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Abstract

This article presents a new multi-term harmonic balance method (HBM) for nonlinear frequency
response calculations of a torsional sub-system containing a clearance type nonlinearity. The ability of the
simplified subsystem to capture the salient behavior of the larger system is verified by the comparison of
results to experimental data. Unlike previous analytical and numerical methods, the proposed HBM
includes adaptive arc-length continuation and stability calculation capabilities to find periodic solutions in
multi-valued nonlinear frequency response regimes as well as to improve convergence. Essential steps of the
proposed HBM calculations are introduced, and it is validated by comparing time and frequency domain
predictions with those yielded by numerical solutions, experimental studies, or analog simulations for
several examples. Then, nonlinear frequency response characteristics of an oscillator with clearance
nonlinearity are examined with focus on super- and sub-harmonics. We also explore some issues that are
not fully resolved in the literature. For instance, the effect of mean operating point is examined for a ¼ 0
and a ¼ 0:18� 0:25 cases where a is the stiffness ratio of the piecewise-linear elastic function. In addition,
the number of harmonic terms that must be included in the HBM response calculations, given sinusoidal
excitation, has been investigated. Finally, some simple analytical predictions for super and sub-harmonic
resonances are presented.
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Nomenclature

a Fourier transformed relative displa-
cement d

b stage transition point (rad)
c Fourier component of non-linear

function in HBM
C viscous damping coefficient (Nms)
F effective external torque (Nm/

kgm2)
f ðÞ nonlinear function (rad)
I effective torsional moment of inertia

(kgm2)
Ii torsional moment of inertia (kgm2)
J Jacobian matrix
K torsional stiffness (Nm/rad)
‘ separation between primary harmo-

nic and mean operating point
n harmonic index
N sampling points per cycle in HBM
q sub-harmonic index
Q input vector
r residual in time domain
R residual in frequency domain
t time (s)
T torque (Nm)
a stiffness ratio
d; _d; €d relative displacement, velocity and

acceleration (rad, rad/s, rad/s2)
� perturbation part of d(t)
G DFT matrix
j phase (rad)
L gearbox temperature
l natural frequency (rad/s)
y; _y; €y absolute displacement, velocity and

acceleration (rad, rad/s, rad/s2)
W scaled time (W ¼ ot)
t period (s)
O non-dimensional frequency

(O ¼ op=or)
OP1 non-dimensional primary harmonic

of compliant stiffness
o angular velocity or continuation

parameter (rad/s)
X derivative of DFT matrix

c time toward transition points (s)
I Fourier transform

Subscripts

� column vector form
¼ matrix form
1,2,3... stiffness or damping stages; element

index
D drag damping
e external excitation
f friction related term
h clutch hub-spline related
j torque harmonic index
m mean component
max maximum limit
min minimum limit
p alternating or perturbation compo-

nent
r resonance
rms root-mean-square value
S stiffness related term
s periodic term
V viscous damping related term

Superscripts

�; �� first and second derivative with
respect to time

� non-dimensional value
þ pseudo inverse of matrix
� periodic solution part
� augmented vector
T transpose of matrix
�1 inverse of matrix

Abbreviations

AS analog-computer Simulation
DFT discrete Fourier Transform
HBM harmonic Balance Method
LTI linear Time-Invariant
MDOF multi-Degree of Freedom
NS numerical Simulation (Runge–

Kutta 4(5))

T.C. Kim et al. / Journal of Sound and Vibration 281 (2005) 965–993966



ARTICLE IN PRESS

NSU numerical Simulation with Up Fre-
quency Sweep

NSD numerical Simulation with Down
Frequency Sweep

SDOF single Degree of Freedom
QR QR-decomposition algorithm
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1. Introduction

1.1. Clearance nonlinearity

Vehicle drivetrains and other torsional systems often contain multi-staged clutches, gear
pairs with backlashes, splines with clearances, dual-mass flywheels with one or two stages and
the like [1–21]. One could view such practical systems in terms of coupled torsional sub-systems,
each one containing one clearance type nonlinearity given by function f ðd; _dÞ; where d and _d
are the relative displacement and velocity, respectively, as shown in Fig. 1(a) via a two-
degree-of-freedom (2dof) semi-definite torsional system. Although practical devices exhibit dry
frictional hysteresis or Hertzian impact damping, we will consider only viscous (subscript V) and
fluid induced drag (subscript D) damping elements in this article. The semi-definite system of Fig.
1(a) can be reduced to an equivalent single-degree-of-freedom system (sdof) as shown in Fig. 1(b).
The nonlinear function f ðd; _dÞ may be decomposed into stiffness (fS) and damping (fV)
characteristics. In particular, the stiffness function (fS in rad) is related to torque TS ¼ Kf SðdÞ
(in Nm), where d ¼ y1 � y2 (in rad), and K is the second stage stiffness (in Nm/rad). Fig. 2(a)
shows f SðdÞ where a and 1 represent the linear stiffness of the first and second stages. The
transition is assumed to take place at 7b in a symmetric manner. Note that a is the stiffness ratio
of stiffnesses, can be viewed as a measure of the severity of piecewise linear system.
Mathematically, f SðdÞ is as follows:

f SðdÞ ¼

d� ð1� aÞb; bod;

ad; �bpdpb;

dþ ð1� aÞb; do� b;

8>><
>>:

¼ dþ ð1� aÞ
d� bj j � dþ bj j

2
: ð1Þ

Further, the term j d� b j can be written as in terms of sign or signum function that could be
smoothened and regularized [17–21]:

d� bj j ¼ d� bð Þsgn d� bð Þ: (2)

For the viscous damping element, the damping torque TV is given by Cf V ð
_dÞ ¼ C _d where C is

the damping coefficient in Nm s/rad. Note that the units of f V ð
_dÞ are in angular velocity, rad/s.

