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Abstract

The objective of the present paper is a deep analysis of some recent numerical and experimental results
regarding the complex dynamics of axially moving systems. Such important mechanical systems exhibit
interesting dynamic behaviors: homoclinic orbits; sub-harmonic responses; amplitude modulations; and
chaos. These dynamics have been obtained numerically and in some cases have been experimentally
observed.
Using recent techniques of the non-linear time series analysis, the response of axially moving systems has

been studied for a large variety of test cases. The correlation dimension of the time series, which is deeply
related to the minimal dimension of a system able to reproduce the dynamics, is estimated. Lyapunov
exponents are evaluated in order to quantify the response regularity.
The present work gives a contribution towards understanding the complex dynamics observed both in

conservative and dissipative systems. The dynamical phenomena are analyzed within the unified framework
of the non-linear time series analysis.
In the case of experimental data the new non-linear filtering techniques, based on the embedding

techniques, have been applied to reduce high noise when classical techniques give bad results.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In many industrial processes slender translating elements are used for transmitting power,
information, and material; these elements are classified as axially moving systems. Chain and belt
see front matter r 2004 Elsevier Ltd. All rights reserved.
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drives, magnetic tapes, band saws, packaging, paper-handling machineries are some examples
where transverse vibrations occur together with an axial transport of mass.
The first works regarding axially moving systems appeared in the middle of the previous

century and were motivated by instability phenomena observed in oil pipelines [1]. In Ref. [2], the
effect of the axial velocity on the linear frequencies of moving threadlines was qualitatively
discussed; in Ref. [3] the role of non-linearities and axial speed in traveling strings was
investigated. Naguleswaran and Williams [4] considered the parametric excitation of band saw
systems due to the axial tension fluctuation. They observed violent vibrations when the parametric
resonance was subharmonic (2:1), and performed a perturbation analysis with experimental
validations. Mockensturm et al. [5] analyzed axially moving continua considering the parametric
excitation due to non-trivial boundary conditions in the axial displacement; limit cycles in the
speed range close to parametric resonances were found. An experimental investigation of direct
and parametric excitation of a belt, and non-linear parametric identification is present in Ref. [6].
Shih [7] presented a three-dimensional vibrational model of a travelling string analyzing the
hyperbolicity of the governing equations and the singularities occurring at the critical speed; in
that work the elliptic ballooning was analyzed, confirming the experimental results of Ames et al.
[8]. In Ref. [9] an energy approach, in Eulerian coordinates, was used to write down the governing
equations; the eigenfunctions were obtained through the solution of the dispersion equation. In
Ref. [10] orthogonality conditions for complex modes were given; some stability regions also were
found in the super-critical speed range, i.e., for specific intervals of the super-critical speed range
the trivial equilibrium position regains stability.
Holmes [11] showed that systems governed by the equation of damped axially moving beams

with fixed ends can exhibit only pitchfork-like instabilities. Paı̈doussis and Moon [12] studied, both
analytically and experimentally, flutter and chaos in a cantilever pipe. This problem does not belong
to the class analyzed by Holmes [11], who restricted his analysis to systems fixed at both ends.
Wickert [13] studied non-linear vibrations and bifurcations of moving beams. He examined the

sub- and super-critical speed ranges, performing a local analysis to study small-amplitude non-
linear oscillations close to the unstable trivial position and the stable bifurcated positions. The
existence of a global motion around the critical speed was predicted by using an asymptotic
analysis. A detailed analysis of bifurcation and stability was performed in Refs. [14,15], where the
perturbing effect of the beam curvature at the pulleys was accounted for. In Refs. [16,17] the
supercritical speed range was analyzed using a high-dimensional discrete model obtained by the
Galerkin procedure. Further analyses on the stability of parametrically excited axially moving
systems are presented in Ref. [18].
Lin [19] studied the linear vibrations of travelling plates; beam and string theories were compared

with plate theory: the beammodel overestimates and string model underestimates the critical speed.
Moreover, it was found that, in the super-critical speed range, the trivial equilibrium position is
always unstable. Such results highlight the main discrepancies between plates and beam/string
theories, which are particularly important for small width–length ratios and high flexural stiffness.
In this paper the recent results presented in Refs. [6,16–18] regarding regular and chaotic

