
k a

ðvÞ
2 ¼ 0; ð1bÞ

where F
ðvÞ
i and F

ðvÞ
k are, respectively, the forces at nodes and k of the beam, and are given by

F
ðvÞ
i ¼ kðvÞ

y ðui � uv þ a
ðvÞ
1 yvÞ þ cðvÞð _ui � _uv þ a

ðvÞ
1
_yvÞ; ð2Þ

F
ðvÞ
k ¼ kðvÞ

y ðuk � uv � a
ðvÞ
2 yvÞ þ cðvÞð _uk � _uv � a

ðvÞ
2
_yvÞ: ð3Þ

The last two equations are obtained based on the force equilibrium between the beam and the
2-dof spring–damper–mass system.
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Fig. 1. (a) A 2-dof spring–damper–mass system attaching to a uniform beam can be replaced by (b) four effective

dampers with damping coefficients c
ðvÞ
eff ;ij ði; j ¼ 1; 2Þ or (c) two equivalent dampers with damping coefficients c

ðvÞ
eq;i and

c
ðvÞ
eq;k:
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Substituting Eqs. (2) and (3) into Eqs. (1a) and 1(b), one obtains

mðvÞ
e €uv þ cðvÞ½� _ui � _uk þ 2 _uv � ða

ðvÞ
1 � a

ðvÞ
2 Þ_yv�

þ kðvÞ
y ½�ui � uk þ 2uv � ða

ðvÞ
1 � a

ðvÞ
2 Þyv� ¼ 0; ð4aÞ

JðvÞ
e
€yv þ cðvÞ½a

ðvÞ
1 _ui � a

ðvÞ
2 _uk � ða

ðvÞ
1 � a

ðvÞ
2 Þ _uv þ ða

ðvÞ2

1 þ a
ðvÞ2

2 Þ_yv�

þ kðvÞ
y ½a

ðvÞ
1 ui � a

ðvÞ
2 uk � ða

ðvÞ
1 � a

ðvÞ
2 Þuv þ ða

ðvÞ2

1 þ a
ðvÞ2

2 Þyv� ¼ 0: ð4bÞ

Writing the last two equations in matrix form yields

mðvÞ
e 0

0 JðvÞ
e

" #
€uv

€yv

( )
þ cðvÞ

�1 �1

a
ðvÞ
1 �a

ðvÞ
2

" #
_ui

_uk

( )
þ cðvÞ

2 �ða
ðvÞ
1 � a

ðvÞ
2 Þ

�ða
ðvÞ
1 � a

ðvÞ
2 Þ a

ðvÞ2

1 þ a
ðvÞ2

2

2
4

3
5 _uv

_yv

( )

þ kðvÞ
y

�1 �1

a
ðvÞ
1 �a

ðvÞ
2

" #
ui

uk

( )
þ kðvÞ

y

2 �ða
ðvÞ
1 � a

ðvÞ
2 Þ

�ða
ðvÞ
1 � a

ðvÞ
2 Þ ða

ðvÞ2

1 þ a
ðvÞ2

2 Þ

2
4

3
5 uv

yv

( )
¼ 0: ð5Þ

If the loading beam performs harmonic free vibration, one has

ui ¼ �uie
�ot; uk ¼ �uke

�ot; uv ¼ �uve
�ot; yv ¼

�yve
�ot; ð6Þ

where

�o ¼ �oR þ i �oI : ð7Þ

In the last expressions, �oR and �oI are, respectively, the real and imaginary parts of the
eigenvalue ( �o) of the loading beam, while �ui; �uk; �uv and �yv are, respectively, the amplitudes of
ui; uk; uv and yv; t is time and i ¼

ffiffiffiffiffiffiffi
�1

p
:

From Eq. (6) one obtains

ui ¼ _ui= �o; €ui ¼ _ui �o; uk ¼ _uk= �o; €uk ¼ _uk �o;

uv ¼ _uv= �o; €uv ¼ _uv �o; yv ¼
_yv= �o; €yv ¼

_yv �o: ð8Þ

Introducing Eq. (8) into Eq. (5) leads to

�o
mðvÞ

e 0

0 J ðvÞ
e

" #
_uv

_yv

( )

þ cðvÞ
�1 �1

a
ðvÞ
1 �a

ðvÞ
2

" #
_ui

_uk

( )
þ cðvÞ

2 �ða
ðvÞ
1 � a

ðvÞ
2 Þ

�ða
ðvÞ
1 � a

ðvÞ
2 Þ ða

ðvÞ2

1 þ a
ðvÞ2

2 Þ

2
4

3
5 _uv

_yv

( )

þ
kðvÞ

y

�o

�1 �1

a
ðvÞ
1 �a

ðvÞ
2

" #
_ui

_uk

( )
þ

kðvÞ
y

�o

2 �ða
ðvÞ
1 � a

ðvÞ
2 Þ

�ða
ðvÞ
1 � a

ðvÞ
2 Þ ða

ðvÞ2

1 þ a
ðvÞ2

2 Þ

2
4

3
5 _uv

_yv

( )
¼ 0 ð9Þ
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or

_uv

_yv

( )