When a ¼ 1; f SðdÞ ¼ d and f SðdÞ becomes a linear function. When a is very close to unity (but less
than 1) the component may be viewed as weakly nonlinear. It would exhibit stiffening type
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Fig. 1. Torsional sub-system with clearance nonlinearity. (a) 2dof semi-definite system; (b) sdof definite system.
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nonlinearity from the first stage stiffness. In contrast, when a41; the stiffness saturation type
nonlinearity is demonstrated. In the case of a multi-staged torsional clutch damper, a is usually
from 0.0 to 0.5, and it could be classified as a strong nonlinearity [5–9,11,13–14]. In this paper, the
particular cases of 0:10oao0:25 for a clutch or a ¼ 0 for a gear pair with backlash are studied.
Even after taking account of the lubrication oil film between the mating teeth, the first stage
stiffness of a 
 0 (within the gear backlash) is still negligible. Such a condition (0:0pap0:25) can
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Fig. 2. Clearance nonlinearity function f SðdÞ and illustration of impact cases. dm will be in the second-stage stiffness

regime if Fm4ab: Therefore, dm ¼ Fm=a when dm is in the 1st stage, and dm ¼ Fm þ ð1� aÞb when dm is in the 2nd

stage. (a) f SðdÞ; (b) no impact; (c) single-sided impact; (d) double-sided impact.
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be categorized as an extremely strong nonlinearity and is therefore of primary interest in our
study. A unique feature of this case is that the mean operating point (dm) always starts from the
second-stage of the stiffness due to the presence of a mean load (Fm) as shown in Fig. 2. Therefore,
the three possible impact conditions (no impact, single-sided impact, and double-sided impact)
where dm starts from the second-stage stiffness, need to be fully considered. However, for the case
where dm migrates to the first stage, both single- and double-sided impacts from the first stage
stiffness should be examined as well. The operating conditions and impact regimes related to the
moderate nonlinearity (a40:25) will be explained in a subsequent paper that will also examines
friction-induced hysteresis damping.
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1.2. Frequency response calculations

Clearance type nonlinearities within torsional systems, such as those shown in Figs. 1 and 2,
have been investigated using a variety of techniques [1–21], including analog [5,8,11,12,18,21] and
digital simulations [7,14–17,19–21]. However, some of these analyses have placed emphasis on
determination of the actual time-domain histories given harmonic excitations, neglecting detailed
parametric studies because they require intensive computational resources. Additionally, the
resulting time-domain motion can be very complicated and may include super-harmonic and sub-
harmonic resonances [4–6,15,18] or even exhibit quasi-periodic chaotic behavior [2,4,10,12,15].
Determining these behaviors using standard numerical integration method is rather difficult since
the entire map of initial conditions must be simulated. When multiple clearance nonlinearities are
coupled, understanding the system behavior becomes further complicated. Thus, clearly a need
exists for the development of specialized semi-analytical techniques that can overcome the
deficiencies of simple methods. An example of such specialized methods would be any of the
techniques used to solve periodic boundary condition problems (e.g. shooting and harmonic
balance) rather than initial condition problems with their associated lengthy transients.
Furthermore, from the dynamic design point of view, the steady-state frequency response
function of the system (whether full or reduced) is useful (refer to previous researches
[5–8,16,18,26]). However, the concept of such a function is more complicated for the nonlinear
case, even experimentally because of the following issues: the loss of linear superposition, multi-
frequency response for a single-frequency excitation, jump phenomenon, multi-valued solutions,
and the possibility of aperiodic solutions [4–7]. Nonetheless, some investigators have calculated
frequency response characteristics, but it has been mostly limited to a narrow frequency range well
below resonance [2,4,5,10] or at resonance [22,23].

The current work is a direct extension of the previous describing function analysis that was
introduced by Comparin and Singh [4–7]. It will also extend the work of Padmanabhan and Singh
[17,18] and Rook and Singh [16,17] who investigated both time and frequency domain
characteristics of clearance nonlinearities based on the application of harmonic balance. We
propose a new harmonic balance method (HBM) and then apply it to determine super- and sub-
harmonic response solutions given a single harmonic excitation. In addition, arc-length
continuation with adaptive frequency step-size, and stability indicators are tested in the HBM
code. Results are compared with those obtained using numerical (digital) simulations based on the
modified Runge–Kutta 5(4) integration technique due to Dormand and Prince [24], which has
been found to be reliable by Padmanabhan and others [17,18,20]. Finally, influences of sub- and
super-harmonic responses are discussed in detail.
2. Problem formulation

2.1. Scope

The excitation torque TeðtÞ; from an internal combustion engine, fluctuates significantly
between low (around the compression stage) and high (around the ignition stage) values.
Therefore, the TeðtÞ can be decomposed into mean Tm and perturbation TpðtÞ parts. The
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fundamental frequency op of TpðtÞ depends on type of the engine, number of cylinders and
crankshaft configuration. For example, the four-stroke engine with V-6, 1201 crankshaft
configuration fires three times within a crank revolution. Therefore, the firing frequency op is 3oe

where oe represents the crankshaft rotational speed. Similarly, for an I-4 engine, op ¼ 2oe:
Express TeðtÞ via Fourier series as

TeðtÞ ¼ Tm þ
X1
j¼1

Tpj sinðjopt þ jjÞ or TeðtÞ ¼ Tm þ
X1
j¼1

Tpj cosðjopt þ jjÞ: (3)

Here, j represents the torque harmonic index. The mean term is Tm ¼ E ~TeðtÞ
� �

where E½  is the
expectation operator. Under no power condition, it should be equal to the drag torque TDðoe;LÞ
generated within the transmission where L is the gearbox temperature [19]. Therefore, the coupled
nonlinear second-order differential equations for the sub-system of Fig. 1(a) are

I1
€y1 þ Cð_y1 � _y2Þ þ Kf ðy1 � y2; _y1 � _y2Þ ¼ TeðtÞ; (4a)

I2
€y2 � Cð_y1 � _y2Þ � Kf ðy1 � y2; _y1 � _y2Þ ¼ �TDðtÞ: (4b)

Here, y1 and y2 are absolute angular displacements, C is the viscous damping coefficient, and K is
the linear torsional stiffness corresponding to the second stage in Fig. 2(a). After an application of
the initial conditions, €y1ð0Þ ¼ €y2ð0Þ ¼ 0; and y2ð0Þ ¼ 0; the relationship between TD and Tm is
written as TD ¼ Tm: In geared transmission problems, one has motion fluctuations superimposed
upon the mean rotation of the shafts and gears. The non-stationary gross rotations are of
importance in understanding how the engine power is transmitted through the gearing to the
wheels, but for studying noise and vibration scenarios they are of less interest. Rather it is the
stationary fluctuating rotations which contribute to noise and vibration issues. The transmission
system is mathematically semi-definite in order to admit the gross (i.e. rigid-body) rotations, but
these rigid-body motions are unnecessary to understand our problem and in fact create
undesirable numerical issues (e.g. drift of absolute rotation to very large values). Therefore, it
becomes attractive to eliminate the rigid-body motions in the simulation and that has the added
benefit of reducing the order of the system by 1 dof (i.e. the rigid-body mode). Ref. [4,6,16–21]
show the utilization of a condensation such as implemented herein. The aforementioned coupled
equations for the semi-definite system can be reduced to a single equation for the equivalent sdof
system of Fig. 1(b) where d ¼ y1 � y2:

€dþ
C

I
_dþ

K

I
f ðd; _dÞ ¼ F ðtÞ ¼ Fm þ

X1
j¼1

Fpj sinðjopt þ jjÞ: (5)

Here, I ¼ I1I2=ðI1 þ I2Þ is the effective torsional inertia, Fm ¼ Tm=I is the effective mean torque,
and Fpj ¼ Tpj=I1 is the effective amplitude for the jth harmonic of pulsating torque. The validity
of this reduced model will be explored in Section 4.