response of axially moving systems are reanalyzed, in order to clarify the dynamic character of the
response. The recent numerical and experimental investigation on this subject evidenced that a
wide class of non-linear phenomena can take place, for example: homoclinic orbits; sub-harmonic
responses; amplitude modulations; and chaos.
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In the past, both analytical techniques and numerical models have been used to reproduce or
forecast experimental observations. Usually analytical modelling is performed by means of a
minimal number of degrees of freedom; conversely, in the numerical modelling a large number of
degrees of freedom are used. Nevertheless, in some cases, chaotic dynamics, analyzed by means a
large number of degrees of freedom (d.o.f.), presented a scenario surprisingly similar to that of a
chaotic 1-d.o.f. Duffing oscillator, even though convergence tests proved that, using a certain
basis, a large number of degrees of freedom is mandatory. Moreover, the comparison between
modelling and experiments showed that some dynamical behaviors observed in the experiments
were lost in the numerical simulations.
In order to furnish a contribution toward the final answer to the previously mentioned

questions, in this paper, after a short theoretical introduction, which also contains some new
development regarding the Hamiltonian character of the equations of motion, a systematic
analysis of the most interesting dynamics is provided.
The idea is to extract some useful information regarding the dynamical behavior of the system

from simulated or experimental data. The approach followed in the analysis is the same for
numerical and experimental data: experimental data have been obtained by measuring the mi-
span oscillation of the belt using a Laser telemeter; numerical data have been obtained by
simulating a measurement on the same position.
Using non-linear time series analysis [20–29] a statistical evaluation of the dimension of the

attractor where the system evolves is made. Such dimension gives information about the minimal
dimension of a model able to reproduce the dynamics analyzed; it is of fundamental importance
when low-dimensional models are developed: their dimension cannot be smaller than the minimal
one [22]. Moreover, the maximum Lyapunov exponent has been estimated in order to check the
sensitivity to perturbation of the initial conditions.
Non-linear time series methods have also been used for reducing noise in strongly polluted

data, on which no classical noise reduction methods were able to reduce the noise sufficiently.
The non-linear filter used in this work is a quite new technique and is based on embedding
techniques.
2. Governing equations

In this section an analytical model used in the past [6,16–18] to simulate the non-linear response
of a power transmission belt is considered. The governing equations are developed on the basis of
the system represented in Fig. 1, which is useful to simulate some experiments performed on a belt
pulley system with a fixed tensioner and an eccentric pulley. In Fig. 1 the spring, located at the
right end, simulates the effect of the lower belt span, considering the longitudinal elasticity but
neglecting the lower span dynamics.
The governing equation is [6,16–18]:

EI ~wIV þ rA €~wð ~x; ~tÞ þ 2rA~v _~w
0
ð ~x; ~tÞ þ rA~v2 ~w00ð ~x; ~tÞ � ~P ~w00ð ~x; ~tÞ

� EA ~w00ð ~x; ~tÞ
1

2

K

Kl þ EA

Z ‘

0

~w02ð ~x; ~tÞ d ~x þ
1

2

EA

Kl þ EA
~w02ðl; ~tÞ

� �
¼ ~f ð ~x; ~tÞ; ð1Þ
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Fig. 1. Physical model of the travelling beam.
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where ð�Þ0 ¼ @ð�Þ=@ ~x, ð�Þ� ¼ @ð�Þ=@~t, E is Young’s modulus, I is the moment of inertia of the cross-
section area, r is the mass density, A is the cross-section area, ~w is the transversal displacement
field, ~v is the axial speed, ~Pð~tÞ is the time-dependent tension, ~f is an external excitation field acting
directly on the belt, l is the distance between supports, ~x is the axial coordinate, ~t is the time, ~w0ð~tÞ
is the left support motion (the pulley eccentricity), and K is the spring constant.
The following boundary conditions are considered:

~wð0; ~tÞ ¼ ~w0ð~tÞ; ~wðl; ~tÞ ¼ 0; ð2aÞ

~w00ð0; ~tÞ ¼ ~w00ðl; ~tÞ ¼ 0: ð2bÞ

In Ref. [18] the tension fluctuation was due to the pulley eccentricity: ~P ¼ P � ~pð~tÞ,
~pð~tÞ ¼ �p sinðjð~tÞÞ ¼ �p sinð ~o~tÞ; similarly, ~w0ð~tÞ ¼ �w0 cosð ~o~tÞ; where: ~o ¼ ~v=R [rad/s] was the
motor rotation speed and R the pulley radius. The tension fluctuation and the seismic excitations
can also be due to other kind of disturbances; for example in Ref. [17] the distributed force filed ~f
was an external point excitation. Therefore, Eq. (1) can be useful for studying a large class of
axially moving systems.
A non-dimensional form of Eq. (1) can be obtained by introducing the following variables and

parameters: ŵ ¼ ~w=l, x ¼ ~x=l, t ¼ ~t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=rAl2

q
, v ¼ ~v=

ffiffiffiffiffiffiffiffiffiffiffiffi
P=rA

p
, vf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=Pl2

q
, p ¼ ~p=P. More-

over, the boundary conditions (2a) can be transformed into homogeneous boundary conditions,
without loss of generality, by using a new variable

ŵðx; tÞ ¼ wðx; tÞ þ ð1� xÞw0ðtÞ; ð3Þ

where w0 ¼ ~w0=l. The resulting non-dimensional equation becomes

v2f wIVðx; tÞ þ €wðx; tÞ þ 2v _w0ðx; tÞ þ ðv2 � 1þ pðtÞÞw00ðx; tÞ � 2v _w0ðtÞ þ ð1� xÞ €w0ðtÞ

�
EA

P
w00ðx; tÞ

1

2

Kl

Kl þ EA

Z 1

0

ðw02ðx; tÞ � 2w0ðtÞw
0ðx; tÞ þ w2

0ðtÞÞ

�
dx

þ
1

2

EA

Kl þ EA
ðw02ð1; tÞ � 2w0ðtÞw

0ð1; tÞ þ w2
0ðtÞÞ

�
¼ f ðx; tÞ: ð4Þ

The following non-dimensional parameters are introduced: v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2EA Kl=ðPðKl þ EAÞÞ

q
and

v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ðEAÞ

2=ðPðKl þ EAÞÞ

q
. In the experiments it was found that w0 � 1 and wo1; therefore,
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the terms w00ðx; tÞv21
R 1
0 ð�2w0ðtÞw

0ðx; tÞ þ w2
0ðtÞÞ dx and w00ðx; tÞv22ð�2w0ðtÞw

0ð1; tÞ þ w2
0ðtÞÞ can be

neglected.
The terms 2vð@2w=@x@tÞ and v2ð@2w=@x2Þ are the Coriolis force and the centrifugal force,

respectively, while the remaining inertial and elastic terms are well known in beam-string theory.
The dynamics of axially moving systems are greatly affected by the axial speed, in particular,

the straight equilibrium configuration may lose stability and multiple equilibrium positions may
arise when the axial speed increases beyond a critical value, which depends on the flexural stiffness
and the initial tension. When external excitations cause resonances a complex dynamic behavior
can be encountered: sub-harmonic responses, amplitude modulations, chaotic dynamics and
intermittency.
Bifurcations of the fixed point of Eq. (1) arise when the axial speed reaches the critical values:

vðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðmpvf Þ

2
q

, m ¼ 1; 2; . . . ;1; the corresponding non-trivial fixed points are

wm ¼ 
2=mpvT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � vðmÞ

2
p

sin mpx, m ¼ 1; 2; . . . ;1, where vT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=P

p
[13,16,30]. After the

first critical speed v(1), the straight configuration loses stability; for higher speed, this configuration
could regain stability due to the stabilizing effect of the Coriolis forces [13,16].
3. Discretized model and Hamiltonian properties

In order to perform a numerical analysis of Eq. (4), the displacement field is expanded by means
of a complete set of functions, which respect the homogeneous boundary conditions. In Refs.
[16–18] the following series showed good convergence properties:

wðx; tÞ ¼
XN

n¼1

qnðtÞ sin npx; ð5Þ

where N depends on the smoothness of the displacement field w(x,t) [16]. The Galerkin method is
applied, the operator given by Eq. (4) is projected on basis (5), and a finite-dimensional dynamical
system is obtained

