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Abstract

Vibrations of circular and rectangular plates clamped on part of the boundary and simply supported
along the remainder are analyzed by means of a method of perturbation of boundary conditions. This
approach appears to be simple and straightforward, giving excellent results for the first mode and its
versatility permits to extend it to higher modes of vibration without difficulty. Furthermore, it is shown that
the fundamental frequency coefficient can also be determined using a modified Galerkin approach and very
simple polynomial coordinate functions which yield good engineering accuracy.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The study of flexural vibrations of plates subjected to different boundary conditions has
received considerable interest because of its great technological importance. Extensive and
accurate data are available for classical boundary conditions: simply supported, clamped or free
edges, as may be seen in Leissa’s classical treatise [1].
It is a well-established fact that when the boundary conditions are uniform along an edge

classical methods of analysis are applicable although, even for this situation, severe mathematical
difficulties may arise (it is illuminating at this point to recall the problem of vibrations of a fully
see front matter r 2004 Elsevier Ltd. All rights reserved.
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clamped rectangular plate which is probably one of the most difficult classical elastodynamics
problems).
It is rather obvious that the degree of mathematical complexity increases drastically when one

of the boundary conditions is not constant along a single boundary (Figs. 1–3).
If the two governing boundary conditions are not uniform the analytical approach may be not

applicable, at least in some instances, and a considerably more sophisticated approach must be
developed.
The problems we are dealing with belong to a general area defined as problems of mixed

boundary conditions and one must resort to approximate methods for their solution.
Several authors have tackled these plate vibration problems using different, successful

approaches.
Among them we must cite the important work of Bartlett [2] using a variational approach. He

considered free transverse vibrations of a circular plate clamped on part of the boundary and
simply supported on the remainder and calculated the fundamental frequency parameter giving
upper and lower bounds for the eigenvalues.
It is also remarkable that a solution to this problem was given by Noble [3], who showed that a

good approximation of the fundamental frequency parameter is given by the roots of a rather
simple transcendental equation.
For the same problem but following a different approach, Narita and Leissa [4] obtained the

natural frequencies and modes shapes for the fundamental and higher modes. This method was
based on an extension of an analytical procedure developed previously by Leissa et al. [5]. It
consisted of the consideration of a series-type solution and some uniform rotational springs along
the circumference of the plate to reproduce the mixed boundary condition. A secular infinite
determinant was obtained and the eigenvalues were determined as accurate as desired by
successive truncation of it.
Fig. 1. Vibrating system with mixed boundary conditions: j j j; clamped; � � �; simply supported.



ARTICLE IN PRESS

(a) (b)

Fig. 2. Circular plates under study: (a) quasi fully clamped plate (b) quasi fully simply supported plate. j j j; clamped;
� � �; simply supported.

Fig. 3. Simply supported rectangular plate clamped along one symmetrically located segment of the edge y ¼ b:
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The problem was also ingeniously treated by Narita [6] from a different perspective following a
method developed earlier by Irie et al. [7].
Rossi and Laura [8] used the finite element method to solve the problem and calculate the first

nine frequencies of vibration of a circular plate with the following combination of boundary
conditions: simply supported–clamped; simply supported–free and clamped–free.
The case of rectangular plates has also been treated when part of one edge is clamped while the

remainder is simply supported.
Ota and Hamada [9] solved the problem by assuming a deflection function which satisfies the

simply supported conditions everywhere and by applying distributed edge moments.
The problem was also solved by Kurata and Okamura [10] who used a very similar method.