2.2. Objectives

The first major objective of this article is to propose a new multi-term HBM with parametric
contribution and an adaptive frequency step control capability. The proposed technique is
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capable of finding both stable and unstable multi-valued solutions given a harmonic excitation.
The HBM is validated by comparing time or frequency domain predictions with those yielded by
analog simulations (as described by Comparin and Singh in Refs. [5–7]) and digital simulations.
The validity of a reduced order model is also confirmed against experimental studies (as reported
in Refs. [17–18,20]). The second major objective is to examine the nonlinear frequency response
functions of the clearance type nonlinear system of Figs. 1 and 2. In particular, we focus attention
on super- and sub-harmonics and explore some issues that were not fully resolved by Comparin
and Singh [5–7]. For instance, the effect of mean operating point (dm) is examined for a ¼ 0 and
a 
 1:0 cases. In addition, the number of harmonic terms (nmax) that must be included in HBM
will be examined. Finally, some simple analytical prediction for super- and sub-harmonic
resonances will be presented.
3. Proposed multi-term harmonic balance method

The HBM is essentially a form of the Galerkin’s method of residual minimization [25–27]. The
residual or error rðtÞ is the gap between true input and estimated solutions, and it should go to
zero for a dðtÞ that satisfies the nonlinear differential equation. In time-domain analysis, the
residual should be zero for all time spans, and this is called the strong form. From Eq. (5), before
normalization by the inertia term I the equation of motion becomes

I €dþ C _dþ Kf ðd; _dÞ ¼ TðtÞ ¼ Tm þ
Xjmax

j¼1

Tpj sinðjopt þ jjÞ: (6)

In this article, the excitation is assumed to be a single harmonic (jmax ¼ 1). However, the
steady-state response is assumed to be a certain multiple of harmonics (n) of the fundamental
frequency op:

dðtÞ ¼ dm þ
Xnmax

n¼1

dpn sinðnopt þ jnÞ: (7)

The number of term (nmax) of 12 is used in this study, although fewer harmonics could be
sufficient in some cases. Also, we will simulate sub-harmonic responses given a pure harmonic
input assuming the fundamental response period (tp ¼ 2p=op) to be equal to qtp ¼ ðð2p=qÞopÞ;
where, q is the sub-harmonic index, o ¼ op ¼ 2p=tp; and tp is the fundamental period of response
and excitation. Multi-term harmonic input cases will be investigated in future article.

The strong form residual is defined as

rðtÞ ¼ TðtÞ � I €d� C _d� Kf ðd; _dÞ ! 0 8t: (8)

When the input and response characteristics of a nonlinear system are periodic, frequency-
domain analysis can be applied by introducing the Fourier transformation (I) of both sides. The
Eq. (9) shows the result after the Fourier transformation of equation (8) that yields the weak form
residual (i.e. satisfied in only a least-squares sense):

IðrðtÞÞ ¼ IðTðtÞÞ � IIð€dÞ � CIð_dÞ � KIðf ðd; _dÞÞ ! 0 8t: (9)
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Let the Fourier component vector of the sampled output be vector a ¼ IðdðtÞÞ; then the
minimization of the residual in Newton–Raphson form is expressed as

R ffi R0 þ
qR

q a
D a : (10)

Here, R0 is the residual from an initial guess, and the correction factor is defined as D a ¼

� qR =q a
� 	�1

R : Finding the solution a is an iterative process, and the Newton–Raphson method
is used for this process. The term qR =q a is the Jacobian matrix J used in the Newton–Raphson
corrector. The Fourier transformation of a periodic output after nonlinearities can be written as
below. Similarly, qop is used instead of o for the qth sub-harmonic analysis.

IðdðtÞÞ )

dðt0Þ

dðt1Þ

..

.

dðtN�2Þ

dðtN�1Þ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

1 sinðot0Þ cosðot0Þ sinð2ot0Þ � � �

1 sinðot1Þ cosðot1Þ sinð2ot1Þ � � �

..

. ..
. ..

. ..
. ..

.

1 sinðotN�2Þ cosðotN�2Þ sinð2otN�2Þ � � �

1 sinðotN�1Þ cosðotN�1Þ sinð2otN�1Þ � � �

2
66666664

3
77777775

a0

a1

..

.

a2nmax

a2nmaxþ1

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼ G a :

(11)

Here, the vector dðtiÞ is the output signal from the nonlinear function. For example, it is the
relative displacement in time domain across the nonlinearity. Since we assumed the output to be
periodic, the vector dðtiÞ is periodic. As noted in Fig. 3, dðt0Þ is the point where a period starts, and
dðtN�1Þ is one step Dt before the period tp ends. The symbol N denotes the number of sampling
points or resolution within cycle tp.

The column vector a contains amplitudes of each Fourier component approximated by the
discrete fourier transformation (DFT) process. The number of sampling points N should be equal
to or larger than the desired number of terms (2nmax+1) as shown in Eq. (6) since one must
t 

period �p   

t0 t1 ti t0

tN-2 tN-1

 � 
(t

)

∆t

Fig. 3. Sampling of nonlinear response dðtÞ for Fourier approximation. Here, i ¼ 0; . . . ; N � 1:



ARTICLE IN PRESS

T.C. Kim et al. / Journal of Sound and Vibration 281 (2005) 965–993974
consider the mean term along with magnitude and phase of chosen harmonics. Therefore, the
derivative of the time series can be constructed by differentiating each member in the DFT
matrix or multiplying it by the derivative matrix X; defined as Ið_dðtÞÞ ) _d ¼ GX a : In the same
manner, the spectral acceleration vector is Ið€dðtÞÞ ) €d ¼ GX2 a : By defining the time
scaling of W ¼ ot with W 2 ½0; 2pÞ and _d ¼ dd=dt ¼ o=odd=dt ¼ odd=dW ¼ od0; the recalculation
of the DFT matrices for each frequency can be avoided in the Newton–Raphson type HBM
algorithm. In other words, the DFT matrices are defined only once in the beginning of the
calculation program as below and stored (or cached) for subsequent calculations. Accordingly, we
obtain

G ¼

1 sinðW0Þ cosðW0Þ sinðW0Þ � � �

1 sinðW1Þ cosðW1Þ sinðW1Þ � � �

..