€qþ C_qþ KðtÞq ¼ Nðq; tÞ; ð6Þ

where C is the gyroscopic matrix, and K is the stiffness matrix, which is time variant due to the
presence of p(t) in Eq. (4), and N(q, t) collects the non-linearities and the direct excitation, w0(t).
It can be proven that system (6) is Hamiltonian when no damping and forcing are present, see

the Appendix; a first integral for system (6) is

H _q; qð Þ ¼ 1
2
_qT _qþ U qð Þ; ð7Þ

where

U qð Þ ¼
1

2

XN

n¼1

Knq2n þ
1

4

XN

n¼1

XN

k¼1

bnkq2nq2k: ð8Þ

The Hamiltonian function (7) is constant; it can be adopted to check the accuracy of the
numerical algorithms used to integrate high-dimensional dynamical systems. In particular, it will
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be proven that the solution of Eq. (6) can show a chaotic behavior maintaining the property given
by Eq. (7). Tests on the Hamiltonian function are particularly important; indeed, Hamiltonian
systems are always on the stability bounds, i.e., the eigenvalues of the linearized systems are purely
imaginary. The latter feature is extremely dangerous for numerical integration algorithms such as
Runge–Kutta methods, which are not generally energy preserving. When the dynamics becomes
complex, for example in chaotic dynamics, some doubt can arise on the origin of instability of
regular motion. The Hamiltonian function test gives a proof of the quality of integration.
4. Time series analysis: embedding techniques, noise filtering, correlation dimension and Lyapunov

exponents

In order to analyze chaotic time histories, an estimation of the phase space dimension where the
system evolves could be useful along with the evaluation of the maximum Lyapunov exponent.
The correlation dimension gives an estimate of the number of degrees of freedom needed to model
the observed dynamics. The maximum Lyapunov exponent indicates if an exponential divergence
from the initial conditions is present, i.e., indicates when a chaotic motion takes place.
In the case of a highly polluted system the direct estimation of the previously mentioned

statistical indicators may be impossible; in these cases noise filtering techniques can be useful to
reduce noise and improve the estimations.
In the present section the correlation dimension, the maximum Lyapunov exponent and data-

filtering algorithms are briefly described. The TISEAN software is used in this work; a full
description of such algorithms can be found in Refs. [29,33].

4.1. Embedding techniques

When a single time history is available, for example from a single measurement, an image of the
actual phase space can be reconstructed using embedding techniques [31]: let us suppose that the
time history wðx̂; tÞ is sampled, the time series is: wi ¼ wðx̂; i � DtÞ, where Dt is the sampling
interval and i ¼ 1; . . . ;NT . A delay coordinate vector can be defined as follows:
vi ¼ wi�ðM�1Þd ;wi�ðM�2Þd ; . . . ;wi

	 

, i = (M�1)� d,y,NT; d �Dt is called time delay, M is the

embedding dimension. The embedding theorem [31] states that if the time series consists of scalar
measurements of a dynamical system and M is large enough, then the time delay embedding
provides a one-to-one image of the original phase space.

4.2. Correlation dimension

The correlation integral [20,21] is given by

CðrÞ ¼
1

Npairs

XNT

i¼M

X
joi�k

H r � jjvi � vjjj
� �

; ð9Þ

where Npairs ¼
1
2
ðNT � M þ 1Þ � ðNT � M � k þ 1Þ, r is a scalar length scale, k is related to the

Theiler window [32], and H is the Heaviside function.
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The dimension correlation is

dc ¼ lim
r!0

ln C rð Þ½ �

ln r
: ð10Þ

Mañé [22] showed that the minimum number of state variables (here 2N) required for modelling
the system is given by dcp2Np2dc þ 2. This is clearly the lower bound for the system dimension;
in actual problems the number of degrees of freedom should be larger than the minimum in order
to circumvent problems of convergence of the series adopted in expanding the displacement field.
Note that the choice of the delay time and the embedding dimension M is not trivial. In Ref.

[24] the delay time is chosen in correspondence of the first zero of the autocorrelation function of
the initial time series. On the other hand, Lai and Lerner [28] proved that, if the delay time is too
large, an increasing of delay time can lead to wrong results as M increases. Lai and Lerner
controlled the goodness of the delay time by looking at the linear region in the diagram (log C(r),
log(r)), and found that the range of the linear scaling region depends on both delay time and M,
more sensitively on delay time. Once the correct delay time is chosen the correlation dimension is
estimated from the slope of the (logC(r), log(r)) curve, in the linear scaling region. The estimate is
repeated for different values of the embedding dimension M, and the correct correlation
dimension is obtained when saturation is reached, i.e., when the correlation dimension reaches a
plateau versus M.
4.3. Lyapunov exponent