¼
� �omðvÞ

e � 2cðvÞ �
2kðvÞ

y

�o a
ðvÞ
1 cðvÞ � a

ðvÞ
2 cðvÞ þ

kðvÞ
y ða

ðvÞ

1
�a

ðvÞ

2
Þ

�o

a
ðvÞ
1 cðvÞ � a

ðvÞ
2 cðvÞ þ

kðvÞ
y ða

ðvÞ

1
�a

ðvÞ

2
Þ

�o � �oJðvÞ
e � a

ðvÞ2

1 cðvÞ � a
ðvÞ2

2 cðvÞ �
kðvÞ

y ða
ðvÞ2

1
þa

ðvÞ2

2
Þ

�o

2
64

3
75
�1

	
�cðvÞ �

kðvÞ
y

�o �cðvÞ �
kðvÞ

y

�o

a
ðvÞ
1 cðvÞ þ

a
ðvÞ

1
kðvÞ

y

�o �a
ðvÞ
2 cðvÞ �

a
ðvÞ

2
kðvÞ

y

�o

2
64

3
75 _ui

_uk

( )
: ð10Þ

Substituting ui; uk; uv and yv given by Eq. (8) and _uv and _yv given by Eq. (10) into Eqs. (2) and
(3), one obtains

F
ðvÞ
i

F
ðvÞ
k

8<
:

9=
; ¼

cðvÞ þ
kðvÞ

y

�o 0

0 cðvÞ þ
kðvÞ

y

�o

2
64

3
75

0
B@

þ
�cðvÞ �

kðvÞ
y

�o a
ðvÞ
1 cðvÞ þ

a
ðvÞ

1
kðvÞ

y

�o

�cðvÞ �
kðvÞ

y

�o �a
ðvÞ
2 cðvÞ �

a
ðvÞ

2
kðvÞ

y

�o

2
64

3
75 W 11 W 12

W 21 W 22

" #
�cðvÞ �

kðvÞ
y

�o �cðvÞ �
kðvÞ

y

�o

a
ðvÞ
1 cðvÞ þ

a
ðvÞ

1
kðvÞ

y

�o �a
ðvÞ
2 cðvÞ �

a
ðvÞ

2
kðvÞ

y

�o

2
64

3
75
1
CA _ui

_uk

( )
;

ð11Þ

where

W 11 ¼ � �oJ ðvÞ
e � a

ðvÞ2

1 cðvÞ � a
ðvÞ2

2 cðvÞ �
kðvÞ

y ða
ðvÞ2

1 þ a
ðvÞ2

2 Þ

�o

2
4

3
5 D= ; ð12aÞ

W 12 ¼ � a
ðvÞ
1 cðvÞ � a

ðvÞ
2 cðvÞ þ

kðvÞ
y ða

ðvÞ
1 � a

ðvÞ
2 Þ

�o

" #
D= ¼ W 21; ð12bÞ

W 22 ¼ � �omðvÞ
e � 2cðvÞ �

2kðvÞ
y

�o

" #
D= ð12cÞ

and

D ¼
� �omðvÞ

e � 2cðvÞ �
2kðvÞ

y

�o a
ðvÞ
1 cðvÞ � a

ðvÞ
2 cðvÞ þ

kðvÞ
y ða

ðvÞ

1
�a

ðvÞ

2
Þ

�o

a
ðvÞ
1 cðvÞ � a

ðvÞ
2 cðvÞ þ

kðvÞ
y ða

ðvÞ

1
�a

ðvÞ

2
Þ

�o � �oJðvÞ
e � a

ðvÞ2

1 cðvÞ � a
ðvÞ2

2 cðvÞ �
kðvÞ

y ða
ðvÞ2

1
þa

ðvÞ2

2
Þ

�o

������
������: ð12dÞ
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From Eq. (11), one obtains the following relationship between fFi Fk g and f _ui _uk g:

F
ðvÞ
i

F
ðvÞ
k

( )
¼

c
ðvÞ
eff ;11 c

ðvÞ
eff ;12

c
ðvÞ
eff ;21 c

ðvÞ
eff ;22

" #
_ui

_uk

� �
; ð13Þ

where

ceff ;11 ¼ X þ W 11X
2 � a

ðvÞ
1 W 21X

2 � a
ðvÞ
1 W 12X

2 þ a
ðvÞ2

1 W 22X
2; ð14aÞ

ceff ;12 ¼ W 11X
2 � a

ðvÞ
1 W 21X

2 þ a
ðvÞ
2 W 12X

2 � a
ðvÞ
1 a

ðvÞ
2 W 22X

2; ð14bÞ

ceff ;21 ¼ W 11X
2 þ a

ðvÞ
2 W 21X

2 � a
ðvÞ
1 W 12X

2 � a
ðvÞ
1 a

ðvÞ
2 W 22X

2; ð14cÞ

ceff ;22 ¼ X þ W 11X
2 þ a

ðvÞ
2 W 21X

2 þ a
ðvÞ
2 W 12X

2 þ a
ðvÞ2

2 W 22X
2; ð14dÞ

with

X ¼ cðvÞ þ
kðvÞ

y

�o
: ð15Þ

Eq. (13) indicates that the 2-dof spring–damper–mass system shown in Fig. 1(a) can be replaced
by four effective dampers with damping coefficients c

ðvÞ
eff ;ij ði; j ¼ 1; 2Þ given by Eq. (14) and shown

in Fig. 1(b).
3. Equivalent dampers for a 2-dof spring–damper–mass system

The expansion of Eq. (13) gives

F
ðvÞ
i ¼ c

ðvÞ
eff ;11 _ui þ c

ðvÞ
eff ;12 _uk ¼ ½c

ðvÞ
eff ;11 þ c

ðvÞ
eff ;12ð _uk= _uiÞ� _ui; ð16aÞ

F
ðvÞ
k ¼ c

ðvÞ
eff ;21 _ui þ c

ðvÞ
eff ;22 _uk ¼ ½c

ðvÞ
eff ;21ð _ui= _ukÞ þ c

ðvÞ
eff ;22� _uk: ð16bÞ

Substituting _ui and _uk given by Eq. (8) into Eq. (16) and writing the resulting expressions in
matrix form yields

