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Abstract

Laboratory simulation testing has for many years contributed significantly to the durability and quality
of motor vehicles. Most sophisticated test rigs use an iterative algorithm that generates the input drive files
that reproduce service environments under laboratory conditions. Essentially the algorithm solves a
nonlinear, multiple channel dynamic system. In this paper, the nonlinear problem is recast as a system of
algebraic equations. This mathematical framework allows the application of alternative but well
understood solution techniques. Using mathematical simulations, conclusions are drawn concerning the
choice of iteration gain in the current algorithm and the better performance of alternative numerical
solution procedures.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

In laboratory simulation testing, a structure is mounted in a test rig and is excited in such a way
that the service environment, as represented by a set of responses from transducers, is reproduced.
It is believed that, when these responses are replicated, the complex stress field within the structure
that occurs in service is also reproduced. The test rig and the test structure form a nonlinear
dynamic system and the problem to be solved is to determine the input to this unknown multiple
channel nonlinear system. The technology that achieves this was developed in the 1970s—see e.g.
Ref. [1]—following the introduction of the hydraulic servo-valve, the construction of algorithms
for quickly processing random data in terms of Fourier transforms, and of course the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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development of more powerful computers. The technology is well summarised by Dodds and
Plummer [2]. Generally, the procedure is that the system is treated as linear and measured using
spectral analysis. An inverse system is then defined before an iterative algorithm determines the
required drive files. Work to improve the performance of the iteration algorithm has been carried
on over the years by, among others, Raath [3] who has developed a time-domain version of the
algorithm as an alternative to the usual frequency domain implementation, and also by de Cuyper
et al. [4] who examine improvements in the identification of the nonlinear system.
The work presented here reports on the realisation that the problem may be recast

mathematically as a system of nonlinear algebraic equations. The conventional iteration
algorithm is in fact an example of more general computational techniques for solving such
systems. In the paper, these more general methods are introduced, and an application of them is
then demonstrated in simulations using a single-degree-of freedom nonlinear mathematical model
for the system, the Duffing equation. The new viewpoint involves both time- and frequency-
domain considerations. Note that, for this paper, the single-degree-of-freedom system employed
differs from the multiple channel physical laboratory simulation test system. Cost of equipment
and control of parameters were considerations, but also using a single channel meant that the
work could concentrate on the nonlinearity rather than interaction between channels. The latter
will be studied at a later date.
Before introducing the new approach, the current algorithm is applied to the chosen simulation

model, demonstrating the method and its characteristics in the face of various degrees of severity
of nonlinearity. The situation is then studied mathematically and it is shown how discretisation
leads to a system of nonlinear equations. After presenting some general methods for solving
systems of nonlinear equations, the current algorithm is then shown to be a particular case.
Finally, the feasibility of the more general approach is explored by comparing the success of the
results of alternative solution methods.
2. Current algorithm

The current algorithm for achieving drive signals exists in several commercial software
programs. For a description, the reader is referred to Ref. [2]. The procedure may be summarised
as follows:
�
 Measurements of the response of the system are made during normal operation or specified
operating conditions. These measurements are edited to provide a target response. In this paper,
the target response is generated by exciting the system with band-limited white noise.
�
 The frequency response of the test rig and specimen is measured using spectral analysis.

�
 The validity of the frequency response measurement and the test rig design is then established
using multiple and partial coherence functions, e.g. [5].
�
 An inverse frequency response function is computed and, from this, an initial drive file is
derived using the target response.
�
 The drive file excites the system and produces a response, which is compared with the target
response. The difference is then used to create a new drive file and the process continues as an
iteration until an acceptable level of error is achieved.
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The excitation data used for measuring the system consist of bandlimited white noise,
represented by the components of a vector x :¼ ðx0; x1; :::;xN�1Þ: The system response is sampled,
yielding another vector y :¼ ðy0; y1; :::; yN�1Þ; where, for signals of period T ; yi :¼ yðtiÞ with
ti :¼ iT=N for i ¼ 0; 1; :::;N � 1: In the system measurement, spectral analysis uses the discrete
Fourier transform of these signals, for which the kth components are denoted by X k and Y k;
respectively, for k ¼ 0; 1; :::;N � 1; represented by the transform pairs

x2X; y2Y: ð1Þ

The frequency response is based on the cross-spectral density estimate of the input and output
signals as given by Bendat et al. [5, p. 138]