. ..
. ..

. ..
. ..

.

1 sinðWn�1Þ cosðWn�1Þ sinðWn�1Þ � � �

1 sinðWnÞ cosðWnÞ sinðWnÞ � � �

2
66666664

3
77777775
; (12a)

X ¼ o

0

1 0

0 �1

" #

2 0

0 �2

" #

. .
.

2
66666666664

3
77777777775
; (12b)

X ¼ �o2diag 0; 12; 12; 22; ::::; n2; n2
� �

: (12c)

The Fourier transform of the known input is

I TeðtÞð Þ ) TeðtÞ ¼ GQ : (13)

The vector Q can be defined as Q ¼ Gþ TeðtÞ; and the components of Q are the amplitudes of
each harmonic in torque excitation. Here, matrix Gþ is the pseudo-inverse of the DFT matrix
defined as Gþ ¼ ðGT G Þ

�1GT: Again, the Gþ Te ¼ Q needs to be calculated only once because Q is
the excitation vector in frequency domain. In the same manner, the column vector c; the Fourier
components of the nonlinear function, is defined

c ¼ Gþ f where f ¼ I½f ðd; _dÞ: (14)

Therefore, the residual in the frequency domain using the Fourier approximation is rewritten as
below, and this should go to zero.

GR ¼ GGþTe � I GX2 a�C GX1 a�K GX0 c ! 0; (15)

R ¼ Q� I X2 � C X1 � K X0 c ! 0: (16)
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Now, the Jacobian J for the system, which is required for the Newton–Raphson technique, is
written as

J ¼
qR

q a
¼ � I X2 � C X1 � K

q c

q a
: (17)

The term q c =q a is difficult to calculate directly. Therefore, some authors have used the finite
difference approximation [28–31]. Instead, we propose to calculate the partial derivative of the
nonlinearity in the time domain and convert it to the frequency domain. As defined before,
c ¼ Gþ f and a ¼ Gþ d : Therefore,

d ¼ G a !
q d
q a

¼ G : (18)

Now, rewrite the term q c =q a as

q c

q a
¼

qðGþ f Þ

q a
¼ Gþ

q f

q a
¼ Gþ

q f

q d
q d
q a

¼ Gþ
q f

q d
G; (19)

where

q f

q d
¼ diag

qf

qd
ðt0Þ

qf

qd
ðt1Þ � � �

qf

qd
ðtN�2Þ

qf

qd
ðtN�1Þ

� �
: (20)

The correction amount for the Newton–Raphson is DaðkÞ ¼ �Jþ R : The predicted solution is
corrected by the equation

aðkþ1Þ ¼ aðkÞ þ DaðkÞ; (21)

where the symbol k represents the iteration index. The modified solutions after some iteration
should yield closer values to the real solution. The error criteria are defined as

D a
�� ���� ��o� or R

�� ���� ��o�: (22)

When performing frequency sweeps of nonlinear systems, the proper tangent (derivative)
calculation is important, though it is somewhat forgiving. Success of the nonlinear calculation is
also highly dependent on the proper initial choice of arc-length which may adapt itself throughout
the frequency sweep through an arc-length continuation scheme [25,27,28,32]. In our algorithms,
the directional decisions in the Newton–Raphson solution scheme are essentially automatic; the
use of augmented Jacobian (i.e. adding the column qRðoÞ=qo to the matrix qRðdÞ=q a) and then
using the orthogonal–triangular decomposition algorithm (QR) decomposes the space into
normal and tangent sub-spaces. The normal direction gives the Newton–corrections during
convergence while the tangent gives the direction for the predictor. The key of the arc-length
continuation lies in augmenting the space (harmonic coefficients) with the frequency o; as ~a ¼

a oj
� �T

where T is the transpose. Here, o is the excitation frequency over the range of frequency-
domain analysis. From Eq. (16), the augmented residual in frequency domain can be written as
[26,33,34]

Rða;oÞ ¼ 0; (23)
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where o is no longer always the ‘‘independent’’ variable. The Taylor expansion (10) can be
written as

Da

Do

� �
¼

qR

q a

qR

qo

� �þ
Rða;oÞ½ ; (24)

where the decomposition of the non-square Jacobian is done via the QR algorithm. As a result,
the system is broken down such that the arc-length (tangent) is the independent variable and the
normal directions are the dependent. Note that the arc-length is composed of the harmonic
coefficients, a; and the frequency, o, so that any combination of the variables can be the
‘‘independent’’ variable as necessary. For example, when the frequency response curve approaches
a turning point, the ‘‘independent’’ variable gradually switches from frequency to a combination
of the harmonic coefficients. In this manner, the algorithm adjusts automatically and
smoothly transitions around the turning points. Refinement of the arc-length can be related to
both numbers of iterations before convergence and changes in tangential angles of the
frequency response function, and greatly improves the convergence of the algorithm. However,
HBM with a variable arc-length does not automatically indicate whether a particular
solution is stable. Stability in the time-domain is usually determined by the Floquet
multipliers [25,27–32]. However, in the frequency domain HBM analysis, stability could be
calculated by using a modified algorithm such as Hill’s method; this procedure is well explained in
Refs. [26,33,34].

Stability analyses provide vital information to the user whether the solution branch followed
has passed a turning or bifurcation point and whether the stability has changed. Nevertheless,
the stability issues in HBM with arc-length continuation are mostly ignored by previous
researchers and often numerical integration is used to analyze this matter. At little extra
computational cost, stability can be analyzed in the frequency domain in HBM by adapting
Hill’s method. This method transforms a linear time-variant system into an eigenvalue
problem of a linear-time-invariant (LTI) system [26,33,34]. If we extend the same approach to
the nonlinear system Eq. (6) with nonlinear function f ðdÞ; investigation on the effect of a
perturbation around a periodic solution can provide stability information by redefining dðtÞ ¼
dnðtÞ þ �ðtÞ: Here, dnðtÞ is a periodic solution and �ðtÞ is the perturbation, where �ðtÞ consists of a
decay term elt and a periodic term s(t). Therefore, Eq. (9) can be rewritten after substituting
dðtÞ ¼ dnðtÞþ�ðtÞ¼dnðtÞþeltsðtÞ as

I €d
�
þ C _d

�
þ Kf ðd�Þ � TðtÞ þ I €�þ C_�þ K

qf

qd
ðd�Þ� ¼ 0: (25)