Both works show excellent agreement with the experimental results presented there.
In this study an extension of the method of perturbation of boundary conditions [11] to solve

plate vibrations problems with mixed boundary conditions is presented.
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The present work deals only with the situation where a portion of an edge is simply supported
while the remainder is clamped. Since the displacement is null along the entire contour or edge C
one has

W jC ¼ 0: ð1Þ

For the clamped portion C1;

qW

qn

� �����
C1

¼ 0; ð2Þ

where n is a coordinate normal to the contour.
For the simply supported segment C2; the governing boundary condition is

ðMnÞjC2
¼ 0; ð3Þ

where Mn is the flexural moment normal to the contour defined as

Mn ¼ �D
q2W
qn2

þ mk
qW

qn
þ m

q2W
qs2

� �
;

and s refers to the coordinate tangential to the boundary surface, k is the curvature of the
boundary contour C, m is Poisson’s coefficient and D (flexural rigidity) is given by Eh3=12ð1� m2Þ;
where E ¼ Young’s modulus, h ¼ plate thickness.
Summing up, this paper deals first with the implementation of the perturbation of boundary

conditions approach. Then, calculations dealing with circular and rectangular plates, clamped on
part of their boundaries and simply supported on the remainder, for the first mode of vibration
are shown. After that, the procedure to obtain the eigenvalues of the problems for higher modes
of vibration is sketched. Next, the calculations leading to the fundamental frequency for circular
plates through a modified Galerkin method using very simple polynomial approximations are
presented. Finally, the results are compared with those previously obtained.
2. Mathematical procedure

Considering a thin isotropic plate of uniform thickness h, mass density r; bounded by contour
C and assuming simple harmonic motion at frequency o; the equation of motion, which must
satisfy the displacement amplitude, is

r4W � k4W ¼ 0: ð4Þ

If mixed boundary conditions are considered, the equations for W have to satisfy

W ¼ 0 for C;
qW

qn
¼ 0 for C1; ð5; 6Þ

q2W
qn2

þ mk
qW

qn
þ m

q2W
qs2

¼ 0 for C2; ð7Þ

where k4
¼ rho2=D is the eigenvalue under consideration.
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In the procedure to follow it will be shown how the eigenvalue k is obtained from the eigenvalue
for the unperturbed problem k0; the solution for the unperturbed problem W 0 and the perturbed
solution W. The method is applicable if the ‘unperturbed’ solution W 0 can be determined in a
straightforward fashion and their eigenvalues k0 are known exactly.
It is required that W be, in general, slightly different from the undisturbed solution W 0:

Moreover, it must satisfy the plate’s differential equation (4) and conveniently selected boundary
conditions chosen in a way that they resemble as closely as possible the real problem. The next
step is to obtain a single expression to calculate the actual eigenvalues k from the k0’s.
In order to develop an equation to calculate the eigenvalues k we shall make use of the well-

known Green’s second identity in two dimensions:Z
S

ður2v � vr2uÞdA ¼

I
C

u
qv

qn
� v

qu

qn

� �
dl: ð8Þ

Taking u ¼ r2W and v ¼ W 0 in Eq. (8) results in the expressionZ
S

ðr2Wr2W 0 � W 0r4W ÞdA ¼

I
C

r2W
qW 0

qn
� W 0 qr2W

qn

� �
dl: ð9Þ

Now, substituting u ¼ W and v ¼ r2W 0 into Eq. (8) results inZ
S

ðWr4W 0 �r2W 0r2W ÞdA ¼

I
C

W
qr2W 0

qn
� r2W 0 qW

qn

� �
dl: ð10Þ

Since W and W 0 are assumed to satisfy the plate’s differential equation (4) with eigenvalues k and
k0; respectively, adding Eqs. (9) and (10) leads to

ðk4
� ðk0

Þ
4
Þ

Z
S

W 0W dA ¼

I
C

r2W 0 qW

qn
� r2 W

qW 0

qn
þ W 0 qr

2W

qn
� W

qr2W 0

qn

� �
dl: ð11Þ

Since one does not know the exact expression for W one must replace W by W 0 as it is normally
done in a first-order perturbation procedure. This leads to the final result