F
ðvÞ
i

F
ðvÞ
k

( )
¼

c
ðvÞ
eff ;11 þ c

ðvÞ
eff ;12Rs 0

0 ðc
ðvÞ
eff ;21=RsÞ þ c

ðvÞ
eff ;22

" #
_ui

_uk

� �
; ð17aÞ

where

Rs ¼ uk=ui ¼ �Y sðx
ðvÞ
k Þ= �Y sðx

ðvÞ
i Þ: ð17bÞ

In the last expression, �Y sðx
ðvÞ
i Þ and �Y sðx

ðvÞ
k Þ; respectively, represent the modal displacements of

the sth mode shape at the attaching points of the vth 2-dof spring–damper–mass system, x ¼ x
ðvÞ
i

and x ¼ x
ðvÞ
k :

Eq. (17a) reveals that the vth 2-dof spring–damper–mass system attached to the beam may
be replaced by a set of equivalent dampers with damping coefficients, c

ðvÞ
eq;i and c

ðvÞ
eq;k; given by (see
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Fig. 1(c))

c
ðvÞ
eq;i ¼ c

ðvÞ
eff ;11 þ c

ðvÞ
eff ;12Rs; ð18aÞ

c
ðvÞ
eq;k ¼ ðc

ðvÞ
eff ;21=RsÞ þ c

ðvÞ
eff ;22: ð18bÞ

From the above formulations, one sees that the magnitudes of the damping coefficients, c
ðvÞ
eq;i

and c
ðvÞ
eq;k; of the vth equivalent dampers are dependent on the magnitudes of the two spring

constants kðvÞ
y ; the two damping coefficients cðvÞ and the one lumped mass mðvÞ

e of the vth 2-dof
spring–damper–mass system attached to the beam. Therefore, the damping effect of an equivalent
damper will be more flexible (or adjustable) than that of the classical dashpot. Furthermore, the
last equivalent-damper method (EDM) also provides a simple approach for evaluating the overall
damping effect of a spring–damper–mass system.
4. Eigenvalue equation for a uniform beam with multiple equivalent dampers

The equation of motion for a uniform beam carrying p 2-dof spring–damper–mass systems
takes the form [11,26]

EI
q4yðx; tÞ
qx4

þ �m
q2yðx; tÞ

qt2
¼

Xp

v¼1

F
ðvÞ
i dðx � x

ðvÞ
i Þ þ

Xp

v¼1

F
ðvÞ
k dðx � x

ðvÞ
k Þ; ð19Þ

where E is the Young’s modulus, I is the moment of inertia for cross-sectional area of the beam, �m
is the mass per unit length of the beam, yðx; tÞ is the transverse deflection of the beam at position x

and time t, F
ðvÞ
i and F

ðvÞ
k are, respectively, the interaction force at the contacting points, x ¼ x

ðvÞ
i

and x ¼ x
ðvÞ
k ; between the vth 2-dof spring–damper–mass system and the beam, and dð�Þ is the

Dirac delta function.
Based on the expansion theorem [28] or the mode superposition method [29], the transverse

deflection of the beam is given by

yðx; tÞ ¼
Xn0

s¼1

�Y sðxÞqsðtÞ; ð20Þ

where �Y sðxÞ represents the sth mode shape of the bare beam, qsðtÞ is the generalized coordinate,
and n0 is the total modes considered.
If the entire system performs free harmonic vibration, the generalized coordinate qsðtÞ takes the

form

qsðtÞ ¼ �qse
�ot; ð21Þ

where �qs is the amplitude of qsðtÞ and �o is the eigenvalue of the loading beam taking the form
given by Eq. (7).
From Eqs. (20) and (21), one has

_yðx; tÞ ¼ �o
Xn0

s¼1

�Y sðxÞqsðtÞ: ð22Þ
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According to the theory presented in the last subsection, if the vth 2-dof spring–damper–mass
system attached to the bare beam is replaced by two equivalent dampers with damping coefficients
given by c

ðvÞ
eq;i and c

ðvÞ
eq;k as shown in Fig. 1(c) and Eq. (18), then the interaction forces at the

contacting points, x ¼ x
ðvÞ
i and x ¼ x

ðvÞ
k ; between the vth 2-dof spring–damper–mass system and

the bare beam, F
ðvÞ
i and F

ðvÞ
i ; are, respectively, given by

F
ðvÞ
i ¼ �c

ðvÞ
eq;i �o

Xn0

s¼1

�Y sðx
ðvÞ
i ÞqsðtÞ; ð23aÞ

F
ðvÞ
k ¼ �c

ðvÞ
eq;k �o

Xn0

s¼1

�Y sðx
ðvÞ
k ÞqsðtÞ: ð23bÞ

Substituting Eqs. (20) and (23) into Eq. (19), multiplying the resulting expression by �Y rðxÞ and
integrating the entire equation over the beam length l, one obtainsZ l