Here, the part I €d
�
þ C _d

�
þ Kf ðd�Þ � TðtÞ ¼ 0 since it is the converged solution to the

differential equation. Now, the perturbation part must fulfill the following condition in order to
satisfy Eq. (25):

I €�þ C_�þ K
qf

qd
ðd�Þ� ¼ 0: (26)

Eq. (26) is the so-called variational equation [26,34]. Substitute � ¼ sð Þelt; _� ¼ _s þ lsð Þelt; and
€� ¼ €s þ 2l_s þ l2s

� 	
elt into Eq. (26) and collect terms of l, and then factor out elt: Lastly,
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application of the Fourier transformation provides us the frequency-domain equation

l2½IX0 aþl1½2ðIX1Þ þ ðCX0Þ aþl0½IX2 þ CX1 þ K
q c

q a
 a ¼ 0 : (27)

Here, the term IX2 þ CX1 þ Kq c =q a ¼ J; and it is already available from the solution process
using Newton–Raphson. From the polynomial eigenvalue solution of Eq. (27), a set of li with
real and imaginary parts is found. When the real part of one of the li is positive, this determines
that the periodic solution dnðtÞ is unstable, and this could be used to find the possible bifurcation
point.
4. Feasibility study of multi-term harmonic balance method

In order to demonstrate the validity of HBM, an experimental system as shown in Fig. 4(a) is
selected [17,18]. This system incorporates two kinds of nonlinearities, the dynamic clutch with
stick-slip Coulomb-type friction as well as spline–hub with backlash. When the spline is welded to
the clutch hub, its backlash goes to zero and it becomes a linear torsional spring (with shaft
stiffness kS). This process can eliminate the influence of the spline nonlinearity, and only clutch
nonlinearity can be examined. Now, the system can be simplified as a sdof sub-system as shown in
Fig. 4(b), that is comparable to Fig. 1(b) by the simplification process explained earlier. Since the
available experimental result is in terms of €y3 we develop two simulation models. First, we
perform both numerical (NS) and HBM analyses using the multi-degree-of-freedom (mdof) model
of Fig. 4(a). Before the simplification, the lumped parameter modeling of this system requires
3dof, and the values of the inertias are listed in Table 1. An additional dummy inertia I4 is set as
1

1000
of the smallest physical inertia value only for the HBM calculations; this is required to represent

the bi-linear friction within the clutch for the same system. Second, we simplify the above model
further and eliminate the friction effect in HBM. This approach can avoid the use of a dummy
inertia and now it exactly represents the system of Fig. 1(b). For the dynamic model of the clutch
described in Fig. 4(a), kd is the clutch diaphragm stiffness and kc1 is the clutch spring stiffness. The
function Tf is the static friction force (torque) that needs to be overcome before slipping is initiated.
No assumption is made regarding the time for which the friction damper (given by spring kd and the
friction interface) is stuck or slipping. This is kept track of, in the numerical integration routine, by
monitoring the zero crossing of the relative velocity between the friction interface and inertia I1. The
numerical integration routine is also modified to detect the points of sticking to slipping and vice-
versa. The excitation torque amplitude (Tp) are adjusted until the displacement (y1) magnitude
matches that seen in experiment. Both absolute and relative displacements and velocities
corresponding to other inertias are calculated by using a mdof numerical simulation that employs
the Runge–Kutta 5(4th) order integration scheme. Then, €y1 calculated from the numerical
simulation is fed into the HBM as a reference to extract absolute accelerations, because the HBM is
based on the relative term (d) calculations. Fig. 5(a) shows the measured acceleration (€y3) time
history of the third inertia I3 for the case without hub-spline backlash. Fig. 5(b) shows simulation
results using NS, mdof HBM (with friction), and sdof HBM (without friction). Both NS and mdof
HBM show high-frequency influence from the input shaft stiffness and a slight transition from the
stick-slip phenomena as well. Yet, the sdof HBM still predicts experimental results very well. As
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Fig. 4. An experimental torsional system [3–7]. (a) 3dof semi-definite system; (b) sdof definite system. Assume that the

spline–hub interface (Th) is linear, and is very stiff. A dummy inertia (I4) is used only in HBM calculation.

Table 1

Values used for simulating the system of Fig. 4

Parameters and excitation Value

Inertias (kgm2) I1=3.43e�03, I2=1.37e�04, I3=2.0e�03, I4 ¼ I2=1000 (only for HBM)

Stiffness (Nm/rad) kc1 ¼ 250:0 (a ¼ 0:167), kc2 ¼ 1500:0; kd ¼ 6000:0; ks ¼ 19600:0

Backlash or stiffness transition 2b ¼ 1:489�

Excitation Tm ¼ 0:2 (Nm), Tp ¼ 1:1 (Nm), op ¼ 15:0 (Hz), o1 ¼ 45:8 (Hz)

T.C. Kim et al. / Journal of Sound and Vibration 281 (2005) 965–993978
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Fig. 5. Comparison of the time-domain results for the system of Fig. 4. (a) Experimental result, (b) simulation results.

Key: J, NS; –, HBM (with friction); – � , HBM (without friction).
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seen in Table 2, experimental and simulation results from both NS and HBM match precisely in
peak-to-peak amplitudes. The calculation times are however different. The required calculation time
in HBM is only 38 s using a Pentium III 400MHz machine. It is 1

4
of the calculation time required

for the NS case. After a close examination of response curves in the time domain, it is found that
both simulation schemes yield virtually the same time signatures as the experiment even in the
nonlinear stiffness transition regimes. The reason for small deviations could be because the values of
dynamic clutch characteristics (Tf, kc1, and kd) are estimated. Also, our model ignores the high-
frequency oscillations shown in measured acceleration. For the validation purposes, only the
dynamic clutch nonlinearity is considered in this paper, and a detailed discussion of mdof HBM and
interactions between the two nonlinearities of Fig. 4(b) will be the subject of a subsequent
article. From the above results, one may conclude that the reduced model still captures the salient
behavior of the actual system, and furthermore that the reduced model lends itself well to simulation
via the HBM.

