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1. The goal and methodology of the paper

Farassat [2] commented that ‘‘the literature of acoustics on the subject of this paper is very
extensive. The current state of the theoretical aeroacoustics is considerably more advanced than
what is presented by these authors’’.

Whereas we agree that the literature on the subject is extensive, no references available to us
provided answers to our question: why does this methodology not give correct answers in some
simple situations? Therefore, the focus of Zinoviev and Bies [1] was on analysing the fundamental
properties of the FW-H equation on the basis of the historically first paper on the subject by Curle
[3]. In our analysis, we followed Curle’s argument as closely as possible and stated this on p. 538
of Zinoviev and Bies. This can answer the questions by Farassat [2] which are concerned with
justification of some of the techniques used in Zinoviev and Bies [1]. We answer these questions
further in our reply.
2. The FW-H equation and the meaning of its terms

Let us first formulate the FW-H equation, which will serve as the basis of our response. To
demonstrate its fundamental properties, we will stay within the linear approximation, so that the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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velocity of fluid particles and solid surfaces is much smaller than the sound speed, c0; in the
undisturbed fluid. Then, after neglecting Doppler factors in Eq. (5.1) of Ffowcs Williams and
Hawkings [4], one can obtain the following equation:
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where x ¼ ðx1;x2; x3Þ is the observation point, y ¼ ðy1; y2; y3Þ is the source point, r ¼ jx� yj; t is
time, r0 is the fluid density at equilibrium, r0ðx; tÞ ¼ rðx; tÞ � r0 is the density fluctuation, V tot is
the total volume of the fluid, S is the control surface, n ¼ ðn1; n2; n3Þ is the unit normal vector to S.
Whereas in Curle [3] as well as in Zinoviev and Bies [1] the unit normal vector points from the
fluid, we will follow Farassat [2] and assume that the vector n points into the fluid. Square
brackets indicate the dependence on the retarded time, t ¼ t � jx� yj=c0:

Considering the importance of the source terms, pij and, especially, v; for further analysis, let us
justify our understanding of their meaning. Note that, by neglecting the nonlinear terms, Eq. (1)
can be obtained also from Eqs. (2.15) and (2.16) of Curle [3], Eq. (2.2.3) of Howe [5], and Eq.
(2–68) of Blake [6]. In all these publications, the meaning of the source terms in Eq. (1) is the
same. Specifically, Tij ¼ rvivj þ pij � c20rdij is the Lighthill’s stress tensor [7, Eq. (5)], pij is the total

compressive stress tensor (Eq. (6) of Lighthill [7]), which includes the viscous stresses, and v is the
velocity of the surface S with respect to a stationary observer (Ffowcs Williams and Hawkings [4,
p. 324]). This understanding of the source terms can be confirmed by theoretical considerations by
Farassat [8, p. 795], as well as by applications of the FW-H theory to sound scattering by a sphere
[2] and to sound radiation by a vibrating sphere [6, p. 81–83]. Note that Curle’s formula for a
stationary surface S can be obtained from Eq. (1) by neglecting the last term in the right-hand part
of this equation.
3. Examples of application of the FW-H equation

In Section 2.0, Farassat [2] claims that, in direct contrast to the conclusion of Zinoviev and Bies
[1], the FW-H and Curle equations give correct predictions for the two simple examples
considered in the paper. While accepting some of Farassat’s criticism, below we prove that,
according to our original conclusion, the FW-H and Curle equations fail to produce the correct
prediction for the radiated sound in some simple situations.

3.1. Scattering of a plane wave by a rigid sphere

Farassat [2] considered in detail the application of the FW-H equation to the example of
scattering of a plane wave by a rigid sphere, which is considered in Zinoviev and Bies as Example
1. He commented that ‘‘...the Curle formula gives the correct result for this example’’.

We accept that our calculations related to this example contain an error. This error is related to
an unjustified assumption that the second and the third terms in the divergence (q=qx2 and q=qx3)
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in Eq. (37) of Zinoviev and Bies could be neglected due to the axial symmetry of the problem.
Therefore, we confirm that Eq. (43) of Zinoviev and Bies is incorrect and the FW-H equation
leads to the correct prediction in this case.

