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Abstract

Natural frequencies for moderately thick elliptic plates are calculated by perturbing initial values
corresponding to the Kirchhoff classical theory of plate bending. The proposed approach utilizes a
universal algebraic equation for perturbed eigenvalues, previously derived by the authors. For elliptic plates
of a small eccentricity, a dual procedure is developed to evaluate the sought for natural frequencies starting
from those for a circular thin plate. A comparison with finite-element computations is presented. An
importance of the perturbation techniques in question for interpreting of finite-element data is emphasized.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

General asymptotic analysis of the 3D equations in elasticity for plates and shells leads to
numerous conclusions of practical importance. In particular, it results in universal algebraic
equations for natural frequencies corresponding to bending and extension vibration of moderately
thick plates (see Refs. [1,2]). These are applicable for various plate shapes and boundary
conditions on plate edges. In the case of bending vibration such an equation is based on
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perturbation of the eigenvalues corresponding to the classical Kirchhoff theory of plates. High
efficiency of the proposed approach has been demonstrated in Refs. [1,2] by comparing with the
3D “‘exact” solutions for circular and rectangular plates with free and simply supported edges.
Further applications dealing with plates of more complicated shape will apparently require
numerical evaluation of natural frequencies according both to the Kirchhoff theory (for initial
setting) and 3D elasticity (for estimating accuracy of computed frequencies).

In this paper we apply the aforementioned algebraic equation to moderately thick elliptic
plates. To our best knowledge, all the known publications on the subject are devoted only to thin
plates governed by the 2D classical theory (see, e.g., Refs. [3—10]). Below we evaluate natural
frequencies of moderately thick elliptic plates by perturbing those of thin plates; in doing so, our
main concern is a clamped plate.

Initial settings for natural frequencies corresponding to the classical theory can be established,
for example, starting from considerations in Refs. [3-7]. Explicit variational formulae proposed in
Ref. [9] appear to be accurate enough over a representative parameter range. We also utilize
numerical results in Ref. [10], based on a direct computational procedure.

For an elliptic plate of small eccentricity perturbed eigenvalues of a circular plate may also
provide a reasonable zero-order approximation. In the latter case we proceed to a dual
perturbation procedure; its two stages correspond to perturbations with respect to eccentricity
(or a similar geometrical parameter expressing ellipticity) and thickness.

To test accuracy of the developed methodology we utilize a 3D finite-element code; in doing so
we separate the sought for bending finite-element values from those associated with plate
thickness vibrations discussed in brief in the appendix.

2. Theoretical background

Consider an elastic elliptic plate of uniform thickness 2/ with semi-major and minor radii ¢ and
b, respectively, clamped along the boundary C. In terms of the classical Kirchhoff theory natural
vibrations of a clamped plate are described by equation of motion

Vi — k*w =0 (1)
with
2ph
k* = %w{
and boundary conditions
ow . x> y?
chzaCZO W1thC={x,y;+?=l} (2)

Here w=w(x,y) is the transverse displacement of the middle plane of the plate, x and y are the
Cartesian coordinates, V* is the bi-harmonic operator, k is the wave number, n is the unit normal
to C, w is the circular frequency, p is the density and D = 2Eh® /[3(1 —?)], where E is the Young
modulus and v is the Poisson ratio.
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Higher-order asymptotic theories of plate bending also result in a bi-harmonic governing
equation. It is [1,2]

3(1-—v) @ &

Vi i Z;Aj(nQ)fvv=0 (3)
]:
with
wa h
Q=—, n=-, 4
(&) a
and
3(1—v) 17="7v 1179 — 818v + 409y?
Ay=1, 4) =/ Ay =
0= " A 2 15(1—v)y ? 210001 —v)  °
e 3(1 —v) 5951 — 2603v 4+ 9953v? — 4901+ )
V2 126000(1 — vy’ v
where

_ E
C) = m

The integer N in Eq. (3) defines the order of approximation; zero-order approximation (N=0)
corresponds to the Kirchhoff theory, cf. Eq. (1). Below we start from the third-order theory (N=3
in Eq. (3)). As it has been shown in Ref. [11], this theory provides an excellent approximation for
the “exact” zero-order anti-symmetric Lamb mode (i.e. bending mode) over a wide frequency
range up to the first thickness resonance. Apparently, the latter is optimal for treating moderately
thick plates.

