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1. Introduction

Craig [1] said when two frequency values differ by only 1% or so, they could be regarded as a
double repeated frequency since a precisely repeated frequency may be an extremely unlikely
accident in practice. Such a conception may be based on the precision of the measurement in
engineering environments, and has been widely accepted by designers and engineers for years. At
times, the original distinct natural frequencies may be measured with identical values due to the
precision of measuring apparatus. On the other hand, the repeated frequencies evaluated
analytically may be measured with different values because of the deficiencies in the component
manufacturing, structural assembling as well as the uncertainties of material properties. In most
cases, structural dynamic analyses for any but the smallest systems are implemented numerically
with the finite element method (FEM). Repeated frequencies may be found with a slight difference
due to the computational precision in computers. Therefore, it would be beneficial to designers
and engineers to investigate the effect of such a small discrepancy in frequencies on, for instance,
their respective derivatives. This is because the procedures for derivative computations of distinct
and repeated frequencies are completely different. A small tolerance of two frequencies may
sometimes incur a large discrepancy between their derivatives. Besides, it is increasingly important
see front matter r 2004 Published by Elsevier Ltd.
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to employ frequency derivatives in both gradient-based structural optimization algorithms and
dynamic system identifications, where accurate evaluations of the derivatives are absolutely
required.
So far, little work has been done in this aspect. For this reason, this paper attempts to provide

an insight into the tolerance of two closely spaced but unequal natural frequencies when they are
treated indiscriminately as double repeated frequencies. Efforts will be made to give rise to a
reasonable criterion of 0.1% based on the first-order derivative for the coalescence of closely
spaced frequencies, so that the discrepancy of the derivatives may lie within an acceptable limit in
the general case.
2. Derivative calculation

Provided that there exist two distinct eigenpairs ðo1; f1Þ and ðo2; f2Þ in a vibration system,
and the related mode shapes have been orthogonally normalized with respect to the mass matrix.
The frequency values are spaced so closely to each other that

o2 � o1pco1; 0ocoo1; (1)

that is,

o1oo2pð1þ cÞo1: (2)

Herein, let us take the extreme value

o2 ¼ ð1þ cÞo1: (3)

According to Craig’s suggestion, c takes 1%. The following expression can be obtained by
ignoring the higher order term of small value:

o2
2 ¼ ð1þ cÞ2o2

1 � ð1þ 2cÞo2
1: (4)

Suppose these two unequal frequencies are regarded as ‘double repeated frequencies’ by
neglecting their discrepancy, i.e., assume o1 ¼ o2: Such an assertion would inevitably introduce
errors to their derivatives. As we know, repeated frequencies are not differentiable in the common
sense, i.e., the Frechet derivative does not exist. Only directional derivatives can be found in the
design space [2]. The computation of derivatives for repeated frequencies can be achieved by
solving a sub-eigenvalues problem [2,3].
For an undamped vibration system, the governing eigenvalue equation is

ð½K � � o2
i ½M�Þffgi ¼ 0; i ¼ 1; 2; (5)

where [K] and [M] are the global stiffness and mass matrices of the system, respectively.
Let us define a vibration mode according to the dynamic theorem

f ~fg ¼ ½ffg1; ffg2�fCg; (6)

where C=[c1, c2]
T is a vector of constants. The condition of [M]-orthonormalization of f ~fg

requires

fCgT � fCg ¼ 1: (7)
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Substituting Eq. (6) into Eq. (5) and then differentiating it with respect to the design parameter
x yields

q½K �

qx
� o2

1

q½M�

qx
�

qo2
1

qx
½M�

� �
f ~fg þ ð½K � � o2

1½M�Þ
qf ~fg
qx

¼ 0: (8)

Premultiplying both sides of Eq. (8) by ½ffg1; ffg2�
T yields

½G�½C� ¼
qo2

1

qx
fCg; (9)

where [G] is composed of

½G� ¼
g11 g12

g21 g22

� �
(10)

in which

gmn ¼ ffgTn
q½K �

qx
� o2

1

q½M�

qx

� �
ffgm; m; n ¼ 1; 2: (11)

In fact, those two frequencies are distinct. The exact derivative of o2
1 is calculated by

qo2
1

qx
¼ ffgT1

q½K �

qx
� o2

1

q½M�

qx

� �
ffg1 ¼ g11: (12)

