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Abstract

This paper presents a new method for the dynamic response analysis of linear stochastic truss structures
under stationary random excitation. Considering the randomness of the structural physical parameters and
geometric dimensions, the computational expressions of the mean value, variance and variation coefficient of
the mean square value of the structural displacement and stress response under the stationary random excitation
are developed by means of the random variable’s functional moment method and the algebra synthesis method
from the expressions of structural stationary random response of the frequency domain. The influences of the
randomness of the structural physical parameters and geometric dimensions on the randomness of the mean
square value of the structural displacement and stress response are inspected by the engineering examples.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The theoretical framework of classical random vibration has been established and is already
available. The analysis of structures with deterministic characteristic to random excitations has been
reported extensively in the literature. Nigam and Narayanan [1] considered different types of loading
in this group of problems. As a matter of fact, the randomness of structure and applied loads existed
and must be considered. Therefore, studying the problem of stationary random response of random
structure is of much realistic engineering background and important theoretical significance.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Because the random dynamic response analysis of linear stochastic structure is very
complicated and difficult, it is only in the recent years that stochastic finite element method
based on perturbation technique has begun to be used for solving the dynamic response of a
structure with random parameters under random excitation. Wall et al. [2] studied the dynamic
effects of uncertainty in structural properties when the excitation is random by use of the
perturbation stochastic finite element method (PSFEM). Liu et al. [3] discussed the secular terms
resulted from PSFEM in transient analysis of such a random dynamic system. Jensen and Iwan [4]
studied the response of systems with uncertain parameters to random excitation by extending the
orthogonal expansion method. Zhao and Chen [5] studied the vibration for structures with
stochastic parameters to random excitation by using the dynamic Neumann stochastic finite
element method, in which the random equation of motion for structure is transformed into a
quasi-static equilibrium equation for the solution of displacement in time domain. Lin et al. [6]
studied the stationary random response of a structure with stochastic parameters, in which the
random excitations are first transformed into sinusoidal ones in terms of the pseudo-excitation
method (PEM), that turns the joint-random problem into a single-random problem for which
only structural parameters remain random. Li et al. [7] expanded the orthogonal expansion
method with the pseudo-excitation method for analyzing the dynamic response of structures with
uncertain parameters under external random excitation.
In this paper, the problems of the stationary random dynamic responses of random structures

are studied, a new method (random factor method) is proposed, in which the influence of each
parameter on the structural dynamic response can be reflected. The truss structures are taken as
analyzing objects, in which the randomness of physical parameters (elastic module and mass
density) of structural materials and structural geometric dimensions (length and cross-sectional
area) are considered simultaneously. The expressions of numerical characteristics of the mean
square value of the structural displacement and stress response are developed by use of the
random variable’s functional moment method and the algebra synthesis method.
2. Structural stationary random dynamic response analysis

Suppose that there are ne elements in the analyzed truss structure. The stiff matrix K½ � and mass
matrix ½M� of truss structure in global coordinate can be, respectively, expressed as

M½ � ¼
Xne

e¼1

M ðeÞ
� �

¼
Xne

e¼1

1
2
rðeÞAðeÞlðeÞ I½ �

� �
; ð1Þ

K½ � ¼
Xne

e¼1

K ðeÞ
� �

¼
Xne

e¼1

EðeÞAðeÞ

lðeÞ
G½ �

� �
; ð2Þ

where K ðeÞ
� �

is the eth element’s stiffness matrix, M ðeÞ
� �

is the eth element’s mass matrix.
EðeÞ; AðeÞ; lðeÞ and rðeÞ are the eth element’s elastic module, cross-sectional area, length and mass
density, respectively. I½ � and G½ � do not include structural parameters, they are the determinate
parts of M ðeÞ

� �
and K ðeÞ

� �
; and have the same order as M½ � and K½ �; respectively.
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The dynamic equation of the structure under stationary excitation can be given by

M½ � €uðtÞ
� �

þ C½ � _uðtÞ
� �

þ K½ � uðtÞ
� �

¼ PðtÞ
��
; ð3Þ

where ½M�; ½C� and ½K � are the mass, damping and stiffness matrices, respectively. uðtÞ
� �

; _uðtÞ
� �

;
and €uðtÞ

� �
are the structural displacement vector, velocity vector and acceleration vector,

respectively. PðtÞ
��
is the stationary random load force vector. In the following, the Wilson’s

damping hypothesis will be adopted.
Eq. (3) is a set of differential equations coupled to each other. Its formal solution can be

obtained in terms of the decoupling transformation and Duhamel integral, that is

uðtÞ
��
¼

Z t

0

f½ � hðtÞ½ � f½ �
T Pðt � tÞ

��
dt; ð4Þ

where f½ � is the normal modal matrix of the structure, hðtÞ½ � is the impulse response function
matrix of the structure and can be expressed as

hðtÞ½ � ¼ diagðhjðtÞÞ; ð5Þ

where

hjðtÞ ¼

1

mj �oj

expð�xjojtÞ sin �ojt; tX0;

ðj ¼ 1; 2; . . . ; sÞ

0; to0;

8>>><
>>>:

; ð6Þ

where oj and xj are the jth order inherence frequency and mode damping of structure,
respectively. �oj ¼ ojð1� x2j Þ

1=2:
From Eq. (4), the correlation function matrix of the displacement response of the structure

Ruð�Þ½ � can be obtained

Ruð�Þ½ � ¼ Eð uðtÞ
��

uðt þ �Þ
�� T

Þ

¼

Z t

0

Z t

0

f½ � hðtÞ½ � f½ �
T RPðt� t1 þ �Þ½ � f½ � hðt1Þ½ �

T f½ �
T dt dt1; ð7Þ

where RPðt� t1 þ �Þ½ � is the correlation function matrix of PðtÞ
��
:

By performing a Ruð�Þ½ � Fourier transformation, the power spectral density matrix of the
displacement response SuðoÞ½ � is

SuðoÞ½ � ¼ f½ � HðoÞ½ � f½ �
T SPðoÞ½ � f½ � HnðoÞ

� �
f½ �

T; ð8Þ

where SPðoÞ½ � is the power spectral density matrix of PðtÞ
��
; HnðoÞ
� �

is the conjugate matrix of
HðoÞ½ �; HðoÞ½ � is the frequency response function matrix of the structure and can be expressed as

HðoÞ½ � ¼ diag HjðoÞ
� �

; ð9Þ

where

HjðoÞ ¼
1

o2
j � o2 þ i 2xjojo

ði ¼
ffiffiffiffiffiffiffi
�1

p
Þ ðj ¼ 1; 2; . . . ; sÞ ; ð10Þ
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Integrating SuðoÞ½ � within the frequency domain, the mean square value matrix of the structural
displacement response, that is, c2

u

� �
can be obtained:

c2
u

� �
¼

Z 1

0

SuðoÞ½ � do ¼

Z 1

0

f½ � HðoÞ½ � f½ �
T SPðoÞ½ � f½ � HnðoÞ

� �
f½ �

T do: ð11Þ

Then the mean square value of the kth degree of freedom of the structural dynamic
displacement response can be expressed as

c2
uk ¼ ~fk 


Z 1

0

HðoÞ½ � f½ �
T SPðoÞ½ � f½ � HnðoÞ

� �
do 
 ~f

T

k ðk ¼ 1; 2; . . . ; nÞ; ð12Þ

where ~fk is the kth line vector of the matrix f½ �:
According to the relationship between node displacement and element stress, the stress response

of the eth element in the truss structure can be expressed as

sðtÞðeÞ
��
¼ EðeÞ 
 B½ � 
 uðtÞðeÞ

��
ðe ¼ 1; 2; . . . ; neÞ; ð13Þ

where uðtÞðeÞ
��
is the displacement response of the nodal point of the eth element, sðtÞðeÞ

��
is the

stress response of the eth element, B½ � is the geometric matrix of the eth element. EðeÞ is the elastic
module of the eth element.
From Eq. (13) the correlation function matrix of the eth element stress response RðeÞ

s ðtÞ
� �

can be
obtained

RðeÞ
s ðtÞ

� �
¼ Eð sðtÞðeÞ

��
sðt þ tÞðeÞ

�� T
Þ ¼ EðeÞ B½ � RðeÞ

u ðtÞ
� �

B½ �TEðeÞ ð14Þ

Furthermore, the power spectral density matrix of the stress response of the eth element
SðeÞ
s ðoÞ

� �
can be obtained:

SðeÞ
s ðoÞ

� �
¼ EðeÞ B½ � SðeÞ

u ðoÞ
� �

B½ �TEðeÞ: ð15Þ

Then, the mean square value matrix of the eth element stress response c2
sðeÞ

� �
can be expressed as

c2
sðeÞ

� �
¼ EðeÞ B½ � c2

uðeÞ

� �
B½ �TEðeÞ: ð16Þ

3. Numerical characteristics of the stationary random response of the random structure

3.1. Numerical characteristics of natural frequency random variable

Considering the randomness of the structural physical parameters ðrðeÞ; EðeÞÞ and geometric
dimensions ðAðeÞ; lðeÞÞ simultaneously, that is, they are all random variables. From Eqs. (1) and
(2), it can be obtained that the matrices ½M� and ½K �are random variables too. The randomness of
physical parameters and geometric dimension will lead the inherence frequency o as well as
randomness. The structural dynamic characteristic based on probability will be analyzed.
Suppose the material of each element is equal, E and r are elastic module and mass density,

respectively. Then the elastic module and mass density can be written, respectively, as E ¼

a ~E; r ¼ b ~r; where a and b are the determinate quantities of E and r; respectively. ~E and ~r are the
random variable factors of E and r; respectively. The mean values of ~E and ~r are all 1.0. The
variation coefficients of ~E and ~r are vE and vr; respectively.
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The length and cross-sectional area of bars are two kinds of random variables. Then the length
and cross-sectional area of the eth element can be written, respectively, as: lðeÞ ¼ lðeÞ ~l AðeÞ ¼

ZðeÞ ~A ðe ¼ 1; . . . ; neÞ; where lðeÞ is the determinate quantity that denotes the nominal length of eth
bar, ZðeÞ is the determinate quantity that denotes the nominal cross-sectional area of the eth bar; ~l
is the random variable factor of all bars’ length, its mean value is 1.0 and variation coefficient is
vl :

~A is the random variable factor of all bars’ cross-sectional area, its mean value is 1.0 and
variation coefficient is vA:
From Eq. (1), it can be seen easily that, when rðeÞ; AðeÞ and lðeÞ are all random variables, M ðeÞ

� �
and M½ � are all random variables too.
Let

M ðeÞ
� �

¼ ~r ~A~l M ðeÞ
� �#

; ð17Þ

where M ðeÞ
� �#

is the determinate part in mass matrices M ðeÞ
� �

: The expression shows that the mass
matrix M ðeÞ

� �
can be divided into the product of two parts, i.e., the random variables ~r; ~A; ~l and

the constant matrix M ðeÞ
� �#

and that the randomness of M ðeÞ
� �

is dependent on the randomness of
rðeÞ; AðeÞ; and lðeÞ: Therefore, constructing the matrix M ðeÞ

� �#
is the same as constructing the mass

matrix of the element before, just taking the parameters as: lðeÞ ¼ lðeÞ; AðeÞ ¼ ZðeÞ; rðeÞ ¼ b½M� can
be written as

M½ � ¼
Xne

e¼1

M ðeÞ
� �

¼
Xne

e¼1

ð ~r ~A~l M ðeÞ
� �#

Þ ¼ ~r ~A~l M½ �#: ð18Þ

From Eq. (2) the conclusion can be obtained that when EðeÞ; AðeÞand lðeÞ are all random
variables, K ðeÞ

� �
and K½ � are all random variables too.

Let

K ðeÞ
� �

¼
~E ~A
~l

K ðeÞ
� �#

; ð19Þ

where K ðeÞ
� �#

is the determinate part in stiff matrices K ðeÞ
� �

: The expression shows that the stiff
matrix K ðeÞ

� �
can be divided into the product of two parts, i. e., the random variables ~E; ~A; ~l and

the constant matrix K ðeÞ
� �#

and that the randomness of K ðeÞ
� �

is dependent on the randomness of
EðeÞ; AðeÞ; and lðeÞ: Therefore, constructing the matrix K ðeÞ

� �#
is the same as constructing the

mass matrix of the element before, just taking the parameters as: lðeÞm ¼ lðeÞ; AðeÞ ¼ ZðeÞ and E ¼ a:
Suppose the material of each element is equal, K½ � can be written as

