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1. Introduction

In his careful review about the stochastic mechanics Grigoriu [l1] mentions: ‘“‘Recent
developments of efficient numerical algorithms for solving general stochastic mechanics problems
are based on Monte Carlo simulations, stochastic finite element and boundary element, finite
differences, stochastic Green functions, and other methods”. The finite element method (FEM) in
the stochastic setting attracted numerous investigators. In additional to several reviews there are
the monographs by Nakagiri and Hisada [2], Ghanem and Spanos [3], Kleiber and Hien [4], Qiu
and Liu [5], Haldar and Mahadevan [6], Elishakoff and Ren [7].

There are also several papers devoted to the stochastic analysis by the finite difference method
(FDM). The relevant studies are those by Grigoriu and Khater [8], Grigoriu et al. [9], and by
To [10].

The question arises on how accurate the stochastic versions of the FDM or FEM are. The
accuracy of these methods in deterministic calculations has been studied in numerous
investigations. Therefore, at the first glance, there is no need in studying their accuracy in
stochastic applications, for stochastic mechanics uses deterministic differential equations,
describing the pertinent phenomena, except treating the load and/or inner parameters to be
random.
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On the other hand, stochastic mechanics is looking both for the stochastic characteristics of the
output quantities, and, more importantly, it attempts to evaluate the reliability—probability that
the structure will perform its mission—or its complement, the probability of failure. For the
sensible exploitation of the structure, reliability must be extremely close to unity, or, in other
words, probability of failure must be extremely small. The latter quantity can be expressed as
107%, where o may take values 3,4, 5,6 or 7, or even more, depending on circumstances.

Therefore, the question whether the FDM or FEM can predict such small probabilities of
failure with sufficient accuracy is of paramount importance. In this study we are investigating
some eigenvalue problems associated with bars in the stochastic setting. For simplicity, the
stochastic variables will be treated as continuous random variables.

2. Longitudinal vibrations of bar

Gantmacher [l11] notes in his book: ‘“Lagrange [I12] demonstrated how it is possible
using...[analytical] formulas and, in a limit passage, to obtain the free oscillation [frequencies]
of a homogeneous string with fixed ends, the mass of which is no longer concentrated in # points
but is distributed uniformly along the string, which has a [given] density”’.

This implies that historically the vibrations of distributed systems started as their
approximations as discrete lamped masses connected with springs. Lagrange used the limit
analysis to derive the natural frequencies of the continuous string. The vibration of a string
stretched along the x-axis with its ends fastened at x = 0 and L and with N beads, each of mass m
was studied by Gould [13].

FDM and FEM attempt to do exactly the opposite. With these methods, we try, using the
approximations of different kind, to reduce the continuous system to the discrete one, and analyze
the simpler system.

3. Analysis using first-order finite difference method

The governing differential equation for longitudinal vibration of a uniform bar reads

o%u %u
2 Par= 0 (1
in which FE is the bar modulus of elasticity, p the density, x the axial coordinate, ¢ the time and u
the axial displacement.
For free harmonic vibrations, we set u(x, f) = U(x)sin wt; thus, Eq. (1) can be rewritten as
2
(:17(2] + %wz U=0. )
Using the first-order central difference method, Eq. (2) is replaced by the equivalent equation,
for any nodal point i, for uniform nodal points spacing, by

Ui+ (%hzwz — 2) Ui+ Uiy =0 3)
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in which 7 is an arbitrary nodal point within the bar and / is the uniform nodal spacing, obtained
by dividing the total length of the bar L into the number N of segments.
The solution of this difference equation with constant coefficients is obtained by letting

U= A). (4)
Substituting Eq. (4) into Eq. (3), one obtains the following equation for A:
1 P2 2
Ly (Bt —2) 4 i=
S+ ( h +i=0 (5)
which has the solutions
Ppw? . I pe? ?
Jip=1-— B +i 1—(1— 2E>' (6)
The general solution for U; can be written as
U;= A;cosid + A,sin i3 (7
in which 4, and A, are arbitrary constants of integration and
thwz
9=cos'(1- : 8
cos ( B ) (®)

The constants of integration are determined by boundary conditions, one at each end of the bar.
For a bar that is clamped at one end and free at the other the following boundary condition hold:

Up=0, Uyi1=Un_1. ©)
For a clamped bar at both ends we have
Up=0, Uy=0. (10)
For a bar that is free at both ends the boundary conditions are
U =U_, Uyy1=Uy_1. (11)

In the case of a clamped—free bar, the satisfaction of boundary conditions (9) yields, in view of Eq.
(N,

A1 =0, —A;sin3sin N3+ A>sindcos N3 = 0. (12)
Since the equations are homogeneous, the determinant of the coefficient of 4; and A, must

vanish.
This condition is expressed by

cosN3 =0 (13)
which has the solution
N3 =kn/2, k=1,2,3,.... (14)
Evaluation of cos § yields
2
cosS:cosk—nz —ﬁwz. (15)



1198 L Elishakoff, R. Santoro | Journal of Sound and Vibration 281 (2005) 1195-1206
After some algebraic manipulations we obtain
T =4sin” — (16)

in which k should be set equal to unity for the first natural frequency. Keeping in mind that
h = L/N, the bar’s fundamental frequency may be expressed as

W m2E (sinm/4N\>
b 4pL* \ m/AN ’

(17

When N tends to infinity we obtain the exact solution, as expected.

Now let us treat the bar’s elastic modulus is a continuous random variable with given
probability density function (PDF) assuming that the other parameters are deterministic
quantities.

To avoid resonance phenomenon, the natural frequency of the bar must be less than an
excitation frequency wy:

w%<w(2). (18)

Due to the randomness of E, the left hand side of Eq. (17) is also a random variable. If E takes
values in the interval (0, 00), not for all possible values of the elastic modulus inequality (18) will
hold. We are interested in the fraction of the structures that fulfil Eq. (18).

The reliability R is defined as the probability of the event specified in Eq. (18):

R = Prob(w] <wj). (19)

Since usually we evaluate natural frequencies by approximate methods it make sense to resort to
Eq. (17) to describe this usual situation. Bearing in mind the expression of the approximate
natural frequency in Eq. (17) and substituting it in Eq. (19), the reliability is obtained as

m2E (sinn/4N\>
R=P 2 2
rob 4pL2< /AN ) <w; (20)
or
4apLl? [ m/4AN 2
R=F : : 21
Bl <Sin7t/4N> @D

With the known expression of R it is possible to solve the design problem of the bar, noting that
the structure performs satisfactorily if the reliability is not less than a codified reliability ry:

R=ry, O<ro<l. (22)

Alternatively, one can recast the problem in terms of the unreliability of the structure, defined as
the probability of failure P; <p, where p, is the tolerable level of probability of failure. The main
objective in the design of a structure is to keep the probability of failure extremely small. Once we
know the PDF for the random variable E, we obtain an expression of a design parameter—taken
here as the length of the bar L—depending on number of elements N and on the value of r.
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In our special circumstances we know the exact expression for the natural frequency. Thus, one
is able to evaluate the exact reliability. One can pose the following question: What is the exact
reliability for the design value of L obtained from approximate analysis?

Substitution of the approximate parameter L = L(N, ry) into the expression of the exact value
of frequency for a clamped—free bar, yields a general expression for the “‘actual” reliability,
according to parameters N and ry. Comparison of the actual reliability and the required ry enables
us to evaluate the accuracy of FDM, in the stochastic setting.

4. Exponentially distributed elastic modulus

Let us specify an exponential distribution for the random modulus of elasticity:

0, e<0,
SEele) = { (23)

a x exp[—ae], e=0, a>0,

where the mathematical expectation and the variance are, respectively, M[E] = 1/a and Var[E] =
1/a*. The approximate reliability has the expression

1 4pwil? [ w/4N \?
Rapprox = 1 —exp [_ % ( / ) . (24)

M[E] =2 sinm/4N

Demanding the level of the codified reliability value rq to be achieved of Rpprox = ro, We obtain
for the length of the bar the expression

n |[M[E] 1 <Sin7t/4N> (25)

L, = L(N =— 1
approx ( zVO) 260() P n 1 — o TC/4N

Bearing in mind the expression of the exact solution for the natural frequency for the
clamped—free bar, the exact reliability has the following form:

’E
Rexact = Prob (% < wg) . (26)
0

With Eq. (25) taken into account,

1 4dpa}L2
Ractual = Ractual(N> VO) = RexactlL:Lappmx =1- eXp | — M[E] Tczappro (27)

The substitution of Eq. (25) in Eq. (27) yields

. 2
Ractual =1- eXp [(%) 11’1(1 - VO)] . (28)
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Fig. 1. Error in reliability: evaluation versus the discretization parameter N, for various codified reliabilities ry: (a)
ro = 0.90, (b) ro = 0.99, (c) ro = 0.999, (d) o = 0.9999.

Evaluating R,.wa1 for increasing N, we obtain values that turn out to be less than ry. Fig. 1 shows
the percentage error between R,.wa and ry for increasing values of N, when ry is fixed at 0.90,
0.99, 0.999 and 0.9999, respectively.

Naturally, only the points on the figures corresponding to integer values of N have a physical
sense.

For rg = 0.90, for example, the error decreases from 0.2% for N = 5 (Ructual = 0.898094) to
0.053% for N = 10 (Ractual = 0.899526) to 0.023% for N = 15 (Ractual = 0.899789).

Analogously, it is possible to evaluate the actual probability of failure for fixed values of allowed
probability of failure.

Fig. 2 portrays the percentage error between Py ucuat and p, for increasing values of N, when p
is fixed, respectively, at 0.1, 0.01, 0.001 and 0.0001.

We observe that the error decreases as the codified value of reliability ry increases. That means
the behaviour of the structure improves for higher values of reliability set in the design process.
This is a remarkable, albeit intuitively a not expected result.

The “actual” probability of failure is related with the codified probability of failure p, by the
relation Py acrual = pg, where 6 = [sin(n/4N)/n/4N ]>. Because the exponent ¢ takes values smaller
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Fig. 2. Error in probability of failure as a function of N, for various allowable probabilities of failure py: (a) p, = 0.1,
(b) py = 0.01, (c) py = 0.001, (d) py = 0.0001.

than unity when N increases and because p, is, naturally, smaller than unity, the actual
probability of failure always exceeds the allowed value. For a fixed value for N, say N =10
(0 =0.998951), we obtain the following results: Py acual = 1.00474p, for py = 0.1; Pracrual =
1.00951p, for py = 0.01; Pracar = 1.01429p for py = 0.001; Pracuar = 1.0191p, for py = 0.0001
(Fig. 3).

When increasing the number of N, for a fixed codified value of p, the value of Py scua decreases,
maintaining its value greater than p,. When N tends to infinity, Ps,cua reaches the allowable
value p,.

The actual probability of failure should not be more than the allowed one, but result
demonstrate that the error made because of discretization is a ‘‘bad error’’; this is because the
actual value obtained is not on the safe side for the design of the structure.

It should be noted that analogous qualitative results are obtained in the cases in which

the elasticity modulus follows some other distributions (Rayleigh distribution or uniform
distribution).
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Po = 0.001, (d) p, = 0.0001.

5. Analysis using second-order central differences

Using the second-order central difference method the expressions for the first and second
derivatives of the displacement are [14,15]

Ui = (1/12h)(U;—» — 8U;_1 + 8U;11 — Ujya),
Ui=1/12)(=U;_y + 16U,_; —30U; 4+ 16U, — Uy»).

(29)

The equation for the longitudinal vibrations can be rewritten as

—Uia +16U;i-1 + (

12ph @*
E

)Ui+ 16Uy — Upyr =0,

(30)

where U, i, p, h, ® and E have the same meaning of the ones in Egs. (1) and (3).
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To obtain the solution of the difference equation (30) we can again set U; = A" getting the
following equation in A:

1 2 1 ph?w?
(14— ) 6<i—ki> + (7 3% > 0 (31)

Solutions in A are given by

2
2 9 2.2
[ ph*w [ ph o
Aa2=44+34/1 + 4+34/1 —1
12 + + 3E (—I— + 3E) )
2 2 ?
ph”w? ph”w?
Aza =4 —34/1 + 4—34/1 — 1. 32
34 (= ( \VI+5E (32)