0

Xn0

s¼1

�Y rðxÞEI �Y
0000

sðxÞqsðtÞdx þ

Z l

0

Xn0

s¼1

�Y rðxÞ �m �Y sðxÞ €qsðtÞdx

¼ �

Z l

0

Xp

v¼1

�Y rðx
ðvÞ
i Þc

ðvÞ
eq;i �o

Xn0

s¼1

�Y sðx
ðvÞ
i ÞqsðtÞdðx � x

ðvÞ
i Þdx

�

Z l

0

Xp

v¼1

�Y rðx
ðvÞ
k Þc

ðvÞ
eq;k �o

Xn0

s¼1

�Y sðx
ðvÞ
k ÞqsðtÞdðx � x

ðvÞ
k Þdx: ð24Þ

If the mode shapes �Y sðxÞ ðs ¼ 12n0Þ are normalized with respect to �m; then application of the
orthogonal properties of the normal mode shapes to Eq. (24) leads to

€qrðtÞ þ O2r qrðtÞ ¼ �
Xp

v¼1

Xn0

s¼1

c
ðvÞ
eq;i �o �Y rðx

ðvÞ
i Þ �Y sðx

ðvÞ
i ÞqsðtÞ

�
Xp

v¼1

Xn0

s¼1

c
ðvÞ
eq;k �o �Y rðx

ðvÞ
k Þ �Y sðx

ðvÞ
k ÞqsðtÞ; r ¼ 1; . . . ; n0; ð25Þ

where Or represents the rth natural frequency of the bare beam.
Introducing Eq. (21) into Eq. (25) gives

O2r �qr þ
Xp

v¼1

Xn0

s¼1

c
ðvÞ
eq;i �o �Y rðx

ðvÞ
i Þ �Y sðx

ðvÞ
i Þ �qs

þ
Xp

v¼1

Xn0

s¼1

c
ðvÞ
eq;k �o �Y rðx

ðvÞ
k Þ �Y sðx

ðvÞ
k Þ �qs ¼ � �o2 �qr; r ¼ 1; . . . ; n0; ð26Þ

Writing Eq. (26) in matrix form yields the following eigenvalue equation:

ð½A� þ �o2½B�Þf �qg ¼ 0; ð27Þ
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where

½A�n0	n0 ¼ ½X2
�n0	n0 þ ½A’�n0	n0 ; ð28aÞ

½B�n0	n0 ¼ ½I�n0	n0 ¼ d11 . . . 1cn0	n0 ; ð28bÞ

½A’�n0	n0 ¼
Xp

v¼1

c
ðvÞ
eq;i �o½ �Yðx

ðvÞ
i Þ�n0	n0 þ

Xp

v¼1

c
ðvÞ
eq;k �o½ �Yðx

ðvÞ
k Þ�n0	n0 ; ð28cÞ

½ �YðxÞ�n0	n0 ¼

�Y 1ðxÞ �Y 1ðxÞ �Y 1ðxÞ �Y 2ðxÞ � � � �Y 1ðxÞ �Y n0 ðxÞ

�Y 2ðxÞ �Y 1ðxÞ �Y 2ðxÞ �Y 2ðxÞ � � � �Y 2ðxÞ �Y n0 ðxÞ

..

. ..
. . .

. ..
.

�Y n0 ðxÞ �Y 1ðxÞ �Y n0 ðxÞ �Y 2ðxÞ � � � �Y n0 ðxÞ �Y n0 ðxÞ

2
66664

3
77775; ð28dÞ

f �qgn0	1 ¼ f �q1 �q2 . . . �qn0 gn0	1; ð28eÞ

½X2
�n0	n0 ¼ dO21 O22 . . . O2n0 cn0	n0 : ð28fÞ

In Eqs. (27) and (28), the symbols, {}, [ ] and d c; represent the column matrix, square matrix
and diagonal matrix, respectively.
5. Element property matrices of a 2-dof spring–damper–mass system

To confirm the reliability of the foregoing theories presented for the title problem by means of
the conventional FEM, one requires the element stiffness, damping and mass matrices of a 2-dof
spring–damper–mass system, and they are derived in this section.
From the free-body diagram of the 2-dof spring–damper–mass system (cf. Fig. 1(a)), one hasX

Fy ¼ F
ðvÞ
i þ F

ðvÞ
k þ Fv � mðvÞ

e €uv ¼ 0; ð29ÞX
Mz ¼ �F

ðvÞ
i a

ðvÞ
1 þ F

ðvÞ
k a

ðvÞ
2 þ Mv � J ðvÞ

e
€yv ¼ 0: ð30Þ

Introducing Eqs. (2) and (3) into Eqs. (29) and (30), one obtains

Fv ¼ � F
ðvÞ
i � F

ðvÞ
k þ mðvÞ

e €uv ¼ kðvÞ
y ½�ui � uk þ 2uv � ða

ðvÞ
1 � a

ðvÞ
2 Þyv�

þ cðvÞ½� _ui � _uk þ 2 _uv � ða
ðvÞ
1 � a

ðvÞ
2 Þ_yv� þ mðvÞ

e €uv; ð31Þ

Mv ¼ F
ðvÞ
i a

ðvÞ
1 � F

ðvÞ
k a

ðvÞ
2 þ J ðvÞ

e
€yv

¼ kðvÞ
y ½a

ðvÞ
1 ui � a

ðvÞ
2 uk � ða

ðvÞ
1 � a

ðvÞ
2 Þuv þ ða

ðvÞ2

1 þ a
ðvÞ2

2 Þyv�

þ cðvÞ½a
ðvÞ
1 _ui � a

ðvÞ
2 _uk � ða

ðvÞ
1 � a

ðvÞ
2 Þ _uv þ ða

ðvÞ2

1 þ a
ðvÞ2

2 Þ_yv� þ JðvÞ
e
€yv: ð32Þ

Writing Eqs. (2), (3), (31) and (32) in matrix form yields

fFðvÞg ¼ ½kðvÞ�fug þ ½cðvÞ�f_ug þ ½mðvÞ�f€ug; ð33Þ
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where