Another important feature of dynamic asymptotic analysis in Refs. [1,2] is that refinement of
boundary conditions appears to be secondary, in a sense, compared with that of the equations of
motion. In particular, the refined equation of motion (3) may be utilized together with simplest
classical boundary conditions, e.g. for a clamped edge these take form (2).

Let a natural frequency in problem (1) and (2) be known and denoted as w,. Then the sought
for perturbed value w in problem (3) and (2) for the natural frequency of the associated
moderately thick plate may be easily found by equating relevant inertial terms in Egs. (1) and (3).
Finally, we have (see Refs. [1,2] for details)

Q21 + AnQ + A? @ + A3’ Q) = Q2 (6)
where
Q, =24 (7)
(&)

The fifth-order algebraic equation (6) allows elementary numerical treatment including that
based on modern standard routines. It is not restricted to any specific bending mode but assumes
evaluation of the initial approximations for natural frequencies corresponding to the classical
plate theory. These values w, may be determined, for example, from the exact solution of problem
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(1) and (2) expressed in terms of Mathieu functions and modified Mathieu functions (see, e.g.,
Ref. [3]) or using various numerical methods. Simple analytical estimations are also of a great
importance. Among the latter, we mention those following from Rayleigh [3] and Galerkin [4]
procedures as well as from a refined Rayleigh—Ritz-type qualitative approach recently developed
in Ref. [9].

The estimation for the fundamental frequency, derived in the papers [3,4,9], may be written in a
unified form as

= s s [5G0+ )] ®

where the value of the coefficient p, depends on the method exploited. In particular, the
Rayleigh quotient gives py~x10.328, see Ref. [3]. Comparison with the exact solution de-
monstrates that the optimal value is given by Ref. [9], p, = /1(2), where / is the first root of
the equation

T () = LGN = 0 9)

with n=0, i.e. uox10.216. As usual, J, and I, denote the Bessel and modified Bessel functions,
respectively.

Similar formulae for a few next natural frequencies may be also found in Ref. [9]. In particular,
the upper estimation for eigenvalue corresponding to the mode with nodal line along the
minor ellipse axis (the first mode which is symmetric about the x-axis and anti-symmetric about
the y-axis) can be written as

s 42+ )] <w>

whereas for the mode with the nodal line along the major axis (the first mode which is anti-
symmetric about the x-axis and symmetric about the y-axis) the sought for formula becomes

20 12+ 56) | a

with u, = if, where /4, is the first root of Eq. (9) for n =1, i.e. u;~21.260.

Natural forms of a thin clamped elliptic plate are schematically shown in Fig. 1 along with their
analogues for a circular plate. In the notations SS, SA, AS, AA the first (second) letter
corresponds to symmetry (S) or anti-symmetry (A) about the x-axis (the y-axis). Formulae (8),
(10) and (11) describe the first natural forms of SS, SA and AS types, respectively.

It should be emphasized that the algebraic Eq. (6) is applicable, in principle, to a plate of
arbitrary shape and treats general boundary conditions on a plate edge. In this case the initial
value w, follows from the solution of Eq. (1) subject to proper boundary conditions, whereas the
parameter a denotes a typical linear size.
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Fig. 1. Natural forms for circular and elliptic plates. n and s denote numbers of nodal diameters and nodal circles for
circular plate.

3. Dual perturbation procedure

For nearly circular plates we develop a dual perturbation procedure, schematically sketched in
Fig. 2; the stages 1 and 2 deal with perturbations with respect to small eccentricity and thickness,
respectively. Thus we evaluate first the natural frequencies for a thin elliptic plate by perturbing
those for a circular plate. For simplicity sake, below we restrict ourselves only to unperturbed
axisymmetric motions. This problem was tackled by the boundary perturbation method in
Ref. [8]. Since the cited paper contains mistakes in final formulae, we are forced to revise in brief
the derivation in Ref. [§].
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Fig. 2. Dual perturbation scheme.