SyxðokÞ :¼ lim
T!1

1

T
hY 	

kX ki; ð2Þ

where T is the period of duration of the signals and ok is the kth discrete frequency, and h� � �i

denotes an expectation value. The auto-power spectral estimates SxxðokÞ;SyyðokÞ are defined in a
similar manner and the frequency response function is then given by

Hk :¼
SyxðokÞ

SxxðokÞ
: ð3Þ

In the simulations to be presented here, a target response signal yD is determined by exciting the
system using a sequence xD of random numbers generated as bandlimited white noise. The
iteration process is described more mathematically in Fig. 1. The fraction of the drive signal
increment pðnÞ which is fed back is stipulated by the iteration gain ln; a positive scalar quantity not
greater than unity, which is chosen manually. In practice, the full drive signal is not normally used
in determining the first drive file since the approximations in the estimate of the model may lead to
the system being damaged. Similarly, the gain during the iteration is generally less than one to
ensure convergence of the iteration and is again chosen manually.
3. Example of current iteration

The behaviour of the current algorithm is illustrated using a model of the Duffing equation
constructed in MATLAB/Simulink. The system being simulated represents a mechanical single-
degree-of-freedom, damped spring–mass system comprised of a mass m; a viscous damper with
coefficient c; and a nonlinear spring. The stiffness of the spring increases with amplitude as
described by a linear stiffness coefficient k; and a nonlinear factor kk0: Such systems are usually
described in terms of natural frequency ð1=2pÞ

ffiffiffiffiffiffiffiffiffi
k=m

p
Hz and damping ratio c=ð2

ffiffiffiffiffiffiffi
km

p
Þ: The

equation of the system being simulated is

m
d2yðtÞ

dt2
þ c

dyðtÞ

dt
þ kyðtÞ½1þ k0yðtÞ2� ¼ kxðtÞ ð4Þ

subject to the initial conditions yð0Þ ¼ _yð0Þ ¼ 0: The mass is taken to be 100 kg, the damping ratio
z ¼ 0:1 and the natural frequency is normalised to unity. The right-hand side is chosen so that the
input and output signals have similar magnitudes.
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When identifying the physical system, the normal practice is to use a large number of averages to
improve the expectation value of Eq. (3) and achieve a smooth frequency response function. Here, a
small number of averages are taken, but the function is smoothed using a least-squares fit. Numerical
experiments suggest that the least-squares fitting is as good as employing a large number of averages.
Fig. 2 illustrates the magnitude of the measured frequency response function—averaged over

ten records—and a smoothed version obtained from a least-squares fit to produce a rational
function which has as numerator a linear polynomial and as denominator a quadratic polynomial
in frequency. In addition, the frequency response function corresponding to the linear part of Eq.
(4) is also shown for comparison.
In these estimates, randomised drive signals with similar standard deviation to the desired drive

input were used and the corresponding responses were determined. The drive signal, xD; is generated
as a bandlimited random time series of N ¼ 1024 points, over a frame length T ¼ 102:4 s:
A sequence of experiments is conducted with the nonlinear coefficient, k0; taking values from

0.15 to 0.45 in steps of 0.05. For a given value, the corresponding response yD is computed by
solving Eq. (4), using Simulink in MATLAB. Parts of these signals are shown in Fig. 3.
The iteration algorithm is applied with ln ¼ 0:5; n ¼ 0; 1; :::; to produce a sequence of response

vectors yðnÞ; n ¼ 0; 1; ::: which converge to yD: The results are summarised in Fig. 9. The algorithm
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Fig. 2. Frequency response functions for k0
¼ 0:2: The measured values are shown by the dotted line, while the least-

squares fit to these is indicated by the solid line. For comparison, the function corresponding to the linear part of the

system is given by the dashed line.
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Fig. 3. Part of drive and response signals against time for k0
¼ 0:2:
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stops if the fractional Euclidean norm of the error vector

eyðnÞ :¼ yD � yðnÞ; ð5Þ

i.e.

jeyðnÞj=jyDj ð6Þ

falls below 5%. The error in the response achieved is shown in Fig. 4 as a function of time.
In practice, when the iterations fail to converge, the operator is free to adjust the iteration gain.