ðk4
� ðk0

Þ
4
Þ ¼

H
C

r2W 0 qW

qn
� r2W

qW 0

qn
þ W 0 qr

2W

qn
� W

qr2W 0

qn

� �
dlR

S
ðW 0Þ

2 dA
: ð12Þ

The above expression will be used as a starting point from which the eigenvalue k will be
calculated for the different geometries and boundary conditions that will be emerging in this
study.
To perform these calculations we will require some approximations selected specifically for each

case under consideration.
The evaluation of Eq. (12) makes it possible to obtain the improved value k. Clearly one must

choose a reasonably good approximation for the functional relation W since its exact expression is
not known. To perform the required calculation for different geometries and boundary
complications, it turns out to be necessary to assume convenient approximations for W and
needed derivatives on the boundary. The procedure will be illustrated by two example cases.
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3. Circular plates

In this section we apply the method to a circular plate partially clamped and partially simply
supported on its contour.
As angle g increases from 0 to p; the boundary of the plate changes from a quasi fully clamped

plate with a very small segment which is simply supported (see Fig. 2(a)) to a quasi simply
supported plate with a very small part which is clamped (see Fig. 2(b)). Because our method
improves its precision as W 0 becomes similar to W, better results are obtained if this case is split
into two cases.
As a first case, we consider W ðr; yÞ as the solution of the problem with the edge of the plate

simply supported on an angle of �goyog; where gop=2; and clamped on the remainder. As
W 0ðr; yÞ we will denote the solution of a circular plate totally clamped. A schematic representation
of the plate is shown in Fig. 2(a).
In the second case we consider W ðr; yÞ as the solution of a circular plate where the boundary is

clamped on �goyog (where gop=2 ) and simply supported on the remainder (see Fig. 2(b)). On
this occasion W 0ðr; yÞ will be the exact solution of a totally simply supported circular plate.

3.1. First case

As mentioned above, we choose W 0 as the exact solution of a fully clamped circular plate.
Therefore it must satisfy the partial differential equation

r4W 0ðr; yÞ � ðk0
Þ
4W 0ðr; yÞ ¼ 0 ð13Þ

and the boundary conditions for a clamped plate:

W 0ðr ¼ a; yÞ ¼ 0;
qW 0

qr

����
r¼a

¼ 0; ð14Þ

where a is the plate’s radius.
For the perturbed problem we consider W as the displacement amplitude. Again it must satisfy

r4W ðr; yÞ � k4W ðr; yÞ ¼ 0: ð15Þ

The boundary conditions for the real problem are Eqs. (5)–(7). Here, for the perturbed problem,
we replace them proposing

W ðr ¼ a; yÞ ¼ 0 ð16Þ

and the approximate condition

qW

qr

����
r¼a

¼ cðyÞ
qW ss

qr

����
r¼a

; ð17Þ

where W ss is the displacement amplitude for a simply supported circular plate and cðyÞ is a step
function which is 1 for �goyog and 0 on the remainder.
These particular boundary conditions are proposed in a way that resembles as closely as

possible the real boundary condition in each portion of the plate.
Then, to obtain the corrected eigenvalue of the problem k, we must solve Eq. (12).



ARTICLE IN PRESS

M. Febbo et al. / Journal of Sound and Vibration 281 (2005) 341–356 347
Applying boundary conditions (14), (16) and (17) in Eq. (12), the resulting expression can be
written as

ðk4
� ðk0

Þ
4
Þ ¼

H
C

r2W 0cðyÞ
qW ss

qr

� �
dlR

S
ðW 0Þ

2 dA
: ð18Þ

Solving Eq. (18) the approximate eigenvalue k is obtained.
3.2. Second case

This time, we select W 0 as the exact solution of a totally simply supported circular plate. Then,
it must satisfy the partial differential equation

r4W 0ðr; yÞ � ðk0
Þ
4W 0ðr; yÞ ¼ 0 ð19Þ

and boundary conditions for simply supported circular plates,

W 0ðr ¼ a; yÞ ¼ 0;
q2W 0

qr2
þ

m
r

qW 0

qr

����
r¼a

¼ 0: ð20Þ

For the perturbed problem W must satisfy

r4W ðr; yÞ � k4W ðr; yÞ ¼ 0; ð21Þ

with the perturbed boundary conditions. Now, we propose for this case

W ðr ¼ a; yÞ ¼ 0;
q2W
qr2

þ
m
r

qW

qr

����
r¼a

¼ cðyÞ
q2W c

qr2
; ð22Þ

where W c represents the displacement amplitude for a totally clamped circular plate and cðyÞ is a
step function defined as 1 for �goyog and 0 on the remainder.
From expression (12) and applying boundary conditions (20) and (22), one obtains