Fig. 3. Boundary perturbation.

Below the boundary C is treated as a perturbation of a circumscribing circle C' of radius a
(see Fig. 3); and a typical ellipticity parameter ¢ is defined as

a
e =——1. 12
:=3 (12)

The latter is assumed to be small, i.e. ¢ — 0. In this case the transverse displacement w and
wavenumber k£ may be expanded as

m

wir ) =Y wie, (13)
j=0

k= Xm:k;‘sf, (14)
j=0

where r and y denote polar coordinates (x = r cos {r, y = r sin ).

The functions w” (j=0, 1,....,m) must satisfy equivalent boundary conditions on the
boundary C'(r = a); explicit expressions for these boundary conditions are derived in Ref. [12].
In addition, a set of equations for w" is also presented in Ref. [8]. Here we write out only the
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zero-order equation

(V= k) w® =0 (15)
with
ow(®
O _ — 1
W C/ ar C/ O‘ ( 6)

In the axisymmetric case the problem possesses the well-known solution

Jo(4o)
Io(%)
with 49 = koa. Here the eigenvalue /4 represents the (s+ 1)th root (s = 0,1,2,...) of the frequency
Eq. (9) with n=0.

By solving the set of the problems for w® (i =0, 1,2), we finally arrive at the second-order
expansion for the eigenvalues A=ka. It is

wO(r) = 4 [Jo(kor) - Io(kor)] (17)

=g [1+ 26+ B(s)e?] (18)
with

J1(ko) 1,2 Lo(Zo)Jo(4o)
Jo(ho) 47 11(20)J1(%0)’

B(s) = 30 19)
where s is the root number. The values of f(s) corresponding to the modes s=0,1,2,3,4 are listed
in Table 1.

It should be noted that formula (19) for fS(s) as well as numerical data differ from that in
Ref. [8]. At the same time for the fundamental mode the proposed formula agrees with that
obtained in Ref. [3] for a plate of small eccentricity.

Now we proceed to a moderately thick plate. Assuming then that the value w+ is known we can
rewrite Eq. (6) using formula (18). It becomes

31— v)
2n?

Jg[1+2e+ Bls)e?] = Q(1+ AnQ + A* Q> + A Q). (20)

Note that for circular plate Eq. (8) for the fundamental frequency transforms to Eq. (20)

provided that the parameter p, is defined as in Ref. [9], i.e. y, = /1(2) for s = 0.

Table 1
Numerical values of coefficient f(s)

s 0 1 2 3 4

B(s) 2.4499 8.9363 20.459 36.932 58.346
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4. Numerical results

Computations below deal with clamped plates; only Tables 2 and 3 also refer to a simply
supported plate. Moderately thick elliptic plates are considered including the limiting case of a
circular plate. The estimations based on the developed perturbation approach are compared with
3D finite-element results. Below the numerical data are presented for the dimensionless frequency
parameter Q = wa/c; (or Q/n = wa?/(hcy) in Tables 4 and 5). At the same time some of the cited
publications on the subject operate with another dimensionless frequency parameters, e.g., in the
notation of this paper, wa*+/2ph/D in Refs. [4,5,9] or wab+/2ph/D in Refs. [7,10]. It should be

Table 2

Axisymmetric natural frequencies Q = wa/c; for circular plate with #=0.05 (s is number of nodal circles)

s Simply supported circular plate Clamped circular plate
Kirchhoff Perturbed 3D finite Kirchhoff Perturbed 3D finite
plate, Q« value, Eq. (6) elements plate, Q- value, Eq. (6) elements

