
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 281 (2005) 399–408
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
Short Communication

Strain-dependent nonlinear damping and application to
dynamic analysis of elastic linkage mechanism

Hongzhao Liu�, Jianping Wang, Zhongming Zhang, Daning Yuan, Lilan Liu

Received 16 September 2003; accepted 2 March 2004

Available online 13 October 2004
1. Introduction

At present, viscous and complex damping models are two kinds of most widely used damping
theory. Both of them assume that the viscous damping coefficient or dissipation factor is a
constant, hence, they are linear damping models. However, it is necessary to introduce a nonlinear
or stress-dependent damping model for high-dissipation-capacity material like damping alloy or
highly stressed part in a machine. The stress-dependent damping has been studied by various
investigators. It was pointed out by Lazan in Ref. [1], that not like linear damping material whose
hysteresis loops are elliptical shape, for nonlinear materials, the damping energy exponent is
greater than two, and corresponding hysteresis loops have very complicated shape. To compute
this kind of damping, Kume et al. [2] proposed an analytical method and applied it to a cantilever
beam. In Ref. [3], based on the finite element approach, a numerically iterative scheme is
developed for the computation of the nonlinear structural damping for beam-like structures.
Audenino et al. [4,5] use both the multiple exponential fitting method and multiple autoregressive
method to extract the pattern of internal damping versus material strain in uniaxially stressed
metals. However, because damping is a somewhat obscure property, very little is known about the
evaluation of this kind of nonlinear damping. The objective of this paper is to obtain the
nonlinear constitutive equation of high-damping alloy by experiment and apply it to the dynamics
of elastic linkage mechanism. With this purpose, first, the decay vibration curves are measured for
a group of damping alloy specimens under the excitation of impulse forces with different
amplitude, and the nonlinear relation of dissipation factor versus strain amplitude is fitted. Then,
see front matter r 2004 Elsevier Ltd. All rights reserved.
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based on the fitted relation and equivalent viscous damping theory, a nonlinear constitutive
equation of high-damping alloy is put forward. Furthermore, the nonlinear dynamic equations of
elastic linkage mechanism containing damping parts are deduced according to the virtual work
principle for elastomer. Finally, an efficient computational algorithm for solving this complicated
equations is developed by combining the state variable and Pade approaching methods. The
analytical results are agreed with that of experiment, showing the correctness and validity of the
present study.
2. Strain-dependent specific damping capacity

A measure of damping of a vibrating structure is the so-called specific damping capacity c: At
normal atmospheric temperature, specific damping capacity can be regarded as a function of
strain, i.e. c ¼ cð�Þ: Using the equivalent viscous damping theory, the constitutive equation for
complex damping can be expressed as follows:

s ¼ E�þ
Ev

o
_�; (1)

where s; �;E; v are the stress, strain, modulus of elasticity and loss factor, respectively, o is the
circular frequency of vibration. Eq. (1) is a frequency-dependent constitution of viscous damping,
but here loss factor v depends on strain, i.e. v ¼ vð�Þ: It is difficult to measure the nonlinear
relation of loss factor versus strain directly. Here, a practical experimental method is put forward
for seeking this nonlinear relationship. The experimental apparatus is a vibration measuring
system of cantilever beam of damping alloy specimen. A vertical loading P is imposed at the free
end of the beam, different strain amplitudes at the cantilevered end can be obtained by changing
the amplitude of imposed forces. With the force being removed suddenly, the cantilever beam
specimen will make a free vibration. Then the loss factor can be obtained by measuring the
logarithm decrement of decay curves. The cantilever beam is made of high-damping material
Al–33Zn–6Si, whose height and effective length are 2 and 130mm, respectively. The strain
amplitude at the beam’s cantilevered end can be calculated according to the force imposed at the
free end. Table 1 shows the experimental values of loss factor and strain amplitudes at the beam’s
cantilevered end.
Table 1

Experiment values of loss factor and strain amplitude at the beam’s cantilevered end

Loading (N) Experimented loss factor (%) Strain amplitude (10�3)

1 2 3 4 5 Average

0.8 0.2469 0.2450 0.2509 0.2491 0.2580 0.2499 0.1809

1.0 0.2551 0.2551 0.2645 0.2541 0.2667 0.2591 0.2261

1.2 0.2564 0.2588 0.2495 0.2587 0.2567 0.2560 0.2713

1.4 0.2552 0.2693 0.2565 0.2622 0.2654 0.2611 0.3165

1.6 0.2705 0.2766 0.2738 0.2788 0.2677 0.2735 0.3617
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Fig. 1. Loss factor fitting curves for Al–33Zn–6Si. (1) Parabolic damping model; (2) exponential damping model; and

(3) experimental values.