At the same time, we insist that this result is only fortuitous and that the conclusion of Zinoviev
and Bies that Curle’s formula does not describe properly the scattering of sound by a rigid object
is correct. Below we demonstrate this conclusion on another example.

3.2. A spherical wave converging on a rigid sphere

Consider an incident spherical wave converging on an acoustically small rigid immovable sphere
or radius, R0; with the centre at the point x ¼ 0: The negative temporal dependence, e�iot; will be
used here as in Farassat [2]. The incident wave pressure, Pinc; can be written as follows:

Pinc ¼ A
e�ikx

x
; (2)

where x is a spherical coordinate, so that x ¼ ðx;F;YÞ; and A is a constant. This situation can be
described by the FW-H theory, if the volume sources determined by the first term in the right-
hand part of Eq. (1) are symmetrical with respect to the centre of the sphere at x ¼ 0: As the
spatial layout in this case is the same as in the case of sound scattering by a plane wave,
calculation of the amplitude of the reflected (scattered) wave, Psc; can be carried out by means of
Eq. (11) of Farassat [2], which we rewrite here as

4pPsc ¼ ik

ZZ
S

Ptot cos a
eikjx�yj

jx� yj
dS: (3)

In Eq. (3), cos a is determined by Eq. (13) of Farassat [2].
To determine the total pressure Ptot on the surface in our case, the scattered (reflected) wave will

be represented as a diverging spherical wave with unknown complex amplitude, B:

Psc ¼ B
eikx

x
: (4)

The incident and reflected waves must satisfy the following condition on the surface of an
immoveable sphere [9, p. 425]:

qPinc

qx

����
x¼R0

¼ �
qPsc

qx

����
x¼R0

: (5)

Substituting Eqs. (2) and (4) into Eq. (5), one obtains

B ¼ Ae�2ikR0
ikR0 þ 1

ikR0 � 1
: (6)

With the use of Eqs. (2), (4) and (6), the total pressure field, Ptot ¼ Pinc þ Psc; on the surface of the
sphere, can be written as

Ptotjx¼R0
¼

A

R0
e�ikR0 1þ

ikR0 þ 1

ikR0 � 1

� �
: (7)
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By extending the right-hand part of Eq. (7) into Taylor series, it can be shown that, for the
acoustically small sphere ðkR051Þ; Eq. (7) takes the following form:

Ptotjx¼R0
¼ �2Aik þ OðkR0Þ

3: (8)

Let us now find the scattered far field based on the FW-H theory. With the use of Eqs. (14) and
(16) of Farassat [2] and our Eq. (8), Eq. (3) becomes

PFW-H
sc jx!1 ¼

A
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The evaluation of the integral in Eq. (9) produces the following result:Z p

0

Z 2p

0

ð1� ikR0 cos aÞ cos a sin ydjdy ¼ � 4
3
ipkR0; (10)

which, after substitution into Eq. (9), gives the following expression for the spherical wave
reflected from the rigid sphere:

PFW-H
sc ¼ � 2

3
iAðkR0Þ

3 eikx

x
: (11)

The correct expression for the scattered wave can be easily derived from Eqs. (4) and (6). It
takes the form of

Psc ¼ �A
eikx

x
þ OðkR0Þ

3; (12)

meaning the physically obvious result that the amplitude of the reflected wave is equal to the
amplitude of the incident wave. One can observe that Eq. (11) is a different order of magnitude
than Eq. (12) with respect to the small parameter kR0: Therefore, the FW-H theory does not
produce the correct result for this example.

3.3. A rigid sphere in a variable velocity field

3.3.1. Origin of the problem
This problem (Example 2 from Zinoviev and Bies) deals with a rigid sphere submerged in a

fluid. The fluid moves back and forth with negligible pressure fluctuations. Referring to this
example, Farassat [2] commented that ‘‘The origin of this problem as discussed by authors is
somewhat confusing’’ and that ‘‘...this example is on the determination of the radiation field of a
rigid sphere oscillating ... along the x-axis’’. We do not agree with both statements and provide
below two situations that can be described by such a model.