ðk4
� ðk0

Þ
4
Þ ¼

H
C

r2W 0 qW

qr
� r2W

qW 0

qr

� �
dlR

S
ðW 0Þ

2 dA
: ð23Þ

The following criteria will be used for a first-order determination of Eq. (39). Since along the
simply supported portion of the contour one has

q2W 0

qr2
þ

m
r

qW 0

qr

����
r¼a

¼ 0; ð24Þ

one may approximate r2W 0 by the boundary condition (24) since this will simplify considerably
the calculation in view of the fact that in the line integral (39) it is multiplied by qW=qr which is an
unknown since W is not known.
Accordingly one now needs to evaluate the second term of the line integral. Here one again

replaces r2W jr¼a by the nonhomogeneous boundary condition (22) which is a constitutive
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equation containing the effect of the clamped portion of the boundary,

r2W jr¼a ffi
q2W
qr2

þ
m
r

qW

qr

����
r¼a

¼ cðyÞ
q2W c

qr2

����
r¼a

: ð25Þ

Eq. (12) can then be rewritten to read

ðk4
� ðk0

Þ
4
Þ ¼ �

H
C

cðyÞ
q2W c

qr2
qW 0

qr
dlR

S
ðW 0Þ

2 dA
; ð26Þ

accordingly the desired, approximate eigenvalue k can be obtained from this equation.
4. Rectangular plates

In this instance we consider a rectangular plate in which the discontinuous boundary condition
takes place on an edge where a particular coordinate is constant. For the implementation of the
method we choose the edge y ¼ b:
As in Section 3 the problem under consideration will be split into two cases to obtain more

accurate results since the method improves its precision when W 0 approximates the real problem
as closely as possible. The first case will be used when aXlXa=2 while the second one will be used
when 0ploa=2:

4.1. First case

On this occasion the solution for the unperturbed problem W 0 will be that of a rectangular
plate simply supported on x ¼ 0; x ¼ a; y ¼ 0 and clamped at y ¼ b:
To determine the integral in Eq. (12) we need to evaluate W 0; W and their derivatives on the

four sides of the rectangle.
The boundary conditions for W and W 0 establish that W 0=W= 0 on all boundaries. Besides

on x ¼ 0 and x ¼ a one has

M0
x ¼ �D

q2W 0ðx; yÞ

qx2
þ m

q2W 0ðx; yÞ

qy2

� �����
x¼0;a

¼ 0; ð27Þ

Mx ¼ �D
q2W ðx; yÞ

qx2
þ m

q2W ðx; yÞ

qy2

� �����
x¼0;a

¼ 0; ð28Þ

while on y ¼ 0;

M0
y ¼ �D

q2W 0ðx; yÞ

qy2
þ m

q2W 0ðx; yÞ

qx2

� �����
y¼0

¼ 0; ð29Þ

My ¼ �D
q2W ðx; yÞ

qy2
þ m

q2W ðx; yÞ

qx2

� �����
y¼0

¼ 0: ð30Þ
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Finally, on the edge y ¼ b with the discontinuous boundary condition

qW 0

qy

����
y¼b

¼ 0 ð31Þ

and

qW ðx; yÞ

qy

����
y¼b

¼ cðxÞ
qW ss

qy

����
y¼b

; ð32Þ

where W ss is the displacement amplitude for a totally simply supported rectangular plate and cðxÞ
is a step function defined by

cðxÞ ¼

1 for 0oxoa=2� l=2;

1 for a=2þ l=2oxoa;

0 on the remainder:

8><
>: ð33Þ

Eq. (32) establishes the boundary condition for the slope of W. We propose it to adopt that form
for the same purpose as for the circular case.
The corrected eigenvalue for the problem will be obtained from the substitution of the

equations for W and W 0 into Eq. (12). This leads to

ðk4
� ðk0

Þ
4
Þ ¼

H
C

r2W 0 qW

qn
� r2W

qW 0

qn

� �
dlR

S
ðW 0Þ

2 dA
: ð34Þ

Applying the governing boundary conditions, Eqs. (27)–(32), we obtain

ðk4
� ðk0

Þ
4
Þ ¼

R
y¼b

r2W 0 qW

qn

� �
dlR

S
ðW 0Þ

2 dA
: ð35Þ

4.2. Second case

Consider now the same problem as in the first case. To obtain a better approximation to the
real problem, it is convenient to choose W 0 as the solution of a simply supported rectangular plate
over all sides. Therefore, W 0 will satisfy the same boundary conditions as in the previous case
except for y ¼ b where one has

M0
yjy¼b ¼ �D

q2W 0ðx; yÞ

qy2
þ m

q2W 0ðx; yÞ

qx2

� �����
y¼b

¼ 0: ð36Þ

On the other hand, W will satisfy the same conditions as in the first case on x ¼ 0; x ¼ a and
y ¼ 0 but now we model the discontinuous edge with the following constitutive condition:

Myjy¼b ¼ �D
q2W ðx; yÞ

qy2
þ m

q2W ðx; yÞ

qx2

� �����
y¼b

¼ �DcðxÞ
q2W scðx; yÞ

qy2

����
y¼b

; ð37Þ
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where W sc is the displacement amplitude for a clamped plate on y ¼ b and simply supported on
x ¼ 0; x ¼ a and y ¼ 0; and cðxÞ is defined on the edge y ¼ b; this time being equal to

cðxÞ ¼
1 for a=2� l=2oxoa=2þ l=2;

0 on the remainder:

�
ð38Þ

Here the boundary conditions for W follow the same criteria as in Section 3.
The corrected eigenvalue of the problem, k, must be calculated from Eq. (12), once the

consideration of null displacement of W 0 and W has been taken into account. Therefore, the final
result is

ðk4
� ðk0

Þ
4
Þ ¼

H
C

r2W 0 qW

qn
� r2W

qW 0

qn

� �
dlR

S
ðW 0Þ

2 dA
: ð39Þ

Knowing that W 0 is the solution of a totally simply supported rectangular plate we can set
r2W 0 ¼ 0 on all sides of the rectangle.
On the other hand, we use the approximations

r2W jx¼0;a ffi
q2W ðx; yÞ

qx2
þ m

q2W ðx; yÞ

qy2

����
x¼0;a

¼ 0;

r2W jy¼0 ffi
q2W ðx; yÞ

qy2
þ m

q2W ðx; yÞ

qx2

����
y¼0

¼ 0;

r2W jy¼b ffi
q2W ðx; yÞ

qy2
þ m

q2W ðx; yÞ

qx2

����
y¼b

¼ cðxÞ
q2W scðx; yÞ

qy2

����
y¼b

:

Reaccommodating Eq. (39), we obtain

ðk4
� ðk0

Þ
4
Þ ¼ �

R
y¼b

cðxÞ
q2W sc

qn2
qW 0

qn
dlR

S
ðW 0Þ

2 dA
: ð40Þ

Solving Eq. (40), k can be obtained.

5. Numerical results

5.1. Circular plate

To obtain the frequencies for the different modes, we must know the analytical solution of a
totally simply supported and a totally clamped circular plate, which are

W ss ¼ ðAnssJnðknssrÞ þ CnssInðknssrÞÞ
cosðnyÞ

sinðnyÞ

� 

; ð41Þ

W c ¼ ðAncJnðkncrÞ þ CncInðkncrÞÞ
cosðnyÞ

sinðnyÞ

� 

; ð42Þ
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where n denotes the number of nodal diameters and knss and knc correspond to the simply
supported and clamped eigenvalues for the different modes, respectively.