Table 2

Fitting precision

Parabolic damping model Exponential damping model

d 0.00006705 0.00007810
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The nonlinear relation of loss factor versus strain has been fitted based on the data of Table 1 as
follows. Plotting the N þ 1 pair numbers of �i and vi on a coordinates and analyzing its varying
trend, the parabolic and exponent function curves are chosen for fitting separately, they are

v ¼ 5104:4�2 � 1:68�þ 0:00266; (2)

v ¼ 0:002318 e421:14�: (3)

Fig. 1 shows the fitted curves. Table 2 shows the residual error d; it can be seen that the fitting
precision of parabolic curve is higher than that of exponential curve.
3. Dynamic equations of elastic mechanism containing damping alloy parts

Using planar beam element to simulate the linkage, the element generalized coordinate is
expressed as u ¼ fu1 u2 u3 u4 u5 u6g

T: The displacement of any point inside an element is

fu vÞT ¼ Nu; (4)
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where N is the shape function matrix containing sub-matrix N1 and N2. The normal stress s along
the longitudinal axis of element consists of two parts, the stretch stress sn and compress stress sm

due to bending, correspondingly, the normal strain

� ¼ �n þ �m; (5)

where �n ¼ N0
1u; �m ¼ yN00

2u; N
00
1 N

00
2; are the respective first and second derivatives relative to

variables x; and y is the distance from the neutral axis of the element. According to the virtual
work principle for elastomer, the motion differential equation of a beam element can be deduced
as

me €ua þDn þDm ¼ S; (6)

where me and S are the mass matrix and external force vector from the adjacent element,
respectively, €ua represents the absolute acceleration vector, and

Dn ¼

Z Z Z
N0T
1 sn dxdydz; Dm ¼

Z Z Z
yN00T

2 sm dxdydz; (7)

writing Eqs. (2) and (3) into general form

v ¼ gð�Þ (8)

then substituting Eq. (8) into (1), a strain and frequency-dependent nonlinear constitutive
equation is obtained as follows:

s ¼ E�þ
Egð�Þ

o
_�: (9)

Substituting Eq. (9) into Eq. (7), we have

Dn ¼ k1uþ c1 _u; Dm ¼ k2uþ c2 _u;

where

k1 ¼

Z l

0

EAðxÞN 0T
1 ðxÞN 0

1ðxÞdx; c1 ¼

Z l

0

Eg½N0
1ðxÞuþ hN00

1ðxÞu=2


o
AðxÞN 0T

1 ðxÞN0
1ðxÞdx;

k2 ¼

Z l

0

EIN 00T
2 ðxÞN00

2ðxÞdx; c2 ¼

Z l

0

Eg½N00
1ðxÞuþ hN00

2ðxÞu=2


o
IN 00T

2 ðxÞN00
2ðxÞdx;

where h is the distance from neutral axis to the top of element, AðxÞ and I are the cross section
area and inertia moment of element, respectively. Substituting Dn, Dm into Eq. (6) and denoting
ke=k1+k2, ce=c1+c2, the motion equation of a beam element becomes

me €ua þ ce _uþ keu ¼ S; (10)

where ce, ke are the damping, stiffness matrix of element, respectively. As damping matrix ce

contains unknown vector u, Eq. (10) is a nonlinear motion differential equation. According to the
kineto-elasto-dynamics theory, assembling all the element motion equations together, the system’s
motion equation for an elastic linkage mechanism is gained as follows:

M €Uþ C _Uþ KU ¼ P; (11)
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where U, M, C, K are the system’s generalized coordinate vector, mass, damping, and stiffness
matrix, respectively.M, C, K change with time, matrix C contains unknown vector U, and P is the
external excitation force vector including inertia force of rigid-body motion.

4. Numerical computation method

Assuming that the number of degrees of freedom of system’s motion equation is n, introducing
2n order state variable vector, Z ¼ fUT _U

T
gT; _Z ¼ f _U

T €U
T
gT; Eq. (11) can be written as follows:

_Z ¼ FZþGP; (12)

where

I is an n order unit matrix and 0 is an n order null matrix, respectively.
Assuming that the motion period of the mechanism is T, ½t0; t0 þ Dt
 2 ½0;T 
 is an arbitrarily

small time interval, F, G, P can be considered as constant matrices in this interval, thus the
solution of Eq. (12) in the interval ½t0; t0 þ Dt
 will be

ZðtÞ ¼ eFðt�t0ÞZðt0Þ þ

Z t

t0

eFðt�tÞ dtGP (13)

at time t0 þ Dt

Zðt0 þ DtÞ ¼ eF DtZðt0Þ þ

Z Dt

0

eFt dtGP: (14)