Using the parameters for Cases 1 and 2 of Table 3, the HBM code is studied further. Fig. 6
clearly shows single-sided impacts of Fig. 2(b). The maximum (dmax), mean (dm), and minimum
(dmin) displacement plots can help us in keeping track of the impact conditions. In Fig. 6, possible
impacts are seen in dm or dmin plots. In contrast, the root-mean-square (rms) value of the
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Table 2

Comparison between methods for the system of Fig. 4(b)

Experiment Numerical integration (NS) Harmonic balance method (HBM)

€y3
��� ��� (rad/s2), p–p 382 389 390

Computation time (t) — 144 s 38 s

Table 3

Numerical values of various sub-systems

Case Impact case Parameters

K ¼ 1:0; I ¼ 1:0; C ¼ 0:05

1 Single-sided Fm ¼ 0:050; Fp1 ¼ 0:008; b ¼ 10� a ¼ 0:00; 0:10; 0:25
2 Double-sided Fm ¼ 0:050; Fp1 ¼ 0:030; b ¼ 10� a ¼ 0:00; 0:10; 0:25

T.C. Kim et al. / Journal of Sound and Vibration 281 (2005) 965–993980
displacement signifies the deviation of multi-term harmonic solutions from the pure sinusoidal
results. When the periodic solutions include many harmonics, the deviation gets larger, but when
one of the harmonics is dominant, the deviation is smaller. The backbone curve starts at O ¼ 1:0
where O ¼ op=or is the dimensionless frequency (speed), op is the excitation frequency (speed)
and or is the first natural frequency of the sub-system assuming a linear regime such as the second
stage stiffness. Then, the nonlinear frequency curve exhibits softening effects at O ¼ 0:95 after
passing the upper transition point at b ¼ 0:745 radian. This softening slope depends on the
amount of response d that resides within the backlash regime (a ¼ 0) during a cycle. The
comparison shows a close match between numerical simulations (NS) and HBM results in all
frequency spans. As seen within the circle ‘‘A’’, both down- (NSD) and up- (NSU) frequency
sweeps of numerical simulation (NS) are needed in order to achieve solution points around the
nonlinear resonance peak. The NS can solve all stable solutions whether periodic or not, but the
entire range of initial conditions should be checked. In addition, the forward numerical
integration can only be tried for the stable solution so when it comes to a turning point, it jumps
rather than smoothly following the curve, resulting in the jump phenomenon. This limitation can
also be observed in some experimental results [11] on a nonlinear gear pair that was excited by the
transmission error unlike the torque perturbation we consider in this paper. However, our HBM
code with parametric continuation capability can adjust itself for better solution tracking using
Newton–Raphson-type solutions, and can provide periodic solutions in multiple valued regimes.
A single run of HBM provides all results, even in multi-valued regimes, with the same accuracy as
numerical simulation with less than 1

4
of calculation time. The HBM with only the fundamental

harmonic (nmax ¼ 1) exhibits significant differences in the primary harmonic resonance peak. The
dmin from HBM with nmax ¼ 1 even shows the double-sided impact. This difference is negligible
with a linear stiffness function of a ¼ 1; but becomes up to 50% larger when a approaches zero. It
can be proven that the influence of higher harmonics in the response becomes more significant for
cases when a approaches zero. Fig. 7 clearly shows double-sided impacts of Fig. 2(c). The
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Fig. 6. Comparison between numerical simulation and multi-harmonic HBM for Case 1 of Table 3 when a ¼ 0:00: (a)
Maximum displacement dmax; (b) mean operating point dm; (c) minimum displacement dmin. Key: –, HBM (nmax ¼ 12);

– � , HBM (nmax ¼ 1); J, NSD; �, NSU.
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backbone starts at O ¼ 1:0 and then saturates to O ¼ 0:82 after reaching the lower backlash
b ¼ �0:1745; exhibiting the hardening effect. The HBM results and numerical simulations match
with great accuracy for all frequency spans. For the double-sided impact case, HBM (with
nmax ¼ 1) results agree well with those from numerical simulation in peak values at the primary
harmonic resonance. However, the mean (dm) and maximum (dmax) displacements around the
turning point from single-sided impact to double-sided (marked as ‘‘B’’ in Fig. 7) exhibit
differences. The minimum number of harmonics (nmax) required for reliably simulating the
nonlinear frequency response will be discussed in a later section.
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Fig. 7. Comparison between numerical simulation and multi-harmonic HBM for Case 2 of Table 3 when a ¼ 0:00: (a)
Maximum displacement dmax; (b) mean operating point dm; (c) minimum displacement dmin. Key: –, HBM (nmax ¼ 12);

– � , HBM (nmax ¼ 1); J, NSD; �, NSU.

T.C. Kim et al. / Journal of Sound and Vibration 281 (2005) 965–993982
5. Typical nonlinear frequency responses

Fig. 8 compares linear and nonlinear frequency responses as calculated by the HBM given Case
2 of Table 3 when a ¼ 0:25 for the sub-system of Fig. 1. The nonlinear frequency response is
generated by plotting the rms value of dðtÞ vs. O: Corresponding to a harmonic excitation at op;
one would run the numerical simulations (NS) for many op values and then determine the steady-
state response over a wide range of O: In this process we specially calculate the dmax value that
may include the effects of sub- or super-harmonics. Conversely, HBM yields the same drms values
very quickly, unlike the NS.
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The nonlinear frequency response of Fig. 8 clearly demonstrates an amplitude-dependent
instability leading to severe vibro-impact problems. The fundamental harmonic peak starts from
the no-impact case at O ¼ 1:00 corresponding to the linear system. Then it reduces to O ¼ 0:65
when undergoing single-sided impacts, and finally saturates to O ¼ 0:80 for double-sided impacts.
In addition, the nonlinear frequency response exhibits several active super-harmonic responses
below O ¼ 0:40; and a sub-harmonic response above O ¼ 1:20: The linear frequency response
curve can not obviously predict these phenomena and their amplitudes are lower than those from
the nonlinear analysis, especially below O ¼ 0:9:

The calculation time required of the HBM analyses including an initial run with tp period for
primary and super harmonics, and a second run with 2tp period for the sub-harmonic peak,
requires 350 s when compared with up (NSU) and down (NSD) sinusoidal sweeps in numerical
integration (NS) that take at least 3460 s for Case 2 of Table 3 when a ¼ 0:25: The reason for
significantly high calculation times for the NS is that one must wait longer until the steady state is
reached and time steps become finer when the period doubling (sub-harmonics), super-harmonic
resonances, quasi-periodic or chaotic responses take place. Since the HBM code is based on the
frequency domain calculations, it is not affected by changes in response regimes. Furthermore, the
stability indicator in our HBM code (with nmax ¼ 12) shows the possible appearances of chaotic or
quasi-periodic (‘‘C’’), and sub-harmonic (‘‘D’’) regimes. As noted in Fig. 9, there is a small regime
(‘‘C’’) where the HBM and numerical simulation results do not match well. The numerical
simulation finds a quasi-periodic regime in Fig. 10(a) with a period doubling cascade that will
eventually deteriorate into quasi-periodic or chaotic responses unlike the HBM that assumes to
have only the periodic solutions. Yet, another instability occurs in the sub-harmonic regime
(‘‘D’’). Although sub-harmonic responses are periodic, they are unstable in terms of the assumed
tp period solution. Re-running the HBM with qtp can simulate the qth sub-harmonic resonances.
For instance, the HBM assumes the periodic solution with a period 2tp to yield a sub-harmonic
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Fig. 9. Effect of the number of harmonics in HBM on response and comparison with numerical simulation. (a) dmax,

(b) dm, (c) dmin. Key: –, HBM (nmax ¼ 12); – � , HBM (nmax ¼ 1); J, NSD; �, NSU.
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peak at O ¼ 1:4; as evident from the time-domain signature in Fig. 10(b). Numerical simulation
and HBM results match exactly since the sub-harmonic response is still periodic.