5.1.1. Fundamental mode

For the case of n ¼ 0; Eqs. (41) and (42) result in

W 0ss ¼ A0ssJ0ðk0ssrÞ þ C0ssI0ðk0ssrÞ; ð43Þ

W 0c ¼ A0cJ0ðk0crÞ þ C0cI0ðk0crÞ: ð44Þ

Substituting the above solutions into Eq. (18) for the first case (Section 3.1) and into Eq. (26) for
the second case (Section 3.2) one obtains the desired value of the perturbed eigenvalue for the
fundamental mode, k0:

5.1.2. Higher modes (n40Þ
Considering higher modes of vibration, it is fairly known that, for a circular plate with uniform

boundary conditions (g ¼ 0), a two-fold degeneracy of the vibrational modes appears. If ga0 (as
in our case), which means a discontinuous boundary condition, this degeneracy is splitting each
mode into two, distinguishable one from the other. We will label these modes ‘symmetric’ and
‘antisymmetric’. It is illustrative to point out that obviously no pure symmetric or antisymmetric
modes exist in view of the geometric arrangement of the boundary conditions.
We restrict our analysis to the case n ¼ 1: For this occasion the analytical solutions are

obtained from Eqs. (41) and (42) substituting n ¼ 1: Clearly, the expressions containing cosðyÞ
correspond to the ‘symmetrical’ solution whereas the one with the sinðyÞ term to the
‘antisymmetrical’ one.

5.2. Rectangular case

This time we will consider the fundamental mode to illustrate the procedure to follow for
rectangular plates. The extension of the method for higher modes is straightforward and implies
the same considerations as in the circular plate.
The solution for the fundamental mode has been extracted from Ref. [1]. For a simply

supported rectangular plate on the four edges, the exact analytical solution is

W ss ¼ Ass sin
px

a

� �
sin

py

b

� �� �
: ð45Þ

If the rectangular plate is clamped on y ¼ b and simply supported on x ¼ 0; x ¼ a and y ¼ 0 the
solution is

W sc ¼ Asc sinðaxÞðsinðl1bÞ sinhðl2yÞ � sinhðl2bÞ sinðl1yÞÞ sinðay=bÞÞ; ð46Þ

where

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

sc � a2
q

; l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

sc þ a2
q

; a ¼ p=a;

where ksc is the corresponding eigenvalue. These solutions will be used in Eqs. (35) and (40) to
obtain the numerical values of the eigenfrequencies of the problem.
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5.3. Fundamental frequency by a modified Galerkin method

In this section, we develop a ‘modified Galerkin’ method to obtain the fundamental frequency
for circular plates clamped on �goyog and simply supported on the remainder (see Fig. 2(b)).
Evidently, the same procedure can be extended to analyze higher modes of vibration.
We resume the procedure as follows. First, the fundamental mode is approximated by a simple

polynomial which identically satisfies the boundary conditions on each portion of the plate’s edge,
which are on r ¼ a:

W ¼ 0; for 0oyo2p; ð47Þ

qW

qr
¼ 0; for � goyog; ð48Þ

q2W
qr2

þ
m
r

qW

qr
þ

m
r2

q2W

qy2
¼ 0; for gpyo2p� g: ð49Þ

In view of the ‘quasi’ radial symmetry of the mechanical system under study for the fundamental
mode, one can approximate W by a polynomial term of the form [12]

W a ¼ A1ðar4 þ br2 þ 1Þ; ð50Þ

where the subscript a stands for the approximate displacement function of the real problem W,
and A1; a and b are constants to be determined.
Considering Eqs. (48) and (49), they may be condensed into a single form as follows:

dW a

dr

����
r¼a

¼ �fðyÞD
d2W a

dr2
þ

m
r

dW a

dr

� �����
r¼a

; ð51Þ

where fðyÞ is a step function defined by

fðyÞ ¼
0 for � goyog;

1 for gpyo2p� g;

�
ð52Þ

and where 1 is replaced by 107–108 for numerical calculation purposes.
To determine the values of a and b; Eq. (50) must be substituted into the boundary condition