fFðvÞg ¼ ½F
ðvÞ
i F

ðvÞ
k Fv Mv �

T; ð34Þ

fug ¼ ½ ui uk uv yv �
T; ð35Þ

f_ug ¼ ½ _ui _uk _uv
_yv �

T; ð36aÞ

f€ug ¼ ½ €ui €uk €uv
€yv �

T; ð36bÞ

½kðvÞ� ¼ kðvÞ
y

1 0 �1 a
ðvÞ
1

0 1 �1 �a
ðvÞ
2

�1 �1 2 �ða
ðvÞ
1 � a

ðvÞ
2 Þ

a
ðvÞ
1 �a

ðvÞ
2 �ða

ðvÞ
1 � a

ðvÞ
2 Þ ða

ðvÞ2

1 þ a
ðvÞ2

2 Þ

2
666664

3
777775; ð37Þ

½cðvÞ� ¼ cðvÞ

1 0 �1 a
ðvÞ
1

0 1 �1 �a
ðvÞ
2

�1 �1 2 �ða
ðvÞ
1 � a

ðvÞ
2 Þ

a
ðvÞ
1 �a

ðvÞ
2 �ða

ðvÞ
1 � a

ðvÞ
2 Þ ða

ðvÞ2

1 þ a
ðvÞ2

2 Þ

2
666664

3
777775; ð38Þ

½mðvÞ� ¼

0 0 0 0

0 0 0 0

0 0 mðvÞ
e 0

0 0 0 JðvÞ
e

2
6664

3
7775: ð39Þ

In Eqs. (37)–(39), ½kðvÞ�; ½cðvÞ� and ½mðvÞ�; respectively, represent the element stiffness matrix,
damping matrix and mass matrix for the vth 2-dof spring–damper–mass system attached to the
beam, as shown in Fig. 1(a).
6. Solution of the problem

6.1. By using FEM

The property matrices of the entire bare beam are firstly determined using the standard
assembling technique of the FEM. Next, the contribution of each 2-dof spring–damper–mass
system to the overall property matrices of the loading beam is taken into consideration by adding
the associated element property matrices of each system. Since each spring–damper–mass system
is considered as a 2-dof finite element, the total degree of freedom of the loading beam increases
by 2 when one more 2-dof spring–damper–mass system is attached to the beam. Finally, a set of
equations of motion can be obtained after assembling all the element property matrices of all the
2-dof spring–damper–mass systems and imposing the prescribed boundary conditions of the
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beam:

½ �M�f€uðtÞg þ ½ �C�f_uðtÞg þ ½ �K�fuðtÞg ¼ 0; ð40Þ

where ½ �M�; ½ �C� and ½ �K�; respectively, represent the overall mass, damping and stiffness matrices,
and f€uðtÞg; f_uðtÞg and fuðtÞg; respectively, represent the overall acceleration, velocity and
displacement vectors for the entire loading beam. In this paper, the eigenvalue problem derived
from Eq. (40) was solved with the subroutine EISPACK [30,31].

6.2. By using EDM

For a bare beam carrying any number of 2-dof spring–damper–mass systems, if the effect of
each 2-dof spring–damper–mass system is replaced by a set of equivalent dampers as shown in Fig.
1(c), then the eigenvalue equation for the associated loading beam is given by Eq. (27). Non-trivial
solution of Eq. (27) requires that

½A� þ �o2½B�
�� �� ¼ 0: ð41Þ

From Eqs. (13)–(17), it is seen that the damping coefficients, c
ðvÞ
eq;i and c

ðvÞ
eq;k; for the two dampers

equivalent to the vth 2-dof spring–damper–mass system are functions of eigenvalue of the loading
beam. Hence, the cut and trial procedures are used to find the eigenvalue �o in Eq. (41).
Since the eigenvalue �o is a complex number (see Eq. (7)), one has to guess two values, the real

part �oR and the imaginary part �oI ; of the eigenvalue �o in each cut and trial procedure. To reduce
the difficulties encountered, the following relationship between �oR and �oI is employed [29]:

�oR ¼ �
xrffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2r

q �oI ; r ¼ 1; 2; . . . : ð42Þ

In the last equation, xr is the damping ratio associated with the rth mode shape of the loading
beam and is given by

xr ¼ C�
r=2m

�
rOr; ð43Þ

where Or is the rth undamped natural frequency of the loading beam, while C�
r and m�

r are,
respectively, the generalized damping coefficient and generalized mass with respect to the rth
normal mode shape �Y rðxÞ; and are given by

C�
r ¼

Xp

v¼1

Z l

0

�Y rðxÞc
ðvÞ
eq;i

�Y rðxÞdðx � x
ðvÞ
i Þdx þ

Xp

v¼1

Z l

0

�Y rðxÞc
ðvÞ
eq;k

�Y rðxÞdðx � x
ðvÞ
k Þdx

¼
Xp

v¼1

c
ðvÞ
eq;i

�Y
2

r ðx
ðvÞ
i Þ þ

Xp

v¼1

c
ðvÞ
eq;k

�Y
2

r ðx
ðvÞ
k Þ; ð44Þ

m�
r ¼

Z l

0

�Y rðxÞ �m �Y rðxÞdx ¼ 1: ð45Þ

By using Eqs. (42)–(45), one only needs to guess the real part �oR or the imaginary part �oI for
the eigenvalue �o in each cut and trial procedure. If the assumed eigenvalue �o satisfies Eq. (41), the
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last value of �o is one of the eigenvalues of the loading beam; otherwise, iteration with a new
eigenvalue �o is required.
7. Numerical results