K½ � ¼
Xne

e¼1

K ðeÞ
� �

¼
Xne

e¼1

~E ~A
~l

K ðeÞ
� �#� �

¼
~E ~A
~l

K½ �#: ð20Þ

Suppose that jth order inherence frequency and mode shape of structure are oj and ffgj;
respectively, by using the Rayliegh’s quotient expression, the random variable of jth inherence
frequency can be expressed as

o2
j ¼

f
� �T

j
K½ � f
� �

j

f
� �T

j
M½ � f
� �

j

: ð21Þ
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Substituting the stiff and mass matrices of structure into the above formula,

o2
j ¼

~E ~A

~r ~A~l
2

K#
j

M#
j

¼
~E ~A

~r ~A~l
2
ðo#

j Þ
2; ð22Þ

where K#
j ;M

#
j ;o

#
j are all determinate quantities, they are the jth order main stiffness, main mass and

inherence frequency of the structure when the parameters AðeÞ ¼ ZðeÞ; lðeÞ ¼ lðeÞ; E ¼ a and r ¼ b:
According to previous formulae and paying attention to the structural physical parameters and

geometric dimension of the two kinds of independent variables, the mean value moj
and mean

variance soj
of jth order inherence frequency oj can be deduced by means of the algebra synthesis

method [8].

moj
¼ o#

j

mE

mrmZ

 !1=2

1þ v2A þ v2Z þ v2r þ v2Av2Z þ v2Av2r þ v2Zv2r þ v2Av2Zv2r

��

� cEr v2A þ v2E þ v2Av2E
� �1=2

v2A þ v2Z þ v2r þ v2Av2Z þ v2Av2r þ v2Zv2r þ v2Av2Zv2r

� �1=2�2

� 1
2
2v2A þ v2E þ v2Z þ v2r þ v2Av2Z þ v2Av2E þ v2Av2r þ v2Zv2r þ v2Av2Zv2r

�

� 2cErðv
2
A þ v2E þ v2Av2EÞ

1=2
ðv2A þ v2Z þ v2r þ v2Av2Z þ v2Av2r þ v2Zv2r þ v2Av2Zv2rÞ

1=2

��1=4

soj
¼ o#

j

mE

mrmZ

 !1=2

1þ v2A þ v2Z þ v2r þ v2Av2Z þ v2Av2r þ v2Zv2r þ v2Av2Zv2r

�(

�cEr v2A þ v2E þ v2Av2E
� �1=2

v2A þ v2Z þ v2r þ v2Av2Z þ v2Av2r þ v2Zv2r þ v2Av2Zv2r

� �1=2�

� 1þ v2A þ v2Z þ v2r þ v2Av2Z þ v2Av2r þ v2Zv2r þ v2Av2Zv2r

��

�cEr v2A þ v2E þ v2Av2E
� �1=2

v2A þ v2Z þ v2r þ v2Av2Z þ v2Av2r þ v2Zv2r þ v2Av2Zv2r

� �1=2�2

� 1
2 2v2A þ v2E þ v2Z þ v2r þ v2Av2Z þ v2Av2E þ v2Av2r þ v2Zv2r þ v2Av2Zv2r

�

�2cEr v2A þ v2E þ v2Av2E
� �1=2

v2A þ v2Z þ v2r þ v2Av2Z þ v2Av2r þ v2Zv2r þ v2Av2Zv2r

� �1=2��1=2
)1=2

ð23Þ

vz ¼ vl2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v2l þ v4l

q
1þ v2l

; ð24Þ

where the symbol v denotes variation coefficient, cEr is the correlation coefficient of variables E and r:
If variables E and r are independent, then cEr ¼ 0: If variable E is completely correlative

with r; then cEr ¼ 1: They are two kinds of extreme situations. According to the observation on
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the property of common material, it can be found that the elastic module E is usually positively
correlated with mass density r; and that the degree of correlation is rather higher. So in practical
computation, it is suggested that the correlative coefficient cEr ¼ 0:520:9:
From the above formula, it is easily seen that the values of variation coefficient of every

inherence frequency voj
are equal to each other. They are only dependent on the physical

parameters E, r and the random variable factor of geometric dimension l, A, as wall as the
correlative coefficient cEr; but they are independent of the order number of structural vibration
model. According to the determinate stiffness and mass matrices K½ �# and M½ �#; the determinate
values of every order inherence frequency o#

j can be obtained by means of the conventional
dynamic analysis method.
The randomness of the structural dynamic characteristics and the stochastic excitation will lead

the structural dynamic response (dynamic displacement and dynamic stress) as well as
randomness. The statistical description of random variables is represented by using its numerical
characteristic. In the following, the expressions of numerical characteristics of the structural
stationary response random variables will be derived.
3.2. Numerical characteristics of the stationary random response of the random structure