(51). Then,

a ¼
ðfD=aÞð1þ mÞ þ 1

a4ðfD=að5þ mÞ þ 1Þ
; b ¼

�2

a2
ðfD=aÞð3þ mÞ þ 1

ðfD=að5þ mÞ þ 1Þ

� �
: ð53Þ

Accordingly, applying Eq. (53) and the definition of fðyÞ given by Eq. (52), W a results:

W a ¼
A1cðacr

4 þ bcr
2 þ 1Þ for � goyog;

A1sðasr
4 þ bsr

2 þ 1Þ for gpyo2p� g;

(
ð54Þ

where

ac ¼ aðf ¼ 0Þ; bc ¼ bðf ¼ 0Þ; as ¼ aðf ! 1Þ; bs ¼ bðf ! 1Þ:

We denote ðacðsÞr
4 þ bcðsÞr

2 þ 1Þ as the coordinate function.
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Substituting Eq. (54) into plate’s governing differential equation (4), one obtains an ‘error’
function; �cðr;A1c; kðoÞÞ and �sðr;A1s; kðoÞÞ for the clamped and simply supported section of the
plate. In this modified Galerkin method it is required that the sum of the error functions �cðsÞ be
orthogonal with respect to each coordinate function over the domain under consideration.
This condition leads toZ g

�g

Z a

0

�cðr;oÞðacr
4 þ bcr

2 þ 1Þrdrdyþ
Z 2p�g

g

Z a

0

�sðr;oÞðasr
4 þ bsr

2 þ 1Þrdrdy ¼ 0; ð55Þ

where �cðsÞðr;oÞ results from

Dr4W aðrÞ � rho2W aðrÞ ¼ �cðsÞðr;oÞ:

The root of expression (55), o00; is the fundamental approximate natural frequency of the
problem.
The expression for the fundamental frequency coefficient O00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrh=DÞ

p
o00a

2 becomes

O00 ¼ 64
gZc þ ðp� gÞZs

gdc þ ðp� gÞds

� �
; ð56Þ

where

ZcðsÞ ¼ acðsÞ acðsÞ
a6

6
þ bcðsÞ

a4

4
þ

a2

2

� �
;

dcðsÞ ¼ a2cðsÞ
a10

10
þ acðsÞbcðsÞ

a8

8
þ b2cðsÞ

a6

6
þ acðsÞ

a6

3
þ bcðsÞ

a4

2
þ

a2

2
:

The original Galerkin method yields upper bounds. However, the results obtained by this
‘modified Galerkin’ approach are not necessarily upper bounds.
5.4. Discussion and results

Table 1 shows the fundamental frequency coefficient O00 ¼ k2
0a

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrh=DÞ

p
o00a

2 for the first
or fundamental mode of vibration of a circular plate for different values of g which here represents
the clamped portion of the boundary as in Fig. 2(b).
It is important to point out that the values of comparison contained in Refs. [2,8] have been

obtained for m ¼ 0:25; while the eigenvalues from Ref. [4] were calculated for m ¼ 0:3: Obviously
this fact influences the values of O00; with the exception of the case corresponding to the fully
clamped plate ðg ¼ pÞ: However, it can be noticed that using m ¼ 0:25 or m ¼ 0:3 does not
influence greatly the eigenvalues with the only exception of the cases g ¼ 0 and 3=4p; where the
difference is of the order of 2%. Certainly for g ¼ p (fully clamped case), Poisson’s ratio does not
come into play and the agreement is excellent. For g ¼ 0 (fully simply supported plate) the present
approach, the boundary perturbation method (BPM), yields the exact frequency coefficient in
view of the inherent formulation of the proposed approach.
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Table 2

Frequency coefficients for the first ‘symmetric’ O1s and ‘antisymmetric’ O1a modes for a circular plate clamped on