First, this model is applicable if a typical vortex size in a turbulent flow is much larger than the
diameter of the sphere submerged in the flow. If a trail of vortices moves with a constant velocity,
the variable velocity component of the flow near the sphere can be approximated as spatially
uniform and oscillating with harmonic temporal dependence. The pressure fluctuations in such a
flow can be neglected in the linear approximation, as the relative changes of density are
proportional to the Mach number squared [7, p. 571]. This justification (without going into
details) has been provided in Zinoviev and Bies (p. 545).
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In addition, this situation occurs in acoustics. Consider a point force, F; located at the origin
and directed along the x3-axis (Fig. 1). The pressure field produced by such a source can be
determined as follows:

Ppfðx;YÞ ¼
F

4p
eikx

x2
ð1� ikxÞ cos Y; (13)

where x is the length of the radius vector of the observation point and Y is the angle between the
radius vector and the x3-axis. Eq. (13) can be easily obtained from a more general Eq. (4-4.5) of
Pierce [9] by substituting the harmonic temporal dependence of the force.

Assume that a sphere of radius, R0; is located along the x1-axis, so that its centre is at the point
ðx1; x2;x3Þ ¼ ðX ; 0; 0Þ (Fig. 1). The sphere is small and located in the near field of the point force,
so that the following conditions are satisfied:

kX51; (14)

R0=X ¼ OðkX Þ
2: (15)
3.3.2. Velocity and pressure fields generated by the point force near the sphere
Let us consider in detail the spatial distribution of the amplitude of the pressure and velocity

fields generated by the point force in the vicinity of the sphere. Values of the velocity and the
pressure will be found at a point ðx1; x2; x3Þ ¼ ðX þ R0;R0;�R0Þ located near the sphere.

From Euler’s equation, qu=qt ¼ �rP=r0; one can derive the following equation for the fluid
velocity:

u ¼ �
i

r0o
rP; (16)

from which the components of the velocity can be easily obtained.
Let us first find the x3-component. The corresponding derivative of the pressure can be

expressed through the spherical coordinates as follows [10, p. 718]:

qPpf

qx3
¼ cos Y

qPpf

qx
�

sin Y
x

qPpf

qY
: (17)
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The substitution of Eq. (13) to Eq. (17) leads to the following expression for the x3-derivative of
the pressure field of the point force:

qPpf

qx3
¼

F

4px3
eikx½ð3 cos2 Y� 1Þðikx � 1Þ þ ðkxÞ2 cos2 Y�; (18)

which at kx51 reduces to

qPpf

qx3
¼

F

4px3
ð1� 3 cos2 YÞ þ OðkxÞ2: (19)

To obtain the value of the above derivative in the vicinity of the sphere, first substitute Y ¼

p=2þ a; a ¼ R0=X ¼ OðkX Þ
2 to Eq. (19). The substitution leads to

qPpf

qx3
¼

F

4px3
þ OðkxÞ2 þ Oða2Þ: (20)

With the use of the following series with respect to a:

1

ðX þ R0Þ
3
¼

1

X 3

1

ð1þ aÞ3
¼

1

X 3
þ OðaÞ: (21)

Eq. (20) is reduced to

qPpf

qx3
¼

F

4pX 3
þ OðkX Þ

2: (22)

Taking account of Eq. (16), one can obtain the following equation for the x3-component of the
fluid velocity near the sphere at the point ðx1; x2; x3Þ ¼ ðX þ R0;R0;�R0Þ:

u3 ¼ �
i

4prkc0

F

X 3
þ OðkX Þ

2: (23)

Consider now the x1-component of the velocity field. The corresponding derivative of the
pressure takes the form [10, p. 718]:

qPpf

qx1
¼ sin Y cos F

qPpf

qx
þ

1

x
cos Y cos F

qPpf

qY
�

sin F
x sin Y

qPpf

qF
: (24)