The dimensions and material constants for the undamped uniform cantilever beam studied in
this section are: total beam length l ¼ 1:0m; diameter d ¼ 0:05 m; Young’s modulus E ¼

2:069	 1011 N=m2 and mass density r ¼ 7:8367	 103 kg=m3: In addition, the total number of
modes used for the expansion theorem [28] or the mode superposition method [29] as shown in
Eq. (20) is n0 ¼ 8:
7.1. Reliability of the theory and the computer programs

As shown in Fig. 2, a 2-dof spring–damper–mass system is attached to the beam at x
ð1Þ
i ¼ 0:8 m

and x
ð1Þ
k ¼ 1:0 m: The spring constants, damping coefficients, lumped mass and moment of inertia

of the spring–damper–mass system are given by kð1Þ
y ¼ 6:34761	 106 N=m; cð1Þ ¼ 0:0 Ns=m;

mð1Þ
e ¼ 1:53875 kg and Jð1Þ

e ¼ 1:53875 kg m2; while the distance between the lumped mass mð1Þ
e and

the two springs (or dampers) are respectively a
ð1Þ
1 ¼ 0:06667 m and a

ð1Þ
2 ¼ 0:13333 m: In order to

confirm the reliability of the theory presented and the computer programs developed, the last
information is exactly the same as that of Ref. [26]. It is noted that the damping coefficient cð1Þ for
the 2-dof spring–damper–mass system studied here is set to be zero because the elastically
mounted system studied in Ref. [26] is a 2-dof spring–mass system (without damper).
Table 1 shows the first five eigenvalues �oj ðj ¼ 125Þ of the beam with a 2-dof spring–

damper–mass system, as shown in Fig. 2. From the table, one sees that the imaginary parts of the
eigenvalues, �ojI ; obtained from the EDM presented in this paper are very close to the
corresponding ones obtained from Ref. [26] and the conventional FEM. In addition, all the real
parts of the eigenvalues, �ojR; are negligible, as one may see from the third and fourth rows of
x

y

mxi 8.0)1( =

mxk 0.1)1( =

m05.0

)1()1( , ee Jm

)1(c)1(
yk )1(c

)1(
1a )1(

2a

)1(
yk

Fig. 2. A uniform cantilever beam carrying a 2-dof spring–damper–mass system.
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Table 1

The first five eigenvalues of a uniform cantilever beam carrying a 2-dof spring–damper–mass system, �oj ¼ �ojR � i �ojI

ðj ¼ 1; . . . ; 5Þ; as shown in Fig. 2 with cð1Þ ¼ 0

Methods Eigenvalues, �oj ¼ �ojR � i �ojI (rad/s) CPU time (s)

�o1 �o2 �o3 �o4 �o5

aFEM 3.2644E�087i141.9957 �6.4717E�087i321.8164 �2.0643E�077i1524.2575 1.9360E�077i3297.6358 �1.3349E�067i4276.0247 2.80
aEDM �2.0654E�097i143.4354 �5.0923E�077i324.3061 �3.0539E�087i1526.9813 �1.9980E�077i3330.0138 �8.5621E�087i4281.0267 1.32
Ref. [23] 141.5405 321.3685 1524.3220 3297.6410 4276.0260 —

aFEM refers to the conventional finite element method and EDM refers to the equivalent-damper method presented

in this paper.

Table 2

Influence of the spring stiffness ðkð1Þ
y Þ of the spring–damper–mass system on the first five eigenvalues of the uniform

cantilever loading beam, �oj ¼ �ojR � i �ojI ðj ¼ 1; . . . ; 5Þ; as shown in Fig. 2, with mð1Þ
e ¼ 3:2 kg; J ð1Þ

e ¼ 3:2 kg m2; cð1Þ ¼

38:5 Ns=m

kð1Þ
y (N/m) Methods Eigenvalues, �oj ¼ �ojR � i �ojI (rad/s)

�o1 �o2 �o3 �o4 �o5

104
FEM �1.1393E�017i24.6571 �1.3370E�007i159.4345 �1.7985E017i355.6698 �5.3471E�007i1424.6072 �5.8052E�007i3966.4966
EDM �1.2018E�017i24.9856 �1.3372E�007i159.3698 �1.7991E017i355. 8123 �5.3426E�007i1424.6719 �5.7910E�007i3966.4433

106
FEM �3.4221E�037i112.3678 �7.3659E�027i298.4601 �1.2826E007i1537.5339 �1.5731E017i3283.6489 �1.0700E017i4436.1887
EDM �3.4232E�037i112.3834 �7.3771E�027i298.5487 �1.2842E007i1537.7218 �1.5794E017i3283.3959 �1.0844E017i4438.9072

108
FEM �2.8176E�077i120.3850 �3.5574E�057i417.0230 �1.7478E�037i2219.5915 �1.6285E�027i5704.8618 �7.3563E�027i10875.9471
EDM �3.9998E�077i120.4020 �3.5807E�057i417.3339 �1.7595E�037i2221.9229 �1.6361E�027i5712.4976 �7.3587E�027i10895.2715

—
FEM
(bare beam)

225.8249 1415.2234 3962.7231 7765.7136 12838.6537
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Table 1, due to the fact that the damping coefficient of the 2-dof system is zero. Hence, it is
believed that the EDM is viable for the title problem.
From the final column of Table 1, one sees that the computer time required by the presented

EDM is much less than that required by the conventional FEM. This is under one’s expectation,
because the order of the overall property matrices of the entire structural system derived using the
EDM is much less than that derived using the FEM. The last advantage of the EDM will be much
more predominant in the forced vibration analysis of a structural system using the step-by-step
integration method, because the CPU time consumed is proportional to the total number of time
steps.