�goyog and simply supported on the remainder; m ¼ 0:25 ð�m ¼ 0:3Þ

Mode type g

0 p=8 p=4 3p=8 p=2 5p=8 3p=4 7p=8 p

Ref. [8] S 13.842 15.939 16.904 17.404 17.485 17.590 18.276 19.980 21.262

A 13.842 14.070 14.748 15.886 17.550 19.493 20.833 21.232 21.262

Ref. [4]n S 13.898 17.065 17.506 18.533 21.252

A 13.898 14.946 17.910 20.960 21.252

BPM S 13.835 15.690 16.902 17.429 17.511 17.803 18.403 19.652 21.260

A 13.835 13.938 14.572 15.871 17.511 19.475 20.660 21.180 21.260

Table 1

Frequency coefficient O00 for the fundamental mode for a circular plate clamped on �goyog and simply supported on
the remainder; m ¼ 0:25 ð�m ¼ 0:3Þ

g

0 p=8 p=4 3p=8 p=2 5p=8 3p=4 7p=8 p

Ref. [2] 4.860 5.871 6.350 6.880 7.508 8.231 9.120 9.885 10.216

5.842 6.335 6.864 7.480 8.162 8.880 9.126

Ref. [4]n 4.937 6.487 7.673 9.284 10.216

Ref. [8] 4.868 5.859 6.351 6.878 7.511 8.272 9.118 9.88 10.216

BPM 4.860 5.6806 6.397 7.040 7.630 8.415 9.055 9.653 10.216

Mod. Galerkin 4.872 5.572 6.245 6.905 7.563 8.228 8.905 9.604 10.328

Note: BPM: Boundary perturbation method.
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This is also the case for the fully clamped plate (g ¼ p). The modified Galerkin scheme is also
presented and shows good agreement with referenced values.
Table 2 illustrates numerical values for the frequency coefficient for the first ‘symmetric’ (n ¼ 1)

O1s and first ‘antisymmetric’ O1a modes (m ¼ 0:25). BPM calculations are presented for these cases
which show very good agreement with referenced values.
Evidently, to obtain the results with BPM for g4p=2; the formulation of the first case (Fig.

2(a)) presented in Section 3 was used whereas for values of gpp=2 the second case (Fig. 2(b)) was
considered.
In Table 3, the fundamental frequency coefficient for a simply supported square plate clamped

along one symmetrically located segment of the edge y ¼ b is presented. The clamped portion of
the edge is represented by l=a; where l=a ¼ 1 means a totally clamped edge. Exact values are
available for the limiting cases of l=a while Ref. [9] was used to compare with the BPM (present)
approach. A reasonable agreement between them is shown to exist.
In a similar fashion as for circular plates, the first case of Section 4 was used for plates in the

case where l=a41=2; whereas the second case was used when l=ap1=2:
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Table 3

Fundamental frequency coefficient for a square plate clamped along one symmetrically located segment of an edge;

m ¼ 0:3

l=a

0 1/6 1/3 1/2 2/3 5/6 1

BPM 19.74 21.070 22.162 23.001 23.446 23.623 23.65

Ref. [9] 19.74 23.0 23.4 23.6 23.65
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6. Concluding remarks

In the first place, the present novel methodology of solving this type of problem of
discontinuous boundary conditions results in a simpler and less mathematical effort than other
approaches by previous authors. For example, the finite element formulation for this problem in
the case of a circular plate [8] has to use a high density mesh to solve the problem, in order to
obtain a similar precision as in the present BPM approach. Secondly, the method can be extended
straightforwardly to calculate higher modes of vibration without any substantial modification of
the mathematical procedure.
It was demonstrated that excellent agreement is found for the first two modes of vibration for

circular plates.
In the case of rectangular plates the method presents significantly good accuracy, considering

the complexity of the problem and the simplicity of the analysis.
Another remarkable point, as may be deduced from the present analysis, is that this method can

be applied to wide variations of plate shapes. Admittedly, the required algorithm may turn out to
be quite complex, however.
Certainly a second-order perturbation, using the first-order perturbation mode shape, will

improve the accuracy of the results but the complexity of the algorithmic procedure will increase
considerably.
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