The substitution of Eq. (13) to Eq. (24) leads to the following equation:

qPpf

qx3
¼

F

4px3
eikx½sin Y cos Y cos Fð3ikx � 3þ ðkxÞ2Þ�; (25)

which, for kx51; is reduced to

qPpf

qx1
¼ �3

F

4px3
sin Y cos Y cos Fþ OðkxÞ2: (26)

Using Eqs. (15) and (21) as well as the following expansions with respect to a ¼ R0=X :

cos ðaÞ ¼ 1þ Oða2Þ; (27)

sin ðp=2þ aÞ cos ðp=2þ aÞ ¼ �aþ Oða3Þ; (28)
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the x1-component of the velocity field generated by the point force at the point ðx1;x2;x3Þ ¼

ðX þ R0;R0;�R0Þ can be written as

u1 ¼ �
3i

4pr0kc0

F

X 3

R0

X
¼ 3u3

R0

X
¼ OðkX Þ

2: (29)

To find the pressure of the point force near the sphere, we expand Eq. (13) into the Taylor series
and obtain:

Ppf ¼ �
F

4pX 2

R0

X
¼ �

F

4pkX 3

R0

X
ðkX Þ ¼ u3

r0c0

i

R0

X
ðkX Þ ¼ OðkX Þ

3: (30)

Eqs. (22), (29) and (30) show that the amplitudes of the x1-component of the velocity and the
pressure are proportional to a small parameter and thus can be neglected. Therefore, the sphere
shown in Fig. 1 can be considered as being immersed in a variable spatially uniform velocity field
with negligible pressure fluctuations and Example 2 of Zinoviev and Bies [1] has a clear
justification in acoustics.
3.3.3. Sound wave radiated by the sphere in the velocity field
3.3.3.1. Equivalence of a motion of the fluid and the sphere. Farassat [2] noted that ‘‘...the surface
of the sphere cannot be stationary because the momentum equation dictates that qp0=qn0 ¼ 0
which is not what the authors assume (see Eq. (57), Zinoviev and Bies)’’. In response to this
comment, we point out that Eq. (57) of our paper [1] describes only the scattered (radiated)
component of pressure fluctuations, which satisfies the boundary conditions, determined by Eq.
(5) above. The total velocity field, which is the sum of the incident and scattered components, is
zero on the surface meaning that the sphere is stationary.

The following point is important for our analysis. As stated in Landau and Lifshitz [11, p. 297],
a motion of the fluid relative to the sphere is equivalent to a motion of the sphere in the fluid. As
this point can be confusing, below we provide the proof by solving the corresponding boundary
value problems.
3.3.3.2. A vibrating rigid sphere in a stationary fluid. Consider a rigid sphere with the centre
coinciding with the origin. The sphere vibrates harmonically along the x3-axis with the velocity
amplitude, U. The sound radiated by the sphere is described by the Helmholtz equation:

ðr2 þ k2
ÞP ¼ 0: (31)

The condition on the surface of the sphere is the equality of the normal (radial) components of the
velocities of the surface, vx ¼ U cos Y; and the fluid, ux:

ux ¼ vx ¼ U cos Y: (32)

Eqs. (31) and (32), together with the radiation condition at infinity, determine a boundary value
problem, particular solutions of which can be determined as [12, p. 318]:

Pnðx;F;YÞ ¼
e
ikx=x; n ¼ 0;

hð1Þn ðkxÞY nðY;FÞ; n ¼ 1; 2; ::;

(
(33)



ARTICLE IN PRESS

A. Zinoviev, D. Bies / Journal of Sound and Vibration 281 (2005) 1224–1237 1231
where hð1Þ
n ðkxÞ is a spherical Bessel function of the third kind and Y nðY;FÞ is a spherical surface

harmonic. Note that the choice of hð1Þ
n ðkxÞ is determined by the radiation condition at infinity.