For example, at the higher nonlinearity of k0
¼ 0:25; the gain would be reduced and the iteration

restarted, at the expense of slowing the convergence.
4. System of algebraic equations

In this section the problem is restated in terms of a system of algebraic equations. This opens up
the possibility of applying well-known numerical techniques for solving such systems. In addition,
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Fig. 4. Response error against time using the current algorithm, for k0
¼ 0:2:
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it is shown how the conventional approach appears as a particular case. One such computational
strategy is applied to the simulation introduced in the previous section.
The point of view proposed in this paper is to note that the sampled response vector y is a

function of the input signal x as symbolised in Fig. 5:

y ¼ fðxÞ ð7Þ

or, in component form

y0 ¼ f 0ðx0;x1; :::;xN�1Þ

y1 ¼ f 1ðx0;x1; :::;xN�1Þ

..

.

yN�1 ¼ f N�1ðx0; x1; :::;xN�1Þ

9>>>>=
>>>>;
: ð8Þ

To illustrate this, the model problem of the previous section is considered. Eq. (4) is discretised to
produce a system of equations, thus providing explicit information about the vector-valued
function f and the corresponding Jacobian.
First of all, consider the linear system obtained by setting k0

¼ 0 in Eq. (4). The response is
related to the input by a convolution in the time domain

y ¼ h 	 x; ð9Þ

where the discretised impulse response h :¼ ðh0; h1; :::; hN�1Þ; is the inverse discrete Fourier
transform of the frequency response function, H :¼ ðH0;H1; :::;HN�1Þ; i.e.

h2H: ð10Þ

This convolution may be written as a matrix product

y ¼ Chx ð11Þ
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in which the N � N circulant matrix Ch has ði; jÞ component hi�j

Ch ¼

h0 hN�1 hN�2 . . . h1

h1 h0 hN�1 . . . h2

..

.

hN�1 hN�2 hN�3 . . . h0

2
66664

3
77775: ð12Þ

The ith component of the vector Eq. (11) yields the approximate value of the response yðtÞ at
t ¼ ti: Eq. (11) may be rewritten

x ¼ ½Ch�
�1y ð13Þ

which may be regarded as a discretisation of Eq. (4) with k0
¼ 0:

This process is extended to approximate the whole of the left-hand side of Eq. (4) at t ¼ ti for
non-zero k0:

½m €y þ c _y þ kyð1þ k0y2Þ�t¼ti
� k½Cy�i þ kk0y3i ð14Þ

for some appropriate circulant matrix C; such that the nth component of the DFT of the vector
½Cy� is given by ð1=kÞð�o2

nm þ jonc þ kÞY n:
The discretisation of Eq. (4), after division by k; may now be expressed as a vector equation:

x ¼ Cyþ gðyÞ ¼ f�1ðyÞ; ð15Þ

where ½gðyÞ�i :¼ k0y3i ; thus yielding an explicit form for the function inverse of f in Eq. (7).
The mathematical problem may be stated as follows: given a vector yD ¼ ðyD

0 ; y
D
1 ; :::; y

D
N�1Þ and a

particular function f; determine a vector x; such that

fðxÞ � yD ¼ 0: ð16Þ

This is a system of nonlinear algebraic equations for which the solution is readily seen to be
f�1ðyDÞ: In practice, the explicit form of f is not known, but for a given vector x; the value of
y ¼ fðxÞ may be obtained by ‘‘running the system’’.
4.1. Iterative solutions

This type of problem is common, and there are well-known computational techniques for
solving Eq. (16). For a survey of practical algorithms which may be used to solve systems of
nonlinear algebraic equations, the reader is referred to a review by Martinez [6]. All the methods
considered are iterative. Starting from some initial approximation xð0Þ; a sequence of iterates,
xð0Þ; xð1Þ;xð2Þ; :::; is generated which converge, ideally, to the desired solution.
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In order to understand these techniques, a brief account of Newton’s method for systems of
nonlinear equations is given. This algorithm follows from the Taylor expansion in several
variables of fðxÞ about the current approximation xðnÞ;

y ¼ fðxÞ ¼ fðxðnÞÞ þ ½Jfðx
ðnÞÞ�ðx� xðnÞÞ þ Oðjx� xðnÞj2Þ; ð17Þ

where JfðxÞ denotes the Jacobian matrix of order N � N for the vector-valued function fðxÞ in Eq.
(7)

½J fðxÞ�i;j :¼
qyi

qxj

for i; j ¼ 0; 1; :::;N � 1 ð18Þ

the partial derivatives being evaluated at x: In the context of matrix algebra, vectors are
considered as column matrices.
The Jacobian for the model problem may be constructed from Eq. (15)