The evaluation of the correlation dimension is a powerful tool to evaluate both the system
dimensionality and the chaoticity. Indeed, when the correlation dimension is not an integer, the
dynamics evolves on a fractal set, i.e., one can observe chaotic evolutions.
However, in some cases evaluation of the correlation dimension is impossible, for example in

the case of highly polluted data or high-dimensional chaos. In these cases one can evaluate the
evolution properties by means of the Lyapunov exponents.
In the present work the maximum Lyapunov exponent is evaluated using an algorithm based

on the work of Rosenstein et al. [32]. Consider the vector vi on the embedding space; for i ¼ n0

the system trajectory is close to a previously visited state n, i.e., vn0 is close to vn; the distance
of these vectors is D0 ¼ vn � vn0 . Such a distance can be thought as a small perturbation of
initial conditions, therefore one can follow the time evolution of the distance between
two trajectories by writing: Dr ¼ vnþr � vn0þr; if jDrj � jD0je

lt than l is the maximum
Lyapunov exponent. Details of the algorithm can be found in Ref. [27]. The estimation of lt is
given by

S �;m; tð Þ ¼ ln

P
vn0 2Un

wnþl � wn0þl

�� ��
Unj j

 !* +
n

; ð11Þ

where m is the embedding dimension, and �h i indicates average over a certain interval of data.
The slope of S gives the maximum Lyapunov exponent with a good accuracy, if the straight
region is found for several values of the perturbation and the embedding dimension.
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4.4. Filtering

In the present work both numerical and experimental data are processed; in particular, the
latter are highly polluted because the Laser measures the distance of the belt mid-span and the
Laser beam reflects on a moving surface.
Here several filtering methods have been tested: average, median average, low pass filters; these

classical methods did not gave satisfactory results. Therefore a non-linear noise reduction method
[25] has been used; this method performs an averaging on the embedding vector vi ¼

wi�k; :::;wiþl

	 

having a unitary delay. For each embedding vector an average is performed by

finding all vectors close to vi, i.e., by selecting a set U�
i of all neighbors of wi that respect the

condition: sup wj�k � wi�k

�� ��; :::; wjþl � wiþl

�� ��	 

o�; the averaged sample is

wcorr
i ¼

P
U�

i
wi

U�
i

�� �� : ð12Þ

The practical implementation of this procedure is described in Ref. [25].
This non-linear filtering method is particularly efficient when data are highly polluted (more

than 1% noise); conversely when small amount of noise is present it is not able to filter accurately
and other methods should be used. Therefore, in the present work the present filter has been used,
after several tests, because our experimental data present a large amount of noise.
5. Analysis of regular and chaotic motion

5.1. Hamiltonian dynamics

The first series of tests are performed on the model used in Ref. [16], which corresponds to Eq.
(6) without excitation and damping. The test case considered in Ref. [16] is as follows: L=0.2m,
A=10�5m2, I=2.08� 10�13m4, E=2.1� 1011N/m2, r=7600kg/m3, P=100N; the correspond-
ing non-dimensional quantities are vf ¼ 0:104, vT ¼ 145. The first three critical speeds are:
vð1Þ ¼ 1:05202, vð2Þ ¼ 1:19457, vð3Þ ¼ 1:40027. A homoclinic orbit was discovered in Ref. [16] for
v 2 vð1Þ; vð2Þ

� �
, and chaotic motion was found for v4vð2Þ.

The first analysis is performed in the supercritical speed range, v ¼ 1:1; an infinitesimal initial
perturbation is given: q1ð0Þ ¼ 10�4, qið0Þ ¼ 0, i ¼ 2; . . . ;N and _qi ¼ 0, i ¼ 1; . . . ;N; N ¼ 12. In
Fig. 2a, the time history of q1(t) is shown, together with the Hamiltonian function H(q(t)). The
dynamics are extremely slow and periodic, the period depends essentially on the initial condition,
and approaches infinity when the initial perturbation tends to zero; this property of homoclinic
orbits is well known in the literature. The analysis is performed by means of an adaptive step-size
Runge–Kutta routine, and the results are sampled with Dt ¼ 0:5, which allow more than 20
samples per period. By analyzing the correlation function of the time history, the first zero is
found for 11Dt; therefore the following delay d ¼ 11 is assumed for the embedding space. The
reconstructed orbit is shown within Fig. 2a, which shows that the topologic characteristics of the
homoclinic orbit are preserved (see Ref. [16]). In Fig. 2b the slope of the correlation integral,
which gives the correlation dimension, is shown versus the scale length for various embedding
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Fig. 2. Homoclinic orbit. (a) Time history ‘–’, Hamiltonian function ‘- -’ and embedding phase space d ¼ 11, Dt ¼ 0:5
(picture included); (b) slope of the correlation integral versus scaling dimension and correlation dimension versus