As the boundary condition (Eq. (32)) contains only the dipole term, only the term with n ¼ 1
will be different from zero in Eq. (33). Substitution of the known expressions for h

ð1Þ
1 ðkxÞ and

Y 1ðY;FÞ in Eq. (33) leads to the following expression for the pressure field radiated by the sphere:

Pðx;YÞ ¼ �A
eikx

kx
1þ

i

kx

� �
cos Y; A ¼ const: (34)

The radial velocity component can be determined by means of Eq. (16) and can be written as

vx ¼ �
iAeikx

r0c0ðkxÞ3
ð2iþ 2kx � iðkxÞ2Þ cos Y: (35)

Substitution of the above equation into the boundary condition allows one to find the following
expression for the complex amplitude A:

A ¼
r0c0Ue�ikR0ðkR0Þ

3

2� 2ikR0 � k2R2
0

; (36)

which, after substitution into Eq. (34), gives an equation determining the pressure field radiated
by the vibrating sphere:

Pðx;YÞ ¼ �
r0c0UðkR0Þe

ikðx�R0Þ

2� 2ikR0 � ðkR0Þ
2

R0

x

� �2

ðkx þ iÞ cos Y: (37)

Note that the above equation can be easily transformed to the expression for the velocity potential
of a vibrating sphere [11, p. 286].

For the far field ðkx ! 1Þ of an acoustically small sphere ðkR051Þ; Eq. (37) is reduced to

Pðx;YÞ ¼ � 1
2
r0c0UðkR0Þ

2 R0

x
eikx cos Y: (38)

3.3.3.3. A stationary rigid sphere in a moving fluid. Consider a stationary sphere immersed in a
variable velocity field as described in Section 3.3.2. The fluid moves back and forth with harmonic
temporal dependence and a complex velocity amplitude, �U : (We use the amplitude with the
negative sign to keep the same relative motion of the sphere and the fluid as in the previous
example.) In the linear problem, all effects of the motion of the fluid on sound propagation are
neglected. Therefore, this case is described by the same Helmholtz Eq. (31) and the only difference
between this case and the previous one is in the boundary condition.

As the sphere is stationary, the total fluid velocity on the surface is zero. However, apart from
the radiated sound field, there is an external velocity field in the fluid; thus, the condition of zero
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velocity on the surface must be written as follows:

vxjx¼R0
¼ urad

x jx¼R0
þ uinc

x jx¼R0
¼ 0; (39)

where urad is the velocity field of the sound wave radiated by the sphere and uinc is the incident
velocity field in the fluid. Note that such boundary conditions for the incident and radiated fields
are used widely in solving linear problems of sound radiation and scattering. For example, a
similar condition can be found in [9, p. 425].

Substitution of uinc
x ¼ �U cos Y into this equation gives the condition for the radiated sound

field on the surface of the sphere:

urad
x jx¼R0

¼ U cos Y; (40)

which coincides with the boundary condition for the case of a vibrating sphere (Eq. (32)). As the
boundary value problems in both cases are identical, the cases of a vibrating sphere in a stationary
fluid and of a stationary sphere in a moving fluid will be clearly equivalent in terms of the radiated
sound.

3.3.3.4. Prediction of the FW-H theory for the sound radiated by a vibrating sphere in a stationary
fluid. Blake [6] used the FW-H theory to calculate the sound generated by a rigid sphere
vibrating in a fluid with the velocity amplitude, U. He showed that the contribution of the
monopole and dipole sources in the far field, PmonðxÞ and PdipðxÞ; determined by the third and
second terms in the right-hand part of Eq. (1), respectively, can be written as follows:

PmonðxÞ ¼ � 1
3
r0c0UðkR0Þ

2 R0

x
eikx cos Y; (41)

PdipðxÞ ¼ � 1
6
r0c0UðkR0Þ

2 R0

x
eikx cos Y; (42)

and the total field, PsphðxÞ; radiated by the sphere is

PFW-H
sph ðxÞ ¼ PmonðxÞ þ PdipðxÞ ¼ � 1

2
r0c0UðkR0Þ

2 R0

x
eikx cos Y: (43)

Note that this formula coincides with Eq. (38) above and, therefore, the FW-H theory produces
correct predictions for the sound wave radiated by the vibrating sphere.