From Eq. (12), the mean value mc2
uk
and mean variance sc2

uk
of the mean square value of the kth

degree of freedom of the structural dynamic displacement response can be deduced by means of
the random variable’s functional moment method [9]:

mc2
uk
¼ m~fk

Z oc

0

m HðoÞ½ �m f½ �Tm SPðoÞ½ �m f½ �m HnðoÞ½ � do m~fT

k

; ð25Þ

sc2
uk
¼ m~fk

Zoc

0

m2HðoÞ½ �ðm f½ �Tm SPðoÞ½ �m f½ �Þ
2s2

HnðoÞ½ �
þ s2HðoÞ½ �ðm f½ �Tm SPðoÞ½ �m f½ �Þ

2m2
HnðoÞ½ �

8<
:

8<
:
þ s HðoÞ½ �m f½ �Tm SPðoÞ½ �m f½ �s HnðoÞ½ �

9=
;do

9=
;

1=2

m~fT

k

ðj ¼ 1; 2 . . . ; sÞ; ð26Þ

where

s HðoÞ½ � ¼ diag
�2moj

� i 2xjo

ðm2oj
� o2 þ i 2xjmoj

oÞ2
soj

" #
ðj ¼ 1; 2; . . . ; sÞ; ð27Þ

From Eqs. (25) and (26), the variation coefficient vc2
uk

of the random variable c2
uk can be

obtained:

vc2
uk
¼ sc2

uk
=mc2

uk
: ð28Þ
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From Eq. (16), the mean value, mean variance and variation coefficient of the mean square
value of the eth element stress response can be deduced by means of the algebra synthesis method .

m
c2

sðeÞ

� � ¼ ðmE2 þ sE2Þ B½ �m
c2

uðeÞ

� � B½ �T ðe ¼ 1; 2; . . . ; neÞ; ð29Þ

s
c2

sðeÞ

� � ¼ fðmE2 þ sE2Þ
2
ð B½ �s

c2

uðeÞ

� � B½ �TÞ
2
þ ð4mE2sE2 þ 2sE4Þð B½ �m

c2

uðeÞ

� � B½ �TÞ
2

þ ð4mE2sE2 þ 2sE4Þð B½ �s
c2

uðeÞ

� � B½ �TÞ
2
g1=2 ðe ¼ 1; 2; . . . ; neÞ; ð30Þ

v
c2

sðeÞ

� � ¼ s
c2

sðeÞ

� � m
c2

sðeÞ

� � ðe ¼ 1; 2; . . . ; neÞ: ð31Þ

4. Examples

According to the preceding computing formula and the solving method, the corresponding
computational program is designed. A 20-bar planar intelligent truss structure is used as example
(Fig. 1). The material of this structure is steel. The elastic module E, mass density r and cross-
sectional area A are all random variables: mE ¼ 2:058
 105 (MPa), mp ¼ 76:5 (kN/m3),
mA=4
 10�4 (m2). Length l is a random variable too, and let xj ¼ x ¼ 0:01: A ground level
acceleration PðtÞ act on the structure, PðtÞ is a Gauss stochastic process and its mean value is zero.
Its self-power spectral density can be expressed as [6]

SPPðoÞ ¼
1þ 4ðxgo=ogÞ

2

ð1� o2=o2
gÞ

2
þ 4ðxgo=ogÞ

2
S0;

where og ¼ 16:5; xg ¼ 0:7; S0 ¼ 15:6 cm2/s3.
In order to investigate the effect of the dispersal degree of random variables E, r; l and A on the

structural dynamic response, different models are selected and the values of variation coefficients
of parameters E, r; l and A are, respectively, taken as a different group. The computational results
of the mean value mc2

X9
; mean variance sc2

X9
and variation coefficient vc2

X9
of the mean square value

of displacement response c2
X9 of the nodal 9 of the X-axis are listed in Table 1. In addition, in

order to verify the effectiveness of the random factor method, the computational results that
obtained by the Monte–Carlo simulation method are given in Table 1, too. The computational
results of the mean value mc2

s1
;mean variance sc2

s1
and variation coefficient vc2

s1
of the mean square

value of stress response c2
s1 of the first element are listed in Table 2.
5. Conclusions
1.
 The analytical results of the method proposed in this paper are in accordance with that of the
Monte–Carlo simulation method, by which the effectiveness of our method is verified.
2.
 The effects of the randomness of E, r, l and A on the randomness of the mean square value of
the structural displacement and stress response are different; the randomness of bar’s length l
produces the greatest effect on the randomness of the mean square value of the structural
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Fig. 1. 20-bar planar truss structure.