7.2. Influence of spring constants

The parameters of the loading beam studied in this subsection are the same as those studied in
the last subsection (see Fig. 2), except the following changes: lumped mass, mð1Þ

e ¼ 3:2 kg; mass
moment of inertia, J ð1Þ

e ¼ 3:2 kg m2; damping coefficient, cð1Þ ¼ 38:5 Ns=m; the spring constant,
kð1Þ

y ¼ 104; 106 or 108N/m.
Table 2 shows the first five eigenvalues of the loading beam. It is seen that the natural

frequencies of the loading beam (i.e., the imaginary parts of the eigenvalues), �ojI ðj ¼ 1; . . . ; 5Þ;
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increase with increasing the spring constants of the spring–damper–mass system. In addition, it is
also found that the natural frequencies of the loading beam are much lower than the
corresponding ones of the bare beam. The last phenomenon indicates that the installation of the
spring–damper–mass system to the free end of the beam may reduce the natural frequencies of the
bare beam significantly.
7.3. Influence of damping coefficients

All the parameters for the present example are exactly the same as those of the last example,
except that the spring constant of the spring–damper–mass system is a constant and given by
kð1Þ

y ¼ 106 N=m and the damping coefficient is taken to be cð1Þ ¼ 3:85; 38.5 or 385Ns/m.
Table 3 shows the first five eigenvalues of the loading beam. It is found that a

spring–damper–mass system with different damping coefficients does not significantly influence
the natural frequencies of the loading beam, �ojI ðj ¼ 1; . . . ; 5Þ: However, the absolute values of
decay ratios (i.e., the real parts of the eigenvalues), �ojR ðj ¼ 1; . . . ; 5Þ; significantly increase on
increasing the magnitude of the damping coefficient. This indicates that the use of higher damping
coefficients for the spring–damper–mass system may significantly increase the decay rate of the
loading beam.
7.4. Influence of mass

For the example studied here, the parameters of the beam are exactly the same as those of the
last example, except that the spring constants and damping coefficients of the spring–-
damper–mass system are constant and given by kð1Þ

y ¼ 106 N=m and cð1Þ ¼ 38:5 Ns=m; while the
lumped mass is taken to be mð1Þ

e ¼ 1:6; 3.2 or 6.4 kg. From Table 4, one sees that increasing the
magnitude of the lumped mass of a spring–damper–mass system has the effect of reducing the
natural frequencies of the loading beam.
Table 3

Influence of the damping coefficient ðcð1ÞÞ of the spring–damper–mass system on the first five eigenvalues of the uniform

cantilever loading beam, �oj ¼ �ojR � i �ojI ðj ¼ 1; . . . ; 5Þ; as shown in Fig. 2 with mð1Þ
e ¼ 3:2 kg; J ð1Þ

e ¼ 3:2 kg m2; kð1Þ
y ¼

106 N=m

cð1Þ (Ns/m) Methods Eigenvalues, �oj ¼ �ojR � i �ojI (rad/s)

�o1 �o2 �o3 �o4 �o5

3.85
FEM �3.4219E�047i112.3678 �7.3657E�037i298.4600 �1.2826E�017i1537.5317 �1.5730E007i3283.6198 �1.0701E007i4436.2674
EDM �3.4277E�047i112.3834 �7.3771E�037i298.5487 �1.2917E�017i1537.7223 �1.5784E007i3288.4359 �1.0830E007i4438.9178

38.5
FEM �3.4221E�037i112.3678 �7.3659E�027i298.4601 �1.2826E007i1537.5339 �1.5731E017i3283.6489 �1.0700E017i4436.1887
EDM �3.4232E�037i112.3834 �7.3771E�027i298.5487 �1.2842E007i1537.7218 �1.5794E017i3283.3959 �1.0844E017i4438.9072

385
FEM �3.4220E�027i112.3679 �7.3659E�017i298.4627 �1.2824E017i1537.6892 �1.5815E027i3286.6556 �1.0635E027i4427.5132
EDM �3.4232E�027i112.3835 �7.3777E�017i298.5575 �1.2839E017i1537.5194 �1.5946E027i3306.4375 �1.0739E027i4414.6265

—
FEM
(bare beam)

225.8249 1415.2234 3962.7231 7765.7136 12838.6537
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Table 4

Influence of the lumped mass ðmð1Þ
e Þ of the spring–damper–mass system on the first five eigenvalues of the uniform

cantilever loading beam, �oj ¼ �ojR � i �ojI ðj ¼ 1; . . . ; 5Þ; as shown in Fig. 2 with Jð1Þ
e ¼ 3:2 kg m2; kð1Þ

y ¼ 106 N=m; cð1Þ ¼

38:5 Ns=m

mð1Þ
e (kg) Methods Eigenvalues, �oj ¼ �ojR � i �ojI (rad/s)

�o1 �o2 �o3 �o4 �o5

1.6
FEM �4.1114E�037i115.3180 �7.8279E�027i320.6025 �1.2956E007i1607.9097 �1.45291E017i3846.3746 �2.3416E017i4644.0892
EDM �4.1175E�037i115.3353 �7.8411E�027i320.6977 �1.2977E007i1608.0947 �1.4469E017i3849.0685 �2.3782E017i4650.3591