0 0.2408 0.2387 0.239 0.4985 0.4897 0.487

1 1.450 1.380 1.38 1.941 1.819 1.79

2 3.618 3.233 3.23 4.348 3.811 3.72

3 6.749 5.586 5.59 7.719 6.256 6.09

4 10.84 8.266 8.27 12.05 8.993 8.73

5 15.90 11.15 11.2 17.35 11.91 11.6

6 21.92 14.16 14.2 23.61 14.94 14.5

7 28.90 17.25 17.2 30.83 18.04 17.5

8 36.85 20.38 20.4 39.02 21.17 20.6

9 45.76 23.52 23.5 48.17 24.32 23.7

Table 3

Natural frequencies Q = wa/c, for circular plate with #=0.2 (n is number of nodal diameters, s is number of nodal
circles)

n S Simply supported circular plate Clamped circular plate
Kirchhoff Perturbed 3D finite Kirchhoff Perturbed 3D finite
plate, Qx« value, Eq. (6) elements plate, Q- value, Eq. (6) elements

0 0 0.9632 0.8552 0.864 1.994 1.607 1.49

1 0 2.713 2.068 2.13 4.150 2.880 2.59

2 0 4.999 3.310 3.33 6.807 4.135 3.71

0 1 5.801 3.689 3.71 7.763 4.532 4.09

3 0 7.799 4.547 4.57 9.960 5.367 4.85

1 1 9.462 5.186 5.24 11.87 6.025 5.47

4 0 11.09 5.764 5.78 13.60 6.575 6.00

2 1 13.69 6.602 6.62 16.51 7.428 6.79

0 2 14.47 6.840 6.86 17.39 7.671 7.04

5 0 14.87 6.959 6.98 17.71 7.757 7.15
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Table 4
Natural frequencies Q/n= wa®/(hcy) for clamped elliptic Kirchhoff plate

a/b=1.1 a/b=12 a/b=15 a/lb=2 a/b=73
Eq. (8) 11.041 12.261 16.789 27.074 57.271
Ref. [10] 11.039 12.251 16.717 26.717 55.432
Eq. (10) 21.864 23.143 27.993 39.503 74.808
Ref. [10] 21.856 23.111 27.786 38.546 69.869
Eq. (11) 24.041 27.689 40.719 69.203 151.05
Ref. [10] 24.032 27.655 40.487 68.175 146.48

Table 5

Axisymmetric natural frequencies Q/n= wa?/(hc,) for clamped elliptic Kirchhoff plate (s is number of nodal circles)

s a/b=1.1 a/b=12

0 Eq. (18) 11.032 12.202
Ref. [10] 11.039 12.251

1 Eq. (18) 44.072 51.454
Ref. [10] 43.999 50.737

2 Eq. (18) 103.06 129.51
Ref. [10] 100.52 117.43

noted that the eigenvalues expressed in terms of the latter do not depend on the Poisson ratio in
the framework of the Kirchhoff theory. However, this is not a feature of 3D theory, as it also
follows from Eq. (6). Below we set v = 0.3 for the Poisson ratio.

4.1. Circular plate

Consider first a clamped circular plate, which appears to be a good starting point for
investigating the efficiency of the algebraic Eq. (6) applied to this type of boundary conditions for
simpler geometry. As we have already mentioned, the accuracy of Eq. (6) had been demonstrated
only for free and simply supported plates (see Refs. [1,2]).

The graphs of four lowest axisymmetric natural frequencies versus the plate half-thickness are
displayed in Fig. 4. The straight thin lines correspond to the classical Kirchhoff theory. The
perturbed natural frequencies evaluated from Eq. (20) with ¢ = 0 (solid lines) are presented
together with finite-element computations (white dots).

Analysis of finite-element computations assumes a delicate qualitative insight. The point is that
the total eigenspectrum of a moderately thick plate is not obviously restricted to studied bending
eigenvalues. Another eigenvalues may correspond, for example, to thickness vibrations
demonstrating sinusoidal stress and strain distributions along the plate thickness. Figs. 5(a)
and (b) show schematically the displacement variation along the thickness for bending and
thickness vibration, respectively. An asymptotic theory for thickness vibrations is exposed in the
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Fig. 4. Axisymmetric natural frequencies for circular plate. —, Kirchhoff theory; —, Eq. (20) with ¢ =0; ---- Eq.
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Fig. 5. Displacement variation along plate thickness. (a) Bending vibration, (b) thickness vibration.
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monograph [2] (see also references therein). It is important that for thicker plates, bending and
thickness modes sometimes cannot be easily identified. In Fig. 4 the finite-element values of the
sought for bending frequencies are given with white dots whereas those for the lowest thickness
shear branch (see the appendix) are plotted with black dots. The asymptotic behavior of the latter
is shown with a broken line, see Eq. (A.6).