Table 1

The mean value mc2
X9
; mean variance sc2

X9
and variation coefficient vc2

X9
of the mean square value of displacement

response c2
X9 of the nodal 9 of the X-axis (*Monte–Carlo simulation method)

Model mc2
X9

(mm2) sc2
X9

(mm2) vc2
X9

vE ¼ 0:1; vr ¼ vA ¼ vl ¼ 0 3.8127 0.1586 0.04159

vr ¼ 0:1; vE ¼ vA ¼ vl ¼ 0 3.8127 0.1570 0.04118

vE ¼ vr ¼ 0:1; vA ¼ vl ¼ 0 3.8127 0.1994 0.05229

vA ¼ 0:1; vE ¼ vr ¼ vl ¼ 0 3.8127 0.1796 0.04711

vl ¼ 0:1; vE ¼ vr ¼ vA ¼ 0 3.8127 0.6253 0.1640

vA ¼ vl ¼ 0:1; vE ¼ vr ¼ 0 3.8127 0.6302 0.1653

vE ¼ vr ¼ vA ¼ vl ¼ 0:1 3.8127 0.6493 0.1703

vE ¼ 0:2; vr ¼ vA ¼ vl ¼ 0 3.8127 0.3216 0.08435

vr ¼ 0:2; vE ¼ vA ¼ vl ¼ 0 3.8127 0.3086 0.08094

vE ¼ vr ¼ 0:2; vA ¼ vl ¼ 0 3.8127 0.3977 0.1043

vA ¼ 0:2; vE ¼ vr ¼ vl ¼ 0 3.8127 0.3582 0.09395

3.8135* 0.3585* 0.09402*

vl ¼ 0:2; vE ¼ vr ¼ vA ¼ 0 3.8127 0.7783 0.2041

3.8135* 0.7821* 0.2051*

vA ¼ vl ¼ 0:2; vE ¼ vr ¼ 0 3.8127 0.8079 0.2119

3.8135* 0.8111* 0.2127*

vE ¼ vr ¼ vA ¼ vl ¼ 0:2 3.8127 0.8550 0.2243

3.8135* 0.8576* 0.2249*
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Table 2

The mean value mc2
s1
;mean variance sc2

s1
and variation coefficient vc2

s1
of the mean square value of stress response c2

s1 of

the first element

Model mc2
s1
(Mpa2) sc2

s1
(Mpa) vc2

s1

vE ¼ 0:1; vr ¼ vA ¼ vl ¼ 0 2761.5 548.2 0.1985

vr ¼ 0:1; vE ¼ vA ¼ vl ¼ 0 2734.2 35.07 0.01283

vA ¼ 0:1; vE ¼ vr ¼ vl ¼ 0 2734.2 40.11 0.01467

vl ¼ 0:1; vE ¼ vr ¼ vA ¼ 0 2734.2 139.44 0.05049

vE ¼ vr ¼ 0:1; vA ¼ vl ¼ 0 2761.5 549.2 0.1989

vE ¼ vr ¼ 0; vA ¼ vl ¼ 0:1 2734.2 140.7 0.05146

vE ¼ vr ¼ vA ¼ vl ¼ 0:1 2761.5 551.4 0.1997

vE ¼ vr ¼ vA ¼ vl ¼ 0:2 2843.6 1116.3 0.3926
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displacement response, however, the randomness of the elastic module E produces the greatest
effect on the randomness of the mean square value of the structural stress response.
3.
 When the variation coefficients of physical parameters are equal to those of the geometric
dimensions, the randomness of physical parameters will produce greater effect on the
randomness of the mean square value of structural stress response, however, the randomness of
geometric dimensions will produce a greater effect on the randomness of the mean square value
of structural displacement response.
4.
 Along with the increase in the variation coefficients of E, r, l and A, the dispersal degree of the
structure’s dynamic response will increase.

The computational expressions of the mean value, variance and variation coefficient of the
mean square value of the structural displacement and stress response under the stationary random
excitation are developed in this paper, the dynamic response analysis results of the random
structure to the stochastic excitation can be obtained expediently. The examples show that the
model and method of the stationary random dynamic response analysis of stochastic structure
presented in this paper are rational and feasible.
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