J f�1ðyÞ :¼
qxi

qyj

" #
¼ C þ g0ðyÞ; ð19Þ

where

½g0ðyÞ�i :¼ 3k0y2i : ð20Þ

The dependence of the Jacobian on y and, therefore, on x is clear. We note that

½J fðxÞ�
�1 ¼ Jf�1ðyÞ; ð21Þ

where x and y are related by Eq. (15).
For the linear system (9), it may be seen, from its definition, that the Jacobian is given by

JfðxÞ ¼ Ch; ð22Þ

i.e. a constant matrix.
For the general nonlinear system, if xD is a solution to Eq. (16), then, setting y ¼ yD in Eq. (17),

yD � yðnÞ ¼ ½Jfðx
ðnÞÞ�ðxD � xðnÞÞ þ OðjxD � xðnÞj2Þ; ð23Þ

where yðnÞ ¼ fðxðnÞÞ: Ignoring the error term in Eq. (23) leads to the following iteration scheme:

xðnþ1Þ :¼ xðnÞ þ ½Jfðx
ðnÞÞ��1eyðnÞ ð24Þ

provided the Jacobian is non-singular at xðnÞ: This is Newton’s method which is locally
quadratically convergent—see e.g. Ref. [6]. It may be rewritten as

xðnþ1Þ :¼ xðnÞ þ pðnÞ; ð25Þ

where

pðnÞ :¼ ½J fðx
ðnÞÞ��1eyðnÞ: ð26Þ

However, since f is not known explicitly, the Jacobian matrix cannot be constructed. Hence,
‘‘quasi-Newton’’ methods are considered which generalise Eq. (24) to

xðnþ1Þ :¼ xðnÞ þ ½Bn�
�1eyðnÞ ð27Þ
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in which the matrix Bn plays the role of J fðx
ðnÞÞ: This may be recast as Eq. (25), where

pðnÞ :¼ ½Bn�
�1eyðnÞ: ð28Þ

The idea is that, starting from some initial estimate of the Jacobian, B0; this is then updated using
a simple formula. A very common approach is based on a version of the secant method and was
suggested by Broyden [7], in which the updated inverse matrix ½Bnþ1�

�1 may be expressed in terms
of ½Bn�

�1; thus enabling a computationally efficient implementation of Eq. (27), provided we can
readily compute B�1

0 :

½Bnþ1�
�1 :¼ ½Bn�

�1 � ðdxðnÞ þ ½Bn�
�1deyðnÞÞ

½dxðnÞ�T½Bn�
�1

½dxðnÞ�T½Bn�
�1½deyðnÞ�

; ð29Þ

where dxðnÞ :¼ xðnþ1Þ � xðnÞ; and deyðnÞ :¼ eyðnþ1Þ � eyðnÞ:

4.2. Alternative iteration schemes

There are many variations of the basic iteration (27)—for other, similar, approaches see
Martinez [6]. One possibility, which is relevant to our interests, is to keep Bn constant at some
value B0: The conventional approach discussed earlier—which treats the system as if it were
linear—fits into this scheme

Bn :¼ Ch; n ¼ 0; 1; 2; ::: ð30Þ

in which the matrix Ch is based on the vector h; the impulse response as in Eq. (12). This impulse
response corresponds to the measured frequency response function.
Another possibility consists of using Ch as an initial approximation to the Jacobian in the

nonlinear system:

B0 :¼ Ch ð31Þ

and then using Eq. (29) to produce the updates for Eq. (28). It may be noted here, that, for
example, in the computation of x in Eq. (11), the fast Fourier transform may be employed, i.e.
there is NO matrix multiplication performed. Indeed, all matrix multiplications are avoided by
implementing the algorithm described in Ref. [8]. This algorithm is a memory-efficient approach
which only requires scalar products of vectors to be computed.
However, these techniques are only locally convergent. That is, the initial approximations to the

solution and the Jacobian must be good enough for convergence to follow. Even Newton’s method
may fail to converge for cases where there is a unique solution.
5. Improving global convergence