3.2
FEM �3.4221E�037i112.3678 �7.3659E�027i298.4601 �1.2826E007i1537.5339 �1.5731E017i3283.6489 �1.0700E017i4436.1887
EDM �3.4232E�037i112.3834 �7.3771E�027i298.5487 �1.2842E007i1537.7218 �1.5794E017i3283.3959 �1.0844E017i4438.9072

6.4
FEM �2.3749E�037i106.7775 �6.7181E�027i269.5434 �1.2759E007i1451.8413 �1.2383E017i2895.0846 �8.2706E007i4391.1904
EDM �2.3707E�037i106.7902 �6.7272E�027i269.6256 �1.2763E007i1452.0896 �1.2457E017i2899.6881 �8.3601E007i4393.1014

— FEM
(bare beam)

225.8249 1415.2234 3962.7231 7765.7136 12838.6537
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Fig. 3. A uniform cantilever beam carrying three 2-dof spring–damper–mass systems.
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7.5. Eigenvalues for a cantilever beam with three spring–damper–mass systems

Fig. 3 shows the uniform cantilever beam carrying three 2-dof spring–damper–mass systems
studied here. The dimensions and material properties of the bare beam are exactly the same as
those of the foregoing examples, while the physical properties of the three 2-dof spring–
damper–mass systems are listed in Table 5.
The first five eigenvalues of the loading beam, �oj ¼ �ojI � i �ojR (j ¼ 1; . . . ; 5), are listed in Table

6. From the table, one sees that the natural frequencies of the loading beam are very close to the
corresponding ones of the bare beam. This phenomenon is very different from that for a bare
beam carrying a 2-dof spring–damper–mass system at the free end, studied in the previous
subsections. In view of the fact that the total spring stiffness, total damping coefficient and total
lumped mass for all the 2-dof spring–damper–mass systems of the present example are three times
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Table 5

The locations and physical properties of the three 2-dof spring–damper–mass systems shown in Fig. 3

Numbering of

systems (v)

Locations Physical properties of the spring–damper–mass systems

x
ðvÞ
i (m) x

ðvÞ
k (m) a

ðvÞ
1 (m) a

ðvÞ
2 (m) kðvÞ

y (N/m) cðvÞ (Ns/m) mðvÞ
e (kg) JðvÞ

e (kgm2)

1 0.1 0.3

0.06667 0.13333 106 38.5 1.6 3.22 0.4 0.6

3 0.8 1.0

Table 6

The first five eigenvalues of the uniform cantilever beam carrying three 2-dof spring–damper–mass systems, �oj ¼

�ojR � i �ojI ðj ¼ 1; . . . ; 5Þ; shown in Fig. 3

Methods Eigenvalues, �oj ¼ �ojR � i �ojI (rad/s)

�o1 �o2 �o3 �o4 �o5

FEM �3.1916E�017i231.0626 �2.3776E017i1697.9132 �1.2063E017i4038.8097 �9.9509E007i7798.6297 �1.3437E017i12865.7140
EDM �3.0916E�017i231.0626 �2.3804E017i1698.3038 �1.2064E017i4038.8646 �9.9511E007i7798.6533 �1.3432E017i12865.7313
FEM
1(bare beam)

225.8249 1415.2234 3962.7231 7765.7136 12838.6537
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those for the 2-dof spring–damper–mass system of the last examples, respectively, one may
conclude that the distribution of the 2-dof spring–damper–mass systems along the beam length
significantly influences the natural frequencies of the loading beam.
8. Conclusions

In this paper, each 2 degree-of-freedom (dof) spring–damper–mass system of a loading beam is
replaced by one set of equivalent dampers, so that the free vibration analysis of a beam carrying
multiple 2-dof spring–damper–mass systems may be performed on the bare beam supported by
the same number of sets of equivalent dampers. Since damping effect of the equivalent dampers is
more flexible (or adjustable) than that of the conventional dampers, the equivalent dampers will
provide an alternative choice for the effective vibration absorbers. Furthermore, the equivalent-

damper method presented in this paper also provides a simple approach for evaluating the overall
damping effect of a spring–damper–mass system.
Among the three parameters of each 2-dof spring–damper–mass system, the influence on the

(damped) natural frequencies of the loading beam due to the spring stiffness or the lumped mass is
most predominant and that due to the damping coefficient is negligible. However, the influence on
the decay rate of the free vibration responses of the loading beam due to the damping coefficient is
most significant and that due to the spring stiffness or the lumped mass is negligible. In addition,
the attaching location (or position) of the spring–damper–mass systems along the beam is also an
important factor affecting the natural frequencies of the loading beam.
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[16] M. Gúrgóze, On the eigen-frequencies of a cantilever beam with attached tip mass and a spring–mass system,

Journal of Sound and Vibration 190 (1996) 149–162.

[17] T. Yoshimura, M. Sugimoto, An active suspension for a vehicle traveling on flexible beams with an irregular

surface, Journal of Sound and Vibration 138 (3) (1990) 433–445.

[18] J. Hino, T. Yoshimura, N. Ananthanarayana, Vibration analysis of non-linear beams subjected to a moving load

using the finite element method, Journal of Sound and Vibration 100 (1985) 477–491.

[19] Y.H. Lin, M.W. Trethewey, Finite element analysis of elastic beams subjected to moving dynamic loads, Journal of

Sound and Vibration 136 (1990) 323–342.

[20] Y.H. Lin, M.W. Trethewey, H.M. Reed, J.D. Shawley, S.J. Sager, Dynamic modeling and analysis of a high-speed

precision drilling machine, Journal of Vibration and Acoustics 112 (1990) 355–365.
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