And the exact derivative of o2
2 is

qo2
2

qx
¼ ffgT2

q½K �

qx
� o2

2

q½M�

qx

� �
ffg2

� ffgT
2

q½K �

qx
� o2

1

q½M�

qx

� �
ffg2 � 2co2

1ffg
T
2

q½M�

qx
ffg2

¼ g22 � 2co2
1ffg

T
2

q½M�

qx
ffg2: ð13Þ

Moreover, following relations hold due to the orthogonality of modes:

ffgT1 ½M�ffg2 ¼ 0;

ffgT1 ½K �ffg2 ¼ 0:
(14)

Differentiating Eq. (14) with respect to the design parameter x yields

qffgT1
qx

½M�ffg2 þ ffgT1
q½M�

qx
ffg2 þ ffgT1 ½M�

qffg2
qx

¼ 0; (15)

qffgT1
qx

½K �ffg2 þ ffgT1
q½K �

qx
ffg2 þ ffgT1 ½K �

qffg2
qx

¼ 0: (16)
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Note that the above operation is valid only for distinct frequencies. By performing the
manipulation of Eq. (16)�Eq. (15)�o1

2, one gets

qffgT1
qx

ð½K � � o2
1½M�Þffg2 þ ffgT1

q½K �

qx
� o2

1

q½M�

qx

� �
ffg2

þ ffgT1 ð½K � � o2
1½M�Þ

qffg2
qx

¼ 0: ð17Þ

In the above equation, the third term on the left side vanishes due to the symmetry of the global
stiffness and mass matrices. But the first term does not, owing to the tiny discrepancy between o1

and o2. Hence, the off-diagonal terms of [G] is rewritten as

g12 ¼ ffgT1
q½K �

qx
� o2

1

q½M�

qx

� �
ffg2 ¼ �

qffgT1
qx

ð½K � � o2
1½M�Þffg2

¼ �
qffgT1
qx

ðo2
2 � o2

1Þ½M�ffg2 � �2co2
1

qffgT1
qx

½M�ffg2: ð18Þ

In the derivation of the above equation, the fundamental equation (5) has been used. Similarly,
one could get

g21 ¼ ffgT2
q½K �

qx
� o2

1

q½M�

qx

� �
ffg1 ¼ �ffgT2 ð½K� � o2

1½M�Þ
qffg1
qx

¼ g12: (19)

Consequently, it is recognized that [G] is a symmetric matrix and all its eigenvalues are real
numbers.
Generally, we can obtain the following relations for the eigenvalues of [G] according to the

Gerschgorin theorem about the matrix eigenvalues [4]

jl1 � g11jpjg12j; (20a)

jl2 � g22jpjg12j; (20b)

where l1 and l2 are the eigenvalues of [G] and are assumed l1pl2. If g12=0, both eigenvalues
would take the diagonal terms of [G], respectively.
As is stated in Eq. (9), the eigenvalues of [G] are the directional derivatives for the ‘double

repeated frequencies’ [2]. Therefore, from Eq. (20a) in conjunction with Eqs. (12) and (18), one
gets

l1 �
qo2

1

qx

����
����p2co2

1

qffgT1
qx

½M�ffg2

����
����: (21)

In addition, we could get

l2 � g22 þ 2co2
1ffg

T
2

q½M�

qx
ffg2

����
����p l2 � g22

�� ��þ 2co2
1ffg

T
2

q½M�

qx
ffg2

����
����: (22)
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According to Eq. (20b) in conjunction with Eqs. (13) and (18), one gets

l2 �
qo2

2

qx

����
����p2co2

1

qffgT1
qx

½M�ffg2

����
����þ ffgT2

q½M�

qx
ffg2

����
����

� �
: (23)

Due to the fact that the derivative of a mode can be expanded in the vibration mode space by
Fox’s method [5], the common term on the right sides of Eqs. (21) and (23) may become relatively
small or zero according to the mode orthogonality. However, much attention should be paid to
the second term in Eq. (23). Occasionally, it may contribute greatly to the error of the frequency
derivative and worsen its accuracy, even though the derivative of the mass matrix only has an
influence at the element level. We will illustrate in the following examples that the error of the
frequency derivatives may become much larger than that of the frequencies. And the accuracy of
the derivatives can only be ensured when the discrepancy of frequencies is controlled within the
tolerance of 0.1%.
3. Numerical examples

Two schematic problems are used to illustrate the tolerances of the frequencies and their
corresponding derivatives. In the first example, the criterion of 1% is acceptable. Nevertheless, in
the second example, the discrepancy of the derivatives is much greater than that of the
frequencies. To ensure the correctness of the frequency derivative, at least 0.1% has to be imposed
on the frequency tolerance.