embedding dimension (picture included).
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dimensions. Fig. 2b shows that a large plateau is obtained, two decades; moreover, the picture
included in Fig. 2b shows that the convergence to dc ¼ 1 is reached. Indeed, the homoclinic orbit
is a one-dimensional set. The maximum Lyapunov exponent, evaluated from the time series, i.e.,
simulating an experimental measurement, for this system is zero.
A similar analysis has been performed for, v ¼ 1:3, a small initial perturbation is given as

q1ð0Þ ¼ 0:01, qið0Þ ¼ 0, i ¼ 2; . . . ;N and _qi ¼ 0, i ¼ 1; . . . ;N with N ¼ 12. In Fig. 3a, the time
history of q1(t) is shown together with the Hamiltonian function H(q(t)). The dynamics present an
intermittent chaotic behavior; the Hamiltonian function is almost constant, proving sufficient
accuracy of the numerical algorithm in this particular condition. The spectrum is almost
continuous (picture included in Fig. 3a) and no fundamental frequency can be identified. In this
case the correlation dimension has not been computed; indeed, long and short time scales are
present and the correlation integral slope does not give a clear measure of the correlation
dimension. This is probably due to the intermittency and the transient chaotic behavior observed
in this condition. In Fig. 3b the slope of the function S gives an estimate of the maximum
Lyapunov exponent; the best estimation is obtained when the function S becomes straight; in Fig.
3b, a thick straight line is added to indicate the average slope. In Fig. 3b several lines are present;
indeed, the estimation is performed by selecting various embedding dimensions and perturbations
of the initial condition. In this case a positive slope is found, indicating a chaotic dynamics, and
the estimation of the maximum Lyapunov exponent is: l � 1:5.

5.2. Chaotic dynamics: external forcing and damping

Chaotic dynamics has been extensively analyzed in Ref. [17]; in that study the travelling beam
analyzed in Section 5.1 (Ref. [17]) was forced with a harmonic external point excitation ~f ðx; tÞ, and
a viscous damping was introduced in order to consider structural dissipation, corresponding to a
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Fig. 3. Hamiltonian chaos. (a) Time history ‘–’, Hamiltonian function ‘- -’ and spectrum (picture included); (b)

estimation of the maximum Lyapunov exponent.
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2% modal damping. Interesting results were found when the axial speed was larger than the
critical one. In Fig. 4 the slope of the correlation integral versus scaling dimension, the correlation
dimension versus embedding dimension, converging to dc ffi 1:6, and the Poincaré section of the
flow are shown for: excitation amplitude and frequency f ¼ 0:54, o ¼ 0:567, axial speed v ¼ 1:1.
In Ref. [16] a homoclinic orbit was found for the free undamped problem, see previous section; for
the same axial speed the introduction of damping and a suitable harmonic point excitation
showed that the system responded chaotically. However, the question whether the dynamics is
governed by a low-dimensional Duffing-type oscillator has no answer. Because of the presence of
complex modes, the physical problem cannot be represented through a single real ordinary
differential equation; in Ref. [17] it was shown that a low-dimensional system is not able to
reproduce this chaotic behavior, even though the analysis was connected with the series used in
expanding the displacement field. In the present study one can find an answer to the previous
question: the correlation dimension is 1.6; see Fig. 4. The result of the present analysis is that the
chaotic dynamics is low dimensional, it is developed on a fractal attractor and a single degree of
freedom system could be able to capture the essential characteristics of the system response. It is
interesting to note that in Ref. [26] dc ¼ 1:6 and 1.7 is obtained from experimental data regarding
a special set-up, which simulated a chaotic Duffing-type oscillator having one and two frequency
excitation, respectively. This confirms the topological similarity of the scenario obtained in Ref.
[17] with that of a Duffing oscillator; and is a further confirmation of the universal properties of
Chaos.