The general solution has the following expression:

Ui = C/ /4 Col + C32% + CiZ). (33)
The boundary conditions needed to find the constants of integration are expressed by

U=U_, Uy=U_, Uny=Uyr1, Unj2=Upyo. (34)

Under the condition that the determinant should vanish we arrive at

[(4 VTG -) + (4 VTG I - v)N} Vo =303V +50+3)

(27 = 33) {(4 O+ +3)+ y)N n (4 O+ +3) + y)N] =0, (35)
where
2
y=3 uﬁ@gé (36)

Fixing N, respectively, to be equal to 5, 10 and 15 we obtain the following expressions for the

fundamental natural frequencies:
2%&+f—@&0ﬂ@>E

24 oL*’

ofly=s = (37)
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25<3o+\/5+f 164/2 + 5+f)

2
_10= , 38
oily=10 = oL (38)
75(119+¢§+2 5+f> 32\/7+f+\/6(5+f
Wtly=rs = 16 Zh (39)
We fix N at five and obtain the expressions of approximate reliability and actual one given by
) Pszo
Ripprox = 1 — €xp ) (40)
25(61 +5-164/22 + f))
25 (61 +V5—164/202 + ﬁ))
Rgsc)tudl =1—exp 62 In(1 —rp)]|. (41)
For N = 10:
(10) PL2w0
Ripprox = 1 — exp ) (42)
25(30+\/5+f 164/2 + )
100(30 /55— 16¢/2+ w%)
Ri%al =1—exp 32 In(1 —rp)]|. (43)
Table 1

Errors between actual reliability R and actual reliability ry using first-order and second-order finite difference
schemes, with N =5

N=5 Ractual &= [("0 - R)/VO] x 100 (%) Pf,actual
1st order 2nd order st order 2nd order 1st order 2nd order
ro 0.90 0.898094 0.899975 0.21 0.0027 0.101906 0.100025
0.99 0.989615 0.98995 0.0389 0.000499 0.0104 0.0100049
0.999 0.998942 0.998999 0.0058 0.000074 0.0011 0.0010007

0.9999 0.999892 0.9999 0.00078 9.9 x 107° 0.0001078 0.0001001
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Table 2
Errors between actual reliability R, and actual reliability ry using first-order and second-order finite difference
schemes, with N = 10

N=10 Ractuul &= [(V() — R)/V()] x 100 (0/0) P/,actual
Ist order 2nd order Ist order 2nd order 1st order 2nd order
ro 0.90 0.899526 0.899998 0.053 0.000219 0.100474 0.100002
0.99 0.989905 0.99 0.0096 0.0000398 0.010095 0.01
0.999 0.998986 0.999 0.0014 59 % 10~° 0.001014 0.001
0.9999 0.999898 0.9999 0.00019 7.9 % 1077 0.000102 0.0001
Table 3

Errors between actual reliability R, and actual reliability ry using first-order and second-order finite difference
schemes, with N = 15

N =15 Raclual &= [("0 - R)/VO] x 100 (%) P/,actual
st order 2nd order Ist order 2nd order 1st order 2nd order
To 0.90 0.899789 0.9 0.023 0.000011 0.100211 0.1
0.99 0.989958 0.99 0.0043 2.1x10°° 0.010042 0.01
0.999 0.998994 0.999 0.000634 3.1 x 1077 0.001006 0.001
0.9999 0.999899 0.9999 0.000084 4.1 x 1078 0.000101 0.0001
For N = 15:
2.2
16 pL wyj

RID —1_— exp , (44

approx

- MI[E
75(119+f5+2 35+Tﬁ>—32\/7+ﬁ+\/6(5+¢§) [E]
75(119+¢§+2 35+2—ﬁ>—32\/7+\/§+\/6(5+ﬁ)

472

RSS) =1—exp

ctual —

In(1 —rg)|. (45)

A comparison of the errors obtained between calculated actual reliability, R, and the
required reliability, ro, is given in Tables 1-3. The results obtained by use of the first-order and
second-order finite difference schemes are listed.

From the examination of the results we see that in the evaluation of reliability of bars in
vibrations, second-order central differences analysis is preferable.
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