3.3.3.5. Prediction of the FW-H theory for the sound radiated by a stationary sphere in a moving

fluid. For the FW-H theory, however, the equivalence of the two situations does not stand. As
described in Section 2, the velocity component vj in the third term of Eq. (1) is measured with
respect to a stationary observer. As a result, for the immovable sphere PmonðxÞ vanishes. At the
same time, the force on the fluid from the sphere must still be described by Eq. (42), since it is
determined by relative motion of the sphere and the fluid around it. Therefore, the prediction of
the FW-H theory for the pressure amplitude of the acoustic wave radiated by the stationary
sphere in the variable velocity field is

PFW-HðxÞ ¼ PdipðxÞ ¼ � 1
6
r0c0UðkR0Þ

2 R0

x
eikx cos Y: (44)
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One can note that Eq. (44) differs from the correct prediction determined by Eq. (43) by a factor
of 3. Therefore, the conclusion of Zinoviev and Bies [1] that the FW-H equation gives a wrong
prediction for the acoustic wave radiated by a rigid sphere in a variable velocity field is correct.

3.4. A rigid sphere embedded in a flow

Fundamental problems of the FW-H theory can be demonstrated even more easily using
another example. Let the sphere considered in Section 3.3 be embedded in the velocity field in such
a way that it is stationary with respect to the fluid but moving with the fluid with respect to a
stationary observer.

As there is no force acting upon the fluid from the sphere in this case, the second term in Eq. (1)
vanishes. At the same time, the sphere moves with respect to a stationary observer and, therefore,
the contribution of the third term in Eq. (1) is exactly the same as for the vibrating sphere (Eq.
(41)). On the other hand, it can be easily proven by conventional methods of solution of boundary
value problems that there will be no radiation from such a sphere.

Thus, the result of the FW-H equation contradicts the obvious prediction of the absence of
radiation from a sphere which does not move with respect to the surrounding fluid flow.
4. Some aspects of the theoretical argument

As we mentioned in Section 1, in Zinoviev and Bies [1] we followed the logic of Curle [3] as close
as possible. On this ground, many of the comments in Farassat [2] can be answered. Below we
provide our response to these comments.

4.1. Justification of Eq. (5) of Zinoviev and Bies

Farassat [2] noted that ‘‘The authors start with a Kirchhoff-like formula for the density
perturbation r0ðx; tÞ Eq. (4), which they present without derivation of reference’’. This equation is,
indeed, the sum of the solution of Lighthill’s equation for a flow without boundaries and the
Kirchhoff formula for the density perturbations. This is also the starting point of the analysis by
Curle [3], who made reference to Stratton [13, p. 427] as the source of this equation, which
provides the most general solution of the inhomogeneous Lighthill’s equation. As Lighthill’s
equation is definitely applicable to a general flow field, we agree with Curle that Eq. (2.4) of his
paper [3], which is also our Eq. (4), has a solid foundation in application to a general flow.

4.2. Method of integration

Farassat [2] commented that ‘‘Most of the algebraic manipulations involving integration by
parts in the paper are confusing and not mathematically precise because the authors do not clearly
indicate evaluation of the integrand at the retarded time’’. In response to this comment, we
emphasize that our choice of the method of integration is also determined by Curle’s logic. For
example, Eqs. (5) and (6) of Zinoviev and Bies are also utilised by Curle as Eqs. (2.9) and (2.11).
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Taking this into consideration, the explicit evaluation of the integrands as shown in Eq. (22) of
Farassat [2] cannot affect our analysis and conclusions.

4.3. The surface divergence

Farassat [2] observed that ‘‘...it is not at all clear what the authors mean by the discontinuity of
the functions Fi on the boundary Sv: The proper mathematical tool to study this problem is
generalised functions... Also in differential geometry, the surface divergence has a clearly defined
meaning. The authors’ definition does not correspond to this definition’’.

Answering this comment, we point out that the formulation of the surface divergence of a
vector field, which we used in Zinoviev and Bies [1], can be found in Korn [12, Eq. (5.6–4)]. It has
the clear meaning of the scalar product of the normal unit vector to a surface S and the difference
between the values of the vector field on both sides of S, which is represented by Eq. (9) of
Zinoviev and Bies. Since inside the solid object, Lighthill’s stress tensor is obviously zero, whereas
it is not zero in general on the exterior side of the surface of the object, the vector fields determined
by Eqs. (15) and (16) of Zinoviev and Bies are discontinuous on the surface. Note that we did not
use the theory of generalised functions in our analysis, as Curle [3] did not base his argument on
this mathematical formulation.