An iteration procedure is adopted to increase the computational precision, which is described as
follows:
(1)
 Assuming in the time interval ðt0; t0 þ DtÞ the initial state variable Z(t0) is known, from Eq.
(14) the first approximation Z(t)1 of Z(t) at time t0 þ Dt is obtained.
(2)
 Using Z(t)1 as a new initial value of Z(t) at time t0, repeating step (1) the second
approximation Z(t)2 of Z(t) at time t0 þ Dt is obtained. � �
(3)
 Given a predetermined computation precision index �140; if, ZðtÞ2 � ZðtÞ1� �p�1; ZðtÞ2 will be
taken as the solution of Z(t) at time t0 þ Dt; otherwise go back to step (2) doing iteration
again, until ZðtÞk � ZðtÞk�1

�� ��p�1; Z(t)k will be taken.
Because the damping matrix C of Eq. (11) contains unknown vector U, when doing the above
calculation, matrix C will be separated into two parts, i.e. the linear part C1 and the nonlinear part
Cn. Firstly consider the linear part C1 and neglect the nonlinear part Cn, Eq. (11) will be

M €Uþ Cl
_Uþ KU ¼ Q: (15)

From Eqs. (14) and (15), the solution Z0 without considering nonlinear part Cn can be
obtained, and from Z0 the first approximation of Cn1 can be calculated. Then let

C1 ¼ Cl þ Cn1:
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The system’s new motion equation will be

M €Uþ C1
_Uþ KU ¼ Q: (16)

Solving Eq. (16), the first approximation Z1 will be obtained. Repeating above steps, the ith
approximation Zi, i.e. Ui can be gained until a given convergence criterion is satisfied.
5. Using Padé approaching method to calculate the matrix exponet

In the above computing procedure, it is required to calculate the matrix exponent eFt

repeatedly. A simplest method is to calculate it directly using series expansion method. However,
the series expansion method convergences very slowly. It will take much computing time
especially for high-dimensional matrix. Based on try and comparison with several other kinds of
computational methods, here the diagonal Padé approaching with variable scale method [6] is
adopted for solving matrix exponent. This method can be briefly described as follows.
Assuming A is an n� n order real matrix, matrix exponent F=eA can be calculated through

following steps:
(1)
Tab

The

q

d

Let j ¼ maxf0; 1þ floorðlog2ðjjAjj1ÞÞg; A=A/2j, D=I, N=I, X=I, where I is an n� n order
unit matrix.
(2)
 Assume q is the minimum nonnegative integral which meets the following inequality:

23�2q ðq!Þ2

ð2qÞ!ð2q þ 1Þ!
pd;

where small number d40 is a given precision.

(3)
 For k ¼ 1; 2; . . . ; q; let c ¼ ðð2q � kÞ!q!Þ=ðð2qÞ!k!ðq � kÞ!Þ; and solve X, N, D, respectively

according to following formula:
X=AX

N=N+cX

D=D+(�1)kcX
(4)
 Solve F from DF=N using Gaussian elimination method.

(5)
 For k ¼ 1; 2; . . . ; j; F=F2
This algorithm needs about (q+j+1/3)n3 times operations. In Table 3, the calculation precision
for different q is given, it can be found that when q ¼ 4; a quite high precision will be achieved.
It is shown that the calculation efficiency increased greatly by using the Padé approaching
method.
le 3

calculation precision of different q

1 2 3 4 5 6 7 8

10�1 10�4 10�6 10�9 10�13 10�16 10�19 10�23
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6. Numerical calculation and experiment

6.1. Free vibration of a cantilever beam

Fig. 2 shows a cantilever beam made of Al–33Zn–6Si damping alloy, the modulus of elasticity
E ¼ 0:69� 1011N=m2; mass density r ¼ 2700kg=m3; length, width and height dimensions are
12.5� 2� 130mm3. Excited by a pulse force at the free end, the beam vibrates freely. The element
and nodal generalized coordinate assignment is shown in Fig. 2. The linear, parabolic, and
exponent damping models are taken to simulate this system, respectively. The decay curves of this
vibration are measured at the same time. Fig. 3 shows the envelopes of the decay curves of
calculations and experiment. It can be seen that the numerical result of parabolic damping model
agrees to that of experiment best.
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Fig. 2. Free vibration of a cantilever beam.
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Fig. 3. Envelopes of decay curves by calculation and experiment. (1) Experiment; (2) linear damping; (3) parabolic

damping; and (4) exponent damping.