Example 1 (Two-bar planar truss). A two-bar planar truss is shown in Fig. 1. Suppose that the
material properties and cross-sectional areas are the same for both bars. a is the only design
variable with which nodes 2 and 3 can be shifted symmetrically in the vertical direction to raise the
fundamental frequency. The reduced global stiffness and mass matrices are, respectively,

½K � ¼
2AE

D

cos3 a 0

0 sin2 a cos a

" #
;

x

y

1

m

3

D

2

A, L

A, L

α

α

Fig. 1. Two-bar planar truss structure.
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½M� ¼

2ADr
3 cos a þ m 0

0 2ADr
3 cos a þ m

" #
:

Hence the two frequencies are

o2
x ¼

2AE cos4 a
Dð2ADr=3þ m cos aÞ

and o2
y ¼

2AE sin2 a cos2 a
Dð2ADr=3þ m cos aÞ

and

oy

ox

¼

ffiffiffiffiffiffi
o2

y

o2
x

s
¼ tga:

When a=451, the exact double repeated frequencies come forth, and the fundamental frequency
reaches its maximum

o2
1

��
max

¼ o2
x ¼ o2

y ¼
AE

Dð4ADr=3þ
ffiffiffi
2

p
mÞ

:

The derivatives of the two frequencies are, respectively,

do2
x

da
¼

�2AE cos3 a sin að8ADr=3þ 3m cos aÞ

Dð2ADr=3þ m cos aÞ2
; (24)

do2
y

da
¼

2AEm cos2 a sin3 a

Dð2ADr=3þ m cos aÞ2
þ
4AEðsin a cos3 a� cos a sin3 aÞ

Dð2ADr=3þ m cos aÞ
: (25)

Then, the analytical derivatives of the repeated frequencies are

do2
x

da

����
45�

¼
� 8

ffiffi
2

p

3 ADrþ 3m

 �

AE

2
ffiffiffi
2

p
Dð2ADr=3þ m

� ffiffiffi
2

p
Þ
2
;

do2
y

da

�����
45�

¼
AEm

2
ffiffiffi
2

p
Dð2ADr=3þ m

� ffiffiffi
2

p
Þ
2
:

Due to the deficiencies in structural fabricating and its assembling, the design parameter a may
not reach 451 exactly. Then, computational errors are brought into the frequencies and their
derivatives, respectively. Table 1 compares the obtained results under the assumption of
A=E=D=m=r=1.
In this example, g12=0 before exactly repeated frequencies emerging. From Table 1, it is

observed that the derivatives of o2
y (the lower frequency) are the same with the two approaches.

Errors exist only for the derivatives of o2
x (the higher one), and are not greater than those of the

frequencies.
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Table 1

Error comparisons of the frequencies with their derivatives

Frequency

error (%)

As distinct with

Eqs. (24), (25)

As repeated

with Eq. (9)

Error (%)

Design

variable
oy

ox

1�
oy

ox

� �
qo2

y

qa

qo2
x

qa

qo2
y

qa

qo2
x

qa

qo2
y

qa

qo2
x

qa

441 0.966 3.4 0.231 �1.299 0.231 �1.287 0.0 0.93

44.51 0.983 1.7 0.209 �1.284 0.209 �1.278 0.0 0.47

44.751 0.991 0.9 0.198 �1.276 0.198 �1.273 0.0 0.24

451 1.000 0.0 0.187 �1.269 0.187 �1.269 0.0 0.0

D. Wang et al. / Journal of Sound and Vibration 281 (2005) 1186–11941192
Example 2 (Dome structure). The dome structure [2] shown in Fig. 2 is investigated for derivatives
of the fundamental frequency with respect to the size parameter. Fifty-two bars are linked into
eight groups with all the cross-section areas being 10 cm2. The dome is symmetric with respect to