However, it is also possible to obtain our result (Eq. (34) of Zinoviev and Bies) without using
the notion of the surface divergence, which we demonstrate below.

The theoretical argument in our article [1] differs from that of Curle [3] in only one aspect.
According to Curle, integrals over the total volume, V tot; of the fluid, can be reduced to integrals
over the rigid surface, S, as follows:ZZZ

V tot

q
qyi

qTij

qyj

1

r

 !
dy ¼

ZZ
S

ni

qTij

qyj

1

r
dSðyÞ; (45)

ZZZ
V tot

q
qyi

Tij
1

r

� �
dy ¼

ZZ
S

ni

Tij

r
dSðyÞ: (46)

The notion of the surface divergence was used in Zinoviev and Bies to prove that, in fact, the
right-hand parts of Eqs. (45) and (46) vanish, so that the equations take the formZZZ

V tot

q
qyi

qTij

qyj

1

r

 !
dy ¼ 0; (47)

ZZZ
V tot

q
qyi

Tij

1

r

� �
dy ¼ 0: (48)

In can be shown quite easily that utilising Eqs. (47) and (48) in place of Eqs. (45) and (46) in
Curle’s analysis leads to Eq. (34) of Zinoviev and Bies rather than to Eqs. (2.15) and (2.18) of
Curle [3] and to the FW-H Eq. (1).

At the same time, we would like to draw readers’ attention to a simpler way to prove the
correctness of Eqs. (47) and (48), which we specified in Subsection 3.6 of Zinoviev and Bies. As the
regions in the fluid where Tija0 are finite [2], it is always possible to specify a closed surface, S1;
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which will enclose all such regions. Due to the divergence theorem, the volume integrals can be
represented as surface integrals over S1:ZZZ

V tot

q
qyi

qTij

qyj

1

r

 !
dy ¼

ZZ
S1

ni

qTij

qyj

1

r
dSðyÞ; (49)

ZZZ
V tot

q
qyi

Tij
1

r

� �
dy ¼

ZZ
S1

ni

Tij

r
dSðyÞ: (50)

As Tij � 0 on S1; the right-hand parts of Eqs. (49) and (50) vanish and the volume integrals take
the form of Eqs. (47) and (48). Therefore, utilising the notion of the surface divergence is not
necessary at all for reaching our conclusions. The surface divergence was used in Zinoviev and
Bies to demonstrate that, if carried out correctly, the methodology of Curle [3] leads to a
conclusion different from that stated in his article.

4.4. Converting the derivatives

It is stated in Section 3.0 of Farassat [1] that ‘‘The manipulations for converting the derivatives
with respect to the source variable (of) the Lighthill stress tensor to derivatives with respect to the
observer (variable) are not necessary’’. We would like to point out that this statement provides
another proof for the correctness of our result.

In fact, a major part of Curle’s analysis [3] is devoted to the transformation of the derivatives of
the Lighthill’s stress tensor Tij with respect to x to the derivatives with respect to y: Curle obtained
his Eq. (2.15) (which can be reduced to Eq. (1) above) by using the following transformation:ZZZ

V tot

q2Tij

qyiqyj

" #
dy

r
¼

q2

qxiqxj

ZZZ
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Tij
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q
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njTij

r

� �
dSðyÞ

þ

ZZ
S

nj

r

qTij

qyj

" #
dSðyÞ: ð51Þ

If such a transformation were not necessary, it would, apparently, mean that the second and the
third terms in Eq. (51) vanish. Substitution of the above equation without the surface integrals to
Eq. (4) of Zinoviev and Bies (which is also the starting point of Curle’s analysis) would
immediately lead to Eq. (34) of Zinoviev and Bies, which is the main result of the article.