The effect of the number of harmonics (nmax) that could be included in the HBM analysis is
clearly visible over the super-harmonic regimes. Fig. 9 shows the difference between nmax ¼

1 and 12 response curves. A very active super-harmonic regime is observed, and the magnitude
difference between nmax ¼ 1 and12 approaches around 10 to 15 dB over 0:0oOo0:5: Further,
neither even nor odd harmonics are dominant for a clearance type nonlinearity in contrast with
the strictly odd harmonic dominance seen in the Duffing type nonlinearity. As seen in Fig. 11, all
of the higher harmonics play an active role in the super-harmonic regime (0:0oOo0:5), and yet
the number of super-harmonic peaks that could be calculated by the HBM code depend strictly
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upon nmax. Therefore, when the super-harmonic responses are of interest, one must carefully select
the nmax value. In the primary harmonic response over 0:6oOo0:8; the first three harmonics are
dominant, as seen from Figs. 6, 7 and 9. For the nmax ¼ 1 case, the stiffness transition points are
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significantly different from the nmax ¼ 12 case. This is because of the asymmetric nature of the
nonlinear response. Such an asymmetric response is noticeable in Figs. 6 and 7 when a ! 0; and it
requires even more harmonics to predict the response. Therefore, one must include at least 3
harmonics especially when a � 0 as seen in Fig. 11 even for the primary harmonic regime.
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6. Appearance of super- and sub-harmonic peaks

Some suggestions about the possible appearance of super- and sub-harmonic responses were
introduced by Comparin and Singh [5–7], and Rook and Singh [16–17,21], based mainly on the
results yielded by numerical simulations. Essentially when FmpFp; there would exist super- and
sub-harmonic responses. But, the exact reasons were not clear and therefore we re-examine this
issue using the HBM and attempt to find a better prediction scheme [5–7]. Further, some analog
simulation (AS) results are also compared with our HBM code for super- and sub-harmonic
responses. First, consider the case Fm ¼ Fp when the torque reversal is about to take place. The
AS results are based on Comparin and Singh’s work [5–7], and their simulated dp values are
compared with our NS and HBM predictions. The analog simulations were carried out by using a
Comdyna GP-6 analog computer where a variable diode function generator was employed to
model the clearance nonlinearity [5–7]. Since the analog computer yielded only time-domain
signatures, a signal processing procedure was used to transform the results to the frequency
domain. Only the mean and standard deviation (which is related to the rms value) of the non-
sinusoidal time-domain response were calculated given the sinusoidal excitation. The emphasis of
analog simulation was on the prediction of the rms vibration level, and thus a detailed behavior of
the actual time histories was not measured [5–7]. Consequently, only limited results from the
analog simulations are available for our studies.

In Fig. 12, with Fm ¼ Fp; a significant error between analog and digital simulations as well with
the HBM is seen over the sub-harmonic response regime (O41:0). Through our analyses, it
appears that the only control parameters for the region marked as ‘‘E’’ are the effective inertia (I)
and the effective second stage stiffness term (K), as a variation in a or Fp, does not seem to alter
the sub-harmonic response. These two parameters (I and K) generate the same results in both NS
and HBM. Therefore, the I and K terms used in AS [5–7] must have been different. Results from
NS and HBM agree very well even at the sub-harmonic resonant peak, and either method can
predict the resonant amplitudes better than the AS. This is due to the fact that the unstable loops
around the sub-harmonic (nop) and the fundamental harmonic (op) are not adequately simulated
in the AS. The analog simulation appeared to generate only one possible periodic solution when
encountering a multi-valued solution regime unlike the HBM. Around the super-harmonic
regimes marked as ‘‘F’’, both NS and AS generate only the periodic stable solutions. Therefore,
such simulations miss the unstable parts and yield only the amplitudes up to the stable limits of
super-harmonic peaks.

The mean operating point dm of Fig. 2 migrates back and forth from the second stage of the
stiffness to the first stage during the frequency sweep as seen in Fig. 13. Here, mean (dm),
maximum (dmax) and minimum (dmin) values of response are plotted as a function of O: Physical
transition points (�b in Fig. 2) are also labeled. In particular, we carefully observe dm as and when
it crosses the �b lines. An appearance of sub-harmonic resonances would depend upon the
separation (given by ‘‘‘‘‘in the dimensionless O units) between the primary harmonic of the
compliant side (designated as OP1) and the mean operating point crossover position (given by
‘‘G’’) as presented in Fig. 13. When ‘XOP1; a sub-harmonic resonance will appear. As an
illustration, consider the a ¼ 0:25 case as shown in Fig. 13(a). Here, OP1 is 0.67 and ‘‘G’’ can be
thought to appear at ‘ ¼ 1 since dm stays only in the first stage. This case clearly demonstrates
that a sub-harmonic resonance can be squeezed in around O ¼ 1:34 that would satisfy ‘XOP1:
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Next, we investigate the a ¼ 0:15 case where dm moves from the second stage to the first at
G ¼ 1:2: Here, the corresponding OP1 ¼ 0:6 and it also satisfies ‘XOP1: An active sub-harmonic
response is seen in Fig. 13(b). Conversely, for the case with a ¼ 0:00; no sub-harmonic response is
observed in Fig. 13(c). This suggests that the a value controls the trajectory of dm: For a smaller a,
the dm migrates more rapidly between the stages (Fig. 13(c)), and ‘ decreases and therefore there is
not enough frequency span to squeeze in a sub-harmonic response. In contrast, the dm trajectory is
smoother when the a value increases to 0.15 or higher as seen in Fig. 13(b).