We also mention that the axisymmetric problem in elasticity for a thick clamped circular plate
has been treated analytically in Ref. [13]. In particular, this paper claims a decrease of the third
axisymmetric bending natural frequency for #>0.3. In reality this observation apparently relates
to the transition from the analyzed third bending branch to the lowest thickness branch, marked
in Fig. 4 by block dots.

As an illustration, the first thickness shear mode for the plate of half-thickness 1 = 0.05 is
displayed in Fig. 6(a). Both face transverse and radial displacements are calculated. The solid line
corresponds to finite-element computations whereas asymptotic results, see formulae (A.3)
and (A.4) at z = h, are given with the dashed line. For comparison, its neighboring bending form
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Fig. 6. Transverse and radial displacements at z = / of circular plate. 1 =0.05. (a) First thickness shear mode, wa/c; =
32.1, (b) neighboring bending mode, wa/c; = 33.0, —, finite elements; - ---, Eqs. (A.3) and (A.4).
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(13th bending mode) is presented in Fig. 6(b). It should be stressed again that as the parameter 5
increases, the difference between these two natural forms almost disappears.

Inspection of numerical data demonstrates that the perturbation approach based on formula
(6) is useful for evaluating a few first natural frequencies of thicker plates as well as for refining
natural frequencies of thinner plates in a wide frequency range. This approach appears to be even
more efficient for boundary conditions other than those modeling a clamped edge. The reason is
that in the Kirchhoff plate theory, 2D approximate boundary conditions on a clamped edge may
possess lower asymptotic accuracy than those for free or simply supported edges, e.g., see Ref. [14]
for more details.

Tables 2 and 3 list natural frequencies for plates with clamped and simply supported edges. In
terms of 3D elasticity we assume for the latter zero circumferential and transverse displacements
together with zero radial stress at r = . The 2D analogue in the classical Kirchhoff theory results
in zero mid-plane deflection and radial stress couple; in doing so, we assume that the value Q-
corresponds to the solution of problem (1) subject to relevant 2D boundary conditions. The
observation of the data in Tables 2 and 3 reveals higher accuracy of the perturbed natural
frequencies for a simply supported edge. Further examples for plates with simply supported and
free edges may be found in Refs. [1, 2]. At the same time it is clear that the developed methodology
improves considerably the classical plate theory for a clamped edge as well.

4.2. Initial settings

Numerical analysis below for moderately thick clamped elliptic plates utilizes two types of
approximate initial settings in the framework of the Kirchhoff theory. The first of them starts
from the advanced variational formulae (8), (10) and (11), where for the fundamental mode the
coefficient p, in Eq. (8) is defined as in Ref. [9]. The second initial setting operates with the
boundary perturbation of the associated circular plate resulting in Eq. (20).

The range of applicability of formulae (8), (10) and (11) is obviously dependent of the ellipticity
parameter. Numerical results for various ratios a/b are presented in Table 4, illustrating the
quality of this initial setting. Computations for a Kirchhoff elliptic plate in Ref. [10] are used as a
benchmark. It may be verified that for ¢<0.6 the aforementioned formulae correspond to three
lowest bending natural frequencies.

Table 5 illustrates the quality of the initial setting based on Eq. (18). It is clear that the
perturbed values (18) are accurate enough for estimating axisymmetric natural frequencies. At the
same time, the boundary perturbation method [8,12] is only applicable for lower vibration modes,
when a typical wave length is much greater than ellipticity parameter, i.e. s < &'