4.5. The linearised FW-H equation and its solution

In Section 1.0, Farassat [2] demonstrated the derivation of the linearised FW-H Eq. (5), which
we re-write below for a stationary surface S determined by the condition f ¼ 0:

&2p0 ¼
q2Tij

qxiqxj

�r � ½p0ndðf Þ�; (52)

where p0 is the acoustic pressure. We agree that this equation, indeed, correctly describes sound
scattering by a rigid stationary surface in a linear approximation. The sound radiated by the
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volume distribution of Lighthill’s sources, described by the first term in the right-hand part of the
above equation, can be considered as the incident wave. At the same time, the second term
determines the sound wave scattered by the surface.

However, the method of solving Eq. (52) used by Farassat [2] in application to the plane wave
scattering by a rigid sphere does not appear to be mathematically justified. Consider the method
of solution of this equation, which is known from textbooks on scattering (see, for example, [10, p.
16]). The solution of Eq. (52) can be represented as follows:

p0ðxÞ ¼ p0incðxÞ þ
1

4p

ZZ
S

p0ðyÞ
q
qn

eikjx�yj

jx� yj

� �
dS; (53)

where the source term p0ðyÞ is not the total pressure measured on the surface S. Instead, the source
term is determined by two following integral equations:

2p0
incðxÞ ¼ p0ðxÞ �

1

2p

ZZ �

S

p0ðyÞ
q
qn

eikjx�yj

jx� yj

� �
dS; (54)

4p
q
qn

p0
incðxÞ ¼ �

q
qn

ZZ
S

p0ðyÞ
q
qn

eikjx�yj

jx� yj

� �
dS; (55)

where ðx; y 2 SÞ and the asterisk denotes the Cauchy principal value. The above integral equations
correspond to the boundary conditions on the surface for the acoustic pressure and its normal
derivative, respectively.

Note that in Farassat [2] there is no indication of the necessity to formulate and solve the
integral equations to determine the source term in the linearised FW-H equation. Moreover, in
practical applications of the FW-H equation by other authors (see, for example, Howe [14, pp.
211 and 212]), the source term is also understood as the pressure measured at the surface S rather
than as the solution of an integral equation. Therefore, the conventional method of solution of the
linearised FW-H equation lacks mathematical foundation.
5. Conclusions

In our response, we acknowledge that the application of the FW-H theory to the case of a plane
wave scattering by a rigid sphere in Zinoviev and Bies [1] contains an error caused by an
unjustified assumption about the surface distribution of the dipole sources. We confirm that the
predictions of the FW-H equation coincide with the correct result in this situation.

At the same time, we have shown that this coincidence is purely accidental. On the example of
the reflection of a converging spherical wave from a rigid sphere, we have demonstrated that the
FW-H equation leads to incorrect predictions for the reflected sound wave.

We have shown that the case of an immoveable sphere in a variable velocity field, considered in
Zinoviev and Bies, has a clear origin, and that the FW-H equation does not lead to the correct
prediction in this case. We have also shown that the FW-H equation fails to produce the correct
result in a simple case of a rigid sphere embedded in a variable velocity field.

We have explained in more detail the statement of Zinoviev and Bies [1], that the logic of this
paper follows that of Curle [3]. This answers a number of comments of Farassat [2] such as the
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justification of the starting point of our analysis (Eq. (4) of Zinoviev and Bies) and the choice of
the method of integration.

We have shown that the surface divergence of a vector field discontinuous at a surface has a
clear meaning related to the difference between the values of the vector field on both sides of the
surface. We have also demonstrated that, as shown in Zinoviev and Bies, the main result of the
paper can be obtained by direct evaluation of the volume integral without using the surface
divergence.

In addition to the conclusions of Zinoviev and Bies, in this response we have shown that the
conventionally used method of solution of the FW-H equation lacks mathematical foundation as
it ignores the necessity to determine the source term by solving integral equations arising from the
boundary conditions on the rigid surface.

In summary, in our response to Dr Farassat’s comments, we have confirmed the main
conclusion of Zinoviev and Bies, that the theory based on equations by Curle and Ffowcs
Williams and Hawkings has significant theoretical problems which must be answered before any
further use of this theory in engineering applications.
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