ARTICLE IN PRESS

H. Liu et al. / Journal of Sound and Vibration 281 (2005) 399–408406
6.2. Elastic 4-bar linkage mechanism

An experimental crank-rocker 4-bar mechanism is shown in Fig. 4. Link 5 and rocker 6 are
designed as flexible parts. Strain gauges are glued on the middle points of link and rocker,
respectively, to measure the elastic vibration. The dimensions of the different links are shown in
Table 4. The crank (link 4) and coupler (link 5) are made from steel and rocker (link 6) is made
from Al–33Zn–6Si. In order to increase the effects of inertial force, a lumped mass part 7 is
attached at the joint of link and rocker, the mass of which is 1.05 kg.
In doing numerical analysis, the crank is treated as a rigid part, link and rocker are treated as

flexible parts. The previously obtained parabolic damping model is used to characterize the energy
dissipation property of damping alloy part, the results of linear damping model are also given for
comparison.
Fig. 5 shows that the experimental and numerical calculation results of dynamic strains on the

middle points of link and rocker, respectively, in the condition that the running speed of crank
equals 200 r/min and the height of rocker equals 2mm. It is found that the experimental results
agree with the numerical predictive results quite well. It can be clearly seen that when the
amplitude of dynamic strain is low as shown in Fig. 5(b), the calculation result difference between
linear damping model and nonlinear damping model is small, but when the amplitude of dynamic
strain is high as shown in Fig. 5(a), the difference is large and the result of nonlinear model is even
closer to that of experiment. This fact reveals that a nonlinear strain-dependent damping model
should be adopted for medium and high stresses.
1

2
4

5

7

6

3

Fig. 4. Schematic diagram showing the 4 bar mechanism used for the experiment. (1) Cast iron platform; (2,3) bearings;

(4) eccentric disk; (5) link; (6) rocker; and (7) a lumped mass.

Table 4

Dimensions (in mm) of different links of the 4-bar mechanism

Radius of crank Length of frame Rocker (Al–33Zn–6Si) Link 5 (steel)

Length Width Height Length Width Height

65 360 270 25 1.5, 2.0, 2.5 336 25 1.5
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Fig. 5. Dynamic strains at 200 rpm running speed of crank. (a) Middle point of Link 5; (b) middle point of Rocker 6;

(1) experimental results; (2) numerical results (nonlinear damping); and (3) numerical results (linear damping).
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7. Conclusions

With the high-damping alloy material being applied to practice, it is required to develop a
strain-dependent nonlinear damping theory and corresponding analysis and design methods. Duo
to its complexity, no simple methods have hitherto been available. In this paper, by measuring the
decay vibration curves of damping alloy specimens, the nonlinear relation of dissipation factor
versus strain is fitted. The method proposed here is relatively simple and sufficiently accurate for
practical use. The governing equation of elastic linkage mechanism including strain-dependent
damping is a high-dimensional nonlinear time-variable system of differential equations. How to
solve it efficiently and stably remains a challenging task. It is shown that the present iteration
algorithm using the diagonal Padé approaching method to calculate matrix exponent is an
effective way to handle this problem.
Acknowledgment

This research is supported by the National Natural Science Foundation of China (50075068)
and the Science Foundation of Education Commission, Shaanxi Province, China (00JK181).
References

[1] B.J. Lazan, Damping of Materials and Members in Structural Mechanics, Pergamon Press, London, 1968.

[2] Y. Kume, F. Hashimoto, S. Maeda, Material damping of cantilever beams, Journal of Sound and Vibration 80

(1982) 1–10.

[3] G.D. Gounaris, N.K. Anifantis, Structural damping determination by finite element approach, Computers and

Structures 73 (1999) 445–452.



ARTICLE IN PRESS

H. Liu et al. / Journal of Sound and Vibration 281 (2005) 399–408408
[4] A.L. Audenino, E.M. Zanetti, P.M. Calderale, Assessment of internal damping in uniaxially stressed metals:

exponential and autoregressive methods, Journal of Dynamic Systems Measurement, and Control 120 (1998)

177–184.

[5] A.L. Audenino, P.M. Calderale, Measurement of non-linear internal damping in metals: processing of decay signals

in a uniaxial stress field, Journal of Sound and Vibration 198 (1996) 395–409.

[6] H. Gene, F. Golub, Charles, Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore,

MD, 1983.


	Strain-dependent nonlinear damping and application to dynamic analysis of elastic linkage mechanism
	Introduction
	Strain-dependent specific damping capacity
	Dynamic equations of elastic mechanism containing damping alloy parts
	Numerical computation method
	Using Padé approaching method to calculate the matrix exponet
	Numerical calculation and experiment
	Free vibration of a cantilever beam
	Elastic 4-bar linkage mechanism

	Conclusions
	Acknowledgment
	References