5.3. Parametric resonance: theory and experiments

In this section the dynamic behavior of a flat belt is analyzed. The driven pulley presents an
eccentricity, which gives a direct (seismic) and a parametric (tension fluctuation) excitation. The
belt cross-section area is A ¼ ð2:5� 10�3Þ � ð22:9� 10�3Þm2 and the mass per unit length is
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Fig. 4. Forced chaotic dynamics, damped axially moving beam: (a) slope of the correlation integral versus scaling

dimension and correlation dimension versus embedding dimension (picture included), converging to d ffi 1:6; (b)
Poincaré section. Excitation: amplitude f ¼ 0:54, frequency o ¼ 0:567, axial speed v ¼ 1:1.
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r� A ¼ 0:0626kg=m (synthetic reinforced rubber). The radius of the driven and driver pulleys is
R ¼ 0:1m, and the tightener radius is 0.026m; the distance between the pulley axes is l ¼ 1:01 m.
For this problem several analytical and numerical models were developed in the past, see e.g.
Refs. [6,18]. In particular, both low- and high-dimensional models showed a good agreement with
experiments; even though both low- and high-dimensional methods were able to capture the main
phenomena related to the parametric instability, some complex dynamics were captured with
high-dimensional models only.
Here experimental data used in Ref. [18] are reanalyzed in order to obtain the actual statistical

dimension of the attractor.
The first case corresponds to the typical one-half sub-harmonic response arising from the

principal parametric instability. This problem can be described with good accuracy through a 1-
d.o.f. complex system, obtained using a single complex mode Galekin projection [6]. Indeed, in
Fig. 5a the correlation dimension shows that a clear saturation is encountered at dc ¼ 1, the slope
of the correlation integral shows a large flat region, which assures that the statistical evaluation is
accurate. This result justifies completely the 1-d.o.f. model presented in Ref. [6]. In Fig. 5b the
phase trajectory obtained through the use of the first two embedding coordinates is shown; this
reconstruction is performed on the measured data and clearly presents a strong pollution. In this
case the classical filtering techniques, e.g., moving average, were not able to remove noise. After
the non-linear filtering the phase trajectory (Fig. 5c) appears quite regular and cleaned. The
correlation dimension estimation converged on filtered data only.
In Ref. [18] interesting complex dynamics were experimentally observed, and a high-

dimensional numerical model was used to reproduce these data. In Fig. 6 a one-third sub-
harmonic response is analyzed; also in this case the attractor is almost one-dimensional, even
though the data pollution was not removed completely and the saturation is not completely
satisfactory.
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Fig. 5. Parametric resonance: one-half sub-harmonic response. Experimental results for: eccentricity 3.2� 10�3m,

excitation frequency 40Hz. (a) Correlation integral and correlation dimension (picture included); (b) phase trajectory

for measured data; (c) phase trajectory for filtered data.
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In Ref. [18] quasi-periodic responses were experimentally observed and the numerical model
was able to reproduce similar behaviors in some cases. Unfortunately, the experimental data
corresponding to those quasi-periodic motions reproduced numerically were too polluted and the
data analysis gave no saturation. However, a qualitative analysis can be performed; in Fig. 7a the
correlation integral slope is shown, even though the pollution does not allow a clear saturation of
the dimension. From this picture one can argue that probably the dynamics is developed on a two-
dimensional set. The estimation of the maximum Lyapunov exponent shows highly oscillating
behavior, due to the noise (Fig. 7b); however, a flat region is clearly visible, indicating that the
maximum Lyapunov exponent is almost zero. Figs. 7c,d show the embedding phase trajectories
before and after filtering. In the original data the noise completely obscured the flow structure; the
filtering in this case was not able to remove the noise completely, but clearly evidences the
structure of the dynamics. Numerical simulations, performed at different excitation frequency,
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Fig. 6. Parametric resonance: one-third sub-harmonic response. Experimental results for: eccentricity 3.2� 10�3m,

excitation frequency 40.2Hz; correlation integral and correlation dimension (picture included).
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show a similar amplitude modulation; in this case the dimension evaluation is quite easy and show
a saturation on a two-dimensional set; the results are not reported for the sake of brevity.
This qualitative analysis clearly indicates that a strongly reduced order model [6] cannot

simulate amplitude modulations, and fully justifies the development of the high-dimensional
model of Ref. [18]. However, such analysis encourages those who attempt to develope a low-
dimensional, 2-d.o.f. model at least, enhancing for example the theory developed in Ref. [6].
6. Conclusions