When the super-harmonic responses appear, their numbers would depend upon the nmax

harmonics used in the HBM expansion as discussed before. Further, it is observed that the
frequency where the stiffness transitions (�b) and dmin or dmax crossover each other plays an
important role. The crossover frequency is marked as ‘‘H’’ in Figs. 14 and 15. Some predictions
are also listed in Table 4. Active super-harmonic responses are present even when Fp=Fmp1:0 in
contrast with the guidelines suggested by previous researchers [4–7,16–21]. The crossover
frequency ‘‘H’’ can be easily calculated by considering the HBM with nmax ¼ 1: This is based on
the describing function analysis by Comparin and Singh [5–7] where one considers one regime
at a time

dm ¼ Fm=ðf ðd; _dÞo2
1Þ; dp ¼ Fp=ð�o2

p þ o2
1f ðd; _dÞÞ: (28)

Here, the nonlinear function f ðd; _dÞ and the response dp depend upon the dm of each super-
harmonic, and whether dm stays in the first stage or the second stage. The crossover frequency
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‘‘H’’ (in the units of O) can be written as

H ¼ op=o1 ¼ ððo2
1f � Fp=dpÞ=o2

1Þ
1=2: (29)

Eqs. (28–29) hold only for the no impact and single-sided impact case. Consequently, the HBM
with nmax ¼ 1 should be used to numerically predict the double-sided impact cases. For the
double-sided impacts, the appearance of super-harmonics follows the FmpFp condition that was
explained earlier and shown in Figs. 12 and 13. When we consider the single-sided impacts, the
following observations can be made. First, consider the case when dm starts from the second stage
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Fig. 14. Super-harmonic appearances and their relationships to the crossover frequency ‘‘H’’ given by b and dmin. See

Table 4 for parameters with Fm ¼ 0:05 and Fp ¼ 0:01: Key: –, dm; � , dmax; J, dmin HBM (nmax ¼ 12); - -, dmin prediction

(Eqs. (28) and (29) or HBM with nmax ¼ 1); – � , �b:
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Fig. 15. Super-harmonic appearances and their relationships to the crossover frequency ‘‘H’’ given by b and dmin. See

Table 4 for parameters with Fm ¼ 0:0035; and Fp ¼ 0:04: Key: –, dm; � , dmax; J, dmin HBM (nmax ¼ 12); - -, dmax

prediction (Eqs. (28) and (29) or HBM with nmax ¼ 1); – � , �b:

T.C. Kim et al. / Journal of Sound and Vibration 281 (2005) 965–993990



ARTICLE IN PRESS

Table 4

Super-harmonic response predictions corresponding to Fig. 14 where K ¼ 1:0; I ¼ 1:0; C ¼ 0:05; Fp ¼ 0:01; b ¼ 10�;
and a ¼ 0:25

Fp=Fm O range illustrating possible super-harmonic appearances

Theoretical crossover frequency (‘‘H’’ values) HBM (with nmax ¼ 12)

OP=2 ¼ 0:50 OP=3 ¼ 0:33 OP=4 ¼ 0:25

0.200 O40:21 0.51–0.40 0.33–0.29 0.25–0.23

0.185 O40:23 0.51–0.40 0.33–0.29 None observed

0.182 O40:36 0.51–0.40 None observed None observed

0.172 O40:56 None observed None observed None observed

In each case, the softening effect is seen.
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as listed in Table 4 and, shown in Fig. 14, the corresponding fundamental harmonic frequency Op

is equal to 1. And, the related super-harmonics should appear at OP=2 ¼ 0:5; OP=3 ¼ 0:33;
OP=4 ¼ 0:25; and so on. The crossover frequency ‘‘H’’ can be calculated by inserting the dp ¼

dmin ¼ dm � b and f ðd; _dÞ ¼ a into Eqs. (28) and (29). When ‘‘H’’ resides below one of these super-
harmonics, that particular super-harmonic above the ‘‘H’’ value will appear in the nonlinear
frequency response curves. Since the impacts for this case dictate a softening type curve, such
super-harmonics start from their expected positions and move down in frequencies. For example,
the OP=2 super-harmonic peak starts from O ¼ 0:5 but disappears by O ¼ 0:4; and exhibits a
softening-type frequency response shape as observed in Fig. 14. In contrast, when dm starts from
the first stage of the stiffness, the fundamental frequency OP becomes 0.5. The frequency response
now exhibits a stiffening type curve in Fig. 15. And, the super harmonic appearance regimes are
given by OP=2 ¼ 0:25; OP=3 ¼ 0:167; OP=4 ¼ 0:125; and so on. Such super-harmonics start from
their expected positions and move up in frequency. For example, the OP=2 super-harmonic peak
starts at O ¼ 0:25 but disappears by O ¼ 0:32: In this case, dp ¼ dmin ¼ b � dm and f ðd; _dÞ ¼ 1:0
should be used in Eqs. (28) and (29) for the prediction of ‘‘H’’.
7. Conclusion

This article leads to two distinct but related contributions to the state of art: a new HBM
algorithm and a better understanding of the super- and sub-harmonics of a torsional pair with
clearance nonlinearity. The validity of a reduced order (sdof) model in capturing the
representative behavior of the full torsional system is supported by comparisons to limited
experimental results. Reliability of the proposed HBM is shown by comparisons with proven
experiments, numerical simulations (NS) and analog simulations (AS). The HBM with adaptive
arc-length continuation and stability indication predicts the nonlinear frequency with many
advantages. Unlike both analytical and numerical methods, our HBM can find periodic solutions
(albeit unstable) in the multi-valued nonlinear regime as well as in possible chaotic or quasi-
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periodic response dominated regimes. It requires only 1
4
of the computational time when compared

with the NS.
The effect of the number of harmonics (nmax) that could be included in the HBM analysis is

clearly visible over the super-harmonic regimes. When active super-harmonic activity is observed,
the magnitude differences between nmax ¼ 1 and 12 curves approach 10–15 dB, and yet the number
of super-harmonic peaks that could be calculated by the HBM code depend strictly upon nmax.
Although we have considered upto 12 terms, one could choose fewer or more harmonics
depending on the problem at hand.

An appearance of the sub-harmonic resonance would depend upon the frequency separation
between the primary harmonic of the compliant side and the mean operating point crossover
position to the stiffness transitions. Super-harmonic responses are possible even when Fp=Fmp1:0
although some previous researchers [3–7,16–21] claimed otherwise. It is observed that the
frequency, where the stiffness transitions and dmin or dmax cross over, plays an important role for
super-harmonics. Our HBM code provides important clues and suggestions that could lead to a
better dynamic design of the torsional systems. Finally, this method will be used to study
nonlinear damping mechanisms as well as multi-degree-of-freedom systems with multiple
clearances. Future articles would address these issues.
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