Fig. 2. Dome structure.
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Table 2

Representative node coordinates of the dome structure

Node Coordinates (m)

x y z

1 0.0 0.0 9.25

2 5.0 0.0 8.22

6 10.0 0.0 5.14

14 15.0 0.0 0.0

Table 3

Error comparisons of the frequencies with their derivatives

As distinct with

Eqs. (12), (13)

As repeated

with Eq. (9)

Error

Abscissa of

Node 14 (m)

o1

(rad/s)

o2

(rad/s)

Error

(%)
qo2

1

qs

qo2
2

qs

qo2
1

qs

qo2
2

qs

qo2
1

qs

qo2
2

qs

(� 105) (� 105) (%)

14.5 178.49 180.45 1.1 �4.224 �7.522 �4.224 �6.224 0.0 17.3

14.7 178.59 179.88 0.7 �4.822 �6.371 �4.822 �5.521 0.0 13.3

14.9 178.67 179.15 0.3 �5.449 �5.787 �5.449 �5.477 0.0 5.4

15.0 178.69 178.69 0.0 �5.787 �5.787 �5.787 �5.787 0.0 0.0
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x- and y-axis. Coordinates of the representative nodes are listed in Table 2. Let Young’s modulus
E=210GPa and material density r=7850kg/m3. It is worthwhile noting that the fundamental
frequency is a double repeated one. In this example, structural dynamic analysis is implemented
by the FEM. Suppose that we produce a perturbation on the abscissa of Node 14. The derivatives
of the first two frequencies with respect to the size Group 5 are documented in Table 3 for
comparison.
A simple look at Table 3 reveals obviously that the derivative accuracy is rather

poor in comparison with that of the frequencies. The derivative discrepancies are at least an
order of magnitude larger than those of the frequencies. For instance, when the error of the
frequencies is 1.1%, the discrepancy of the derivatives could reach 17.3%. Even the error
of the frequencies is reduced to 0.3%, the derivative discrepancy still remains 5.4%.
Though the off-diagonal term g12 vanishes in this example, the derivative value of the
global mass matrix is much greater than itself, which inevitably leads to the product
of fT

2
qM
qx

f2

�� �� fairly large. Therefore, to ensure a reasonable tolerance of the frequency derivatives
within, for instance, 3–5%, a tolerance of 0.1% or so has to be imposed on the difference of two
frequencies with unequal values. Only in this case, could they be treated as double repeated
frequencies.
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4. Conclusion

In this paper, the tolerance of two closely spaced but unequal frequencies is investigated when
they are regarded as double repeated ones since this circumstance is quite often encountered in
practical engineering systems. On the basis of the tolerance of their respective derivatives
calculated with appropriate approaches, it is found that when two frequencies separate by 1% or
so, the error of the frequency derivatives may become significant. A tolerance level of 0.1% is
suggested for the frequency values according to the tolerance of their corresponding derivatives.
Acknowledgements

This work is supported by the National Natural Science Foundation of China (10372083), the
Aeronautical Foundation (02B53007, 03B53006), and the Doctorate Foundation of Northwestern
Polytechnical University, PR China.
References

[1] R.R. Craig Jr., Structural Dynamics An Introduction to Computer Methods, Wiley, New York, 1981.

[2] O. Sergeyev, Z. Mroz, Derivative analysis and optimal design of 3d frame structure for stress and frequency

constraints, Computers & Structures 75 (2000) 167–185.

[3] W.C. Mills-Curran, Calculation of eigenvector derivatives for structures with repeated eigenvalues, AIAA Journal

26 (1988) 867–871.

[4] Y.P. Cheng, K.Y. Zhang, Z. Xu, Matrix Theory, Northwestern Polytechnical University Press, 1999 (in Chinese).

[5] K.F. Alvin, Efficient computation of eigenvector sensitivities for structural dynamics, AIAA Journal 35 (1997)

1760–1766.


	What are the repeated frequencies?
	Introduction
	Derivative calculation
	Numerical examples
	Conclusion
	Acknowledgements
	References