It was noted earlier, that, in the current algorithm, the iteration gain is reduced if the iterations
diverge. In fact, a search can be conducted to determine a suitable iteration gain. In an attempt to
achieve global convergence the basic iteration (25) is modified to allow a variable step in the search
direction:

xðnþ1Þ :¼ xðnÞ þ lnp
ðnÞ; ð32Þ
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where ln; for n ¼ 0; 1; ::: are real numbers lying between 0 and 1: The general iteration process is
shown in Fig. 6. The values of ln may be constant, or, depending on the situation, the operator
may vary them, e.g. some circumstances may warrant a moderate step reduction (l � 0:5), while
others may require larger reductions (l50:5). The value of l yielding the minimum error may be
estimated using a backward line search. To do this a merit function is defined as follows:

fðlÞ :¼
jjeyðxþ lpÞjj

jjyDjj
ð33Þ

or, to avoid a square root, a common choice is

cðlÞ :¼ 1
2
½fðlÞ�2 ¼

1

2

½ey�T½ey�

½yD�T½yD�
; ð34Þ

where x is the estimated drive at the last iteration, and p is the current search direction. The vector
ey is the error in the response to the input xþ lp:
Fig. 6. Scheme for alternative iteration algorithms—setting xð0Þ :¼ 0:
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The idea behind a backward line search is to model the merit function using a polynomial—
typically a quadratic or a cubic. Quadratic interpolation is employed in this paper.
In the simulations presented later, the merit function of Eq. (33) is used to start off the process,

i.e. to compute l0; and hence xð0Þ: A search is made for a value of l that minimises the merit
function. As an illustration of the behaviour of the error, f is plotted as a function of l for
k0

¼ 0:30 in Fig. 7.
The alternative merit function, Eq. (34) is employed during the iteration. Again, for illustration,

Fig. 8 is a plot of c as a function of l for the case of k0
¼ 0:3 in the fourth iteration of Broyden’s

method.
For a full explanation of these and other search algorithms the reader is referred to Dennis et al.

[9], Scales [10] and Numerical Recipes [11].
Whichever merit function is adopted, the price to be paid is that of ‘‘running the system’’ more

often within a given iteration. The effect on the convergence behaviour will be demonstrated in
Section 6.
6. Comparison of alternative iteration schemes

The alternative methods of iteration are now examined. The validity of the mathematical
methods is established and their performance is compared. There are alternative choices for
parameters and so, in the simulations presented here, each one uses the same Duffing model, the
same desired solution and the same starting point. The same seven levels of nonlinearity are
chosen for each alternative iteration method, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 and 0.45. In each
case, the iteration is stopped when the response is within 5% of the target response, or after a
specified number of iterations.
For reasons of clarity of presentation, only four cases are plotted. However, all cases are

represented in the tables.
The first method to be tested is the basic conventional algorithm as shown in Fig. 9.
The graphs figure shows that the conventional algorithm fails to converge at levels of

nonlinearity 0:25 and greater. In industrial practice, the engineer would reduce the iteration gain
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at the expense of running the system more often and also would examine the spectral densities in
which troublesome frequencies may be detected.
Fig. 10 and Table 1 demonstrate the validity of manually reducing the iteration gain to 0:2:

Convergence is achieved, for all bar the most nonlinear case, at the expense of a slower rate of
convergence. The choice of iteration gain is generally left to the experience of the operators of
industrial systems.
An early conclusion of considering the algorithm in the context of solving a system of algebraic

equations, was that an appropriate iteration gain might be computed from the progress of the
iteration, using a search for an appropriate iteration gain. This has been implemented and the
results are presented in Fig. 11 and Table 2.
The divergent behaviour of Fig. 9 and 10 are eliminated, although manually choosing a small

iteration gain initially performs better. However, even at a reduced gain, the convergence
of the iteration stagnates for k0

¼ 0:25 and 0.45, with a response error of about 11% after 35
iterations (about 100 system runs). The same behaviour is also observed for k0

¼ 0:30 as indicated
in Table 2.
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Table 1

Table of percentage error in the response for various levels of nonlinearity, for 35 runs, with l ¼ 0:2

Nonlinear coefficient k0 Percentage error

Constant Jacobian Broyden’s update

0.15 0.8 0.03

0.20 0.8 0.04

0.25 1.2 0.15

0.30 1.8 0.37

0.35 2.0 0.83

0.40 2.8 3.6
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Fig. 10. Progress of conventional iteration for various levels of nonlinearity and an iteration gain of 0.2. For k0
¼ 0:15;

the iterations are shown by ‘þ’, for k0
¼ 0:25 by a dash-dot line, for k0

¼ 0:35 by ‘	’, and for k0
¼ 0:45 as a dashed line.
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The above results used the conventional algorithm, and the conventional algorithm with search.
These use a constant approximation to the Jacobian. The effect of updating the approximation,
using Broyden’s method, is now considered. Fig. 12 illustrates the results of this approach without
a search.
The method works well for low levels of nonlinearity where it produces faster convergence.