4.3. Moderately thick elliptic plate

First ten natural frequencies (see Fig. 1) for an elliptic plate with ratio a/b = 1.1 are given in
Table 6 for half-thicknesses # = 0.05 and 0.1. The initial approximation for 2« is based now on
2D calculations in Ref. [10]. Inspection of the presented data demonstrates that the perturbation
approach is valuable for an elliptic plate as well. We also remark that for first three natural
frequencies perturbed values based on the approximate formulae (8), (10) and (11) are almost
identical to those in Table 6.
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Table 6
Natural frequencies Q = wa/c; for clamped elliptic plate with a/b = 1.1
Model type 1 = 0.05 n=0.1
Kirchhoff plate, Perturbed 3D finite Kirchhoff plate, Perturbed 3D finite
Q.+« Ref. [10] value, Eq. (6) elements Q. Ref. [10] value, Eq. (6) elements
SS 0.5519 0.5413 0.538 1.104 1.027 0.998
SA 1.093 1.052 1.04 2.186 1.915 1.83
AS 1.202 1.153 1.14 2.403 2.082 1.99
SS 1.826 1.718 1.69 3.652 2.986 2.83
AA 1.881 1.767 1.74 3.763 3.062 2.90
SS 2.200 2.046 2.01 4.400 3.488 3.30
SA 2.707 2.481 2.43 5.414 4.128 3.89
AS 2.725 2.496 2.44 5.451 4.151 391
SA 3.169 2.866 2.81 6.338 4.679 4.42
AS 3.462 3.106 3.04 6.924 5.013 4.72
Table 7
Axisymmetric natural frequencies Q = wa/c, for clamped elliptic plate with #=0.05 and a/b = 1.05
s Kirchhoff plate, Q« Eq. (18) Double perturbation, Eq. (20) 3D finite elements
0 0.5243 0.5146 0.512
1 2.056 1.921 1.89
2 4.665 4.056 3.95
3 8.428 6.731 6.47

As it has been already mentioned, the initial setting (20) appears to be useful for perturbation of
a few first axisymmetric natural frequencies of the associated circular plate as ¢ < 1. Numerical
data related to the dual perturbation procedure are given in Table 7.

Similarly to a circular plate we may expect that the perturbation approach should be even more
efficient for other boundary conditions including those modeling a simply supported or a free
edge. In addition, we mention that the occurrence of thickness natural frequencies is also an
important feature of free vibrations of a moderately thick elliptic plate affecting 3D computations.

5. Concluding remarks

The consideration above demonstrates that the proposed approach is applicable over a wide
range of problem parameters applied to a moderately thick elliptic plate. It does not involve
3D analysis and is especially useful if the initial approximation w, allows a simple estimation,
e.g. when the advanced variational formulae (8), (10) and (11) are valid. The paper also clearly
indicates further prospects for plates of more general shapes. Another important feature is that
the perturbation methodology appears to be useful for interpreting numerical results for thicker
plates since related eigenspectra are not ultimately restricted to bending vibration modes.
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Appendix

For the axisymmetric motion of a circular plate the lowest branch of thickness shear vibrations
is described by the 1D asymptotic equation (e.g., see Ref. [2])

1 A=A 1
w4~ + (—Sh—r—>ur=0 (A1)

wh 81 cot(rkAgpn) 1—2v
AN=—, P=14——" =4/ A2
C ’ + Ash K 2(1 — V), ( )

where Ag, = n/2 is the first thickness shear resonance frequency, u, = u,(r) is the radial long-wave
amplitude. This equation describes long wave natural forms with the frequencies A close to Ag,,
re. |4 — Agq] < 1. In this case the radial v,(r,z) and transverse v.(r,z) displacements in the
axisymmetric elasticity (z is the transverse coordinate, —h < z < h) are expressed in terms of
amplitude u,(r) as (see Ref. [2] for details)

v,(r, z) = u,(r) sin (Ashz/h), (A.3)

with

and

v-(r, z) = u-(r) [cos (Ashz/h) — cos (K/lshZ/h):| (A4

ok
sin (kAgp)
with

h 1
u(r) = A—h <u; +;ur>
s

In the case under consideration, the eigenfunctions corresponding to Eq. (A.1) are
u, = CJ1(Br) (A.5)

g AT — A5,
WP

For a clamped edge, u,(a) = 0, the sought for natural frequencies become
A7 = A%, + 1P PR}, (A.6)
where f§; denotes the ith root of the equation J;(fa) = 0.

with
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