The dynamic properties of axially moving systems are analyzed in order to explain complex
dynamic behaviors, which were observed in experimental and numerical investigations. Both
Hamiltonian and dissipative systems have been investigated, by using non-linear time series
analysis.
Taking advantage of the Hamiltonian formulation it is proven that the classical governing

equations of axially moving systems, reduced to ODE by means of the Galerkin method, preserve
the Hamiltonian properties.
By using several non-linear time series techniques, correlation dimension and Lyapunov

exponents have been evaluated. The analysis of time series proves that, for the dissipative cases, a
low-dimensional model is able to capture the essential dynamics. In particular, sub-harmonic
responses of dissipative axially moving systems evolve on one-dimensional attractors, and quasi-
periodic motions evolve on two-dimensional attractors; conversely, chaotic responses belong to a
low-dimensional fractal attractor. In the case of Hamiltonian dynamics, the time series analysis
was applied to the evaluation of the maximum Lyapunov exponent. A positive exponent was
found which confirms the conjectures made in the past about the sensitivity to initial conditions.
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Fig. 7. Parametric resonance: quasi-periodic response. Experimental results for: eccentricity 1.25� 10�3m, excitation

frequency 17Hz. (a) Correlation integral; (b) estimation of the maximum Lyapunov exponent; (c) phase trajectory for

measured data; (d) phase trajectory for filtered data.
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Finally, in the analysis of experimental data, a fundamental improvement in the data processing
must be addressed to the non-linear filtering methods based on embedding techniques. These new
filtering methods are very promising tools when experimentalists are concerned with highly
polluted data.
Appendix

Let us now eliminate direct excitations from Eq. (4) and, for the sake of simplicity consider
fixed ends, i.e., an infinitely rigid spring in the model presented in Fig. 1a. With these assumptions
the matrix K becomes a symmetric constant matrix. Eq. (6) can be obtained from the Lagrangian
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equations

d

dt

qL

q_q

� �
�

qL

qq

� �
¼ 0; ðA:1Þ

where the Lagrangian function is

L ¼ T � U ¼ 1
2
_qT _q� 1

2
qTC_q� UðqÞ: ðA:2Þ

Let us introduce the matrix C1 ¼ C=2 and introduce the generalized momenta

p ¼
qL

q_q
¼ _qþ C1q: ðA:3Þ

A first integral of motion can be found through the Legendre transformation, which gives the
Hamiltonian function of the system:

Hðp; qÞ ¼ pT _q� L ¼ const: ðA:4Þ

It is well known that the Hamiltonian H is an invariant of the system, i.e., H is independent of t,
and its value depends only on the initial conditions. For this specific problem, Eq. (A.4) gives

H ¼ pT _q� 1
2
_qT _qþ qTC1 _qþ UðqÞ: ðA:5Þ

After some algebra, one finds

Hðp; qÞ ¼ 1
2
pTp� pTC1q�

1
2
qTC2

1qþ UðqÞ: ðA:6Þ

The Hamiltonian form of the governing equations becomes

_p ¼ �
qH

qq
; _q ¼

qH

qp
ðA:7Þ

which yield

_p ¼ � C1pþ C2
1q�

qU

qq
;

_q ¼ p� C1q: ðA:8Þ

It can be easily proven that Eq. (A.8) can be transformed into the initial equations through the
definition of generalized momenta (A.7).
Eq. (A.8) can be used to reduce the system dimension by one. However, Eq. (A.6) can be

rewritten in terms of the natural coordinates:

H _q; qð Þ ¼ 1
2
_qT _qþ U qð Þ: ðA:9Þ

In the case of axially moving beams without external excitations, Eq. (6) reads

€qn �
XN

k¼1;kan

k
ð�1Þnþk

� 1

n þ k
þ

ð�1Þn�k
� 1

n � k

" #
_qk þ v2f n4p4 � v2 � 1

� �
n2p2

h i
qn

þ
v2T n2p4

4
qn

XN

k¼1

k2q2k ¼ 0 ðA:10Þ
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and the elastic potential energy can be written as

UðqÞ ¼
1

2

XN

n¼1

Knq2n þ
1

4

XN

n¼1

XN

k¼1

bnkq2nq2k; ðA:11Þ

where Kn ¼ v2f n4p4 � v2 � 1
� �

n2p2 and bnk ¼ v2T n2k2p4=4.
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