There is also convergence for levels of nonlinearity that failed to converge using conventional
iteration. At higher levels of nonlinearity, the method still fails to converge.
The progress of Broyden’s method improves when the iteration gain is reduced, Fig. 13, but has

no great advantage over the conventional method as measured by the number of runs required to
achieve a tolerance of 5%. However, it was noted that, as the number of runs were increased the
error dropped faster for the updated technique—as indicated in Table 1.
The last of the sets of simulations presents, in Fig. 14, Broyden’s method with a search.
The method is successful in achieving convergence at all the levels of nonlinearity that were

considered but at the expense of running the system more often.
Table 2 compares the results for the conventional algorithm (constant Jacobian approximation)

and Broyden’s method (updated Jacobian approximation) using backward line searches for all the
cases of nonlinearity. It indicates that the Broyden update has an advantage over the use of a
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Table 2

Table of number of system runs to achieve an error of 5%, for various levels of nonlinearity, using a search

Nonlinear coefficient k0 Number of system runs (iterations)

Constant Jacobian Broyden’s update

0.15 34 (10) 26 (6)

0.20 47 (15) 33 (9)

0.25 — (35) 31 (9)

0.30 — (35) 38 (11)

0.35 52 (16) 38 (11)

0.40 64 (20) 44 (13)

0.45 — (35) 57 (17)

The number of iterations for each method is in brackets. —, indicates that convergence was not achieved after 35

iterations.
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Fig. 11. Progress of iteration for various levels of nonlinearity—conventional algorithm with search. For k0
¼ 0:15 the

iterations are shown by ‘þ’, for k0
¼ 0:25 by a dash-dot line, for k0

¼ 0:35 by ‘	’, and for k0
¼ 0:45 as a dashed line.
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Fig. 12. Progress of iteration for various levels of nonlinearity—Broyden’s method with an iteration gain of 0:5: For
k0

¼ 0:15 the iterations are shown by ‘þ’, for k0
¼ 0:25 by a dash-dot line, for k0

¼ 0:35 by ‘	’, and for k0
¼ 0:45 as a

dashed line.
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Fig. 13. Progress of iteration for various levels of nonlinearity—Broyden’s method with an iteration gain of 0.2. For

k0
¼ 0:15 the iterations are shown by ‘þ’, for k0

¼ 0:25 by a dash-dot line, for k0
¼ 0:35 by ‘	’, and for k0

¼ 0:45 as a
dashed line.
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Fig. 14. Progress of iteration for various levels of nonlinearity—Broyden’s method with search. For k0
¼ 0:15 the

iterations are shown by ‘þ’, for k0
¼ 0:25 by a dash-dot line, for k0

¼ 0:35 by ‘	’, and for k0
¼ 0:45 as a dashed line.
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constant approximation to the Jacobian, by showing a faster convergence, and also by achieving
convergence when the conventional algorithm fails.
The performance of search routines depends on chosen parameters and this requires further

study. For example, the work presented does not use restarts, nor does it consider the effect of the
many different forms of line search. In addition, there are many other types of update—including
updating the frequency response function itself—for others see, e.g. Ref. [6]. Other approaches
take advantage of the particular structure of the Jacobian. The aim of this work is to indicate that
the particular point of view presented can be advantageous, and that recourse can be made to an
arsenal of tried and tested techniques.
7. Conclusions

A new mathematical framework for the derivation of drive files for laboratory simulation test
systems is demonstrated. The conventional algorithm is shown to be part of a broad mathematical



ARTICLE IN PRESS

D.E. Roberts, N.C. Hay / Journal of Sound and Vibration 281 (2005) 783–798798
area for which established mathematical techniques are available. This approach can achieve
convergence in systems that do not readily converge with the conventional algorithm. It has also
been shown that there is potential for improving the convergence of the latter using a backward
line search.
Thus, this paper reports on a beginning, not a completion, of an investigation. The authors

regard the work as the opening up of an area for further research. Consideration will be given to
various solution techniques and the sensitivity of these to measurement errors. Systems with
multiple channels, physical systems and alternative models of nonlinear behaviour will also be
investigated.
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