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Abstract

In this article we examine a particular nonlinear impact damping model that has been well accepted by
the scientific community. First, we consider the damping element with a linear spring and examine the
nonlinear frequency response characteristics of a torsional system. Second, the impact damping is examined
along with the clearance nonlinearity including the backlash problem. Three semi-analytical methods,
namely the Describing Function Method, Multi-term Harmonic Balance Method and Stochastic
Linearization Method, are utilized to investigate the effect of impact damping. Feasibility of such methods
is confirmed by comparing predictions with results yielded by a numerical method. The differences between
impact damping and linear viscous damping mechanism are studied in terms of frequency responses, time
histories, and the minimum number of harmonics required to simulate the behavior given sinusoidal
excitations. Furthermore, the effect of impact damping on sub- and super-harmonic responses and quasi-
periodic regimes are examined.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Hunt and Crossley [1] proposed a nonlinear damping model when compact solid bodies impact
each other. Essentially, they reinterpreted the classical model of the coefficient of restitution, and
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

a Fourier transformed relative displa-
cement d

b break points for stages in a clearance
nonlinearity (rad)

C viscous damping coefficient (Nm s)
C equivalent viscous damping (1/s)
c Fourier components of nonlinear

function in HBM
E[ ] expectation operator
F effective external torque (Nm/kgm2)
f d instantaneous stiffness vector of non-

linear function
f ð Þ nonlinear function (rad)
gð Þ linearized nonlinear function (rad)
g
_
ð Þ smoothened form of sgn function

G simplification function in DFM coef-
ficient calculation

H simplification function in DFM coef-
ficient calculation

I effective torsional moment of inertia
(kgm2)

Ii torsional moment of inertia (kgm2)
J Jacobian matrix
‘ separation distance between primary

harmonic and mean operation point
K contact stiffness (Nm/rad)
K equivalent stiffness (dimensionless)
N sampling points per cycle in HBM
Nf DFM coefficient
n harmonic index used in HBM
q Hertzian compliance exponent
R residual in frequency domain
r residual in time domain
T torque (Nm)
t time (s)

Greeks

a stiffness of first stage
b impact damping coefficient (s/rad)
d; _d; €d relative displacement, velocity and

acceleration (rad, rad/s, rad/s2)
G DFT matrix
F time scaling ðF ¼ ot þ fÞ

f phase angle (rad)
y; _y; €y absolute displacement, velocity and

acceleration (rad, rad/s, rad/s2)
s smoothening factor
t period (s)
O non-dimensional frequency ðO ¼

op=orÞ

OP1 non-dimensional primary harmonic
corresponding to stiffness of stage 1

o angular velocity (rad/s)
X derivative of DFT matrix
C spectral time toward transition points
z damping ratio
I Fourier transform

Subscripts

– column vector
= matrix
1,2,3,y stiffness or damping stages, element

index
Ci clutch stages
e external excitation
ef effective term
G impact pair
IMP impact related
j torque harmonic index
m mean component
max maximum limit
min minimum limit
p alternating or perturbation compo-

nent
r resonance
rms root-mean-square value
S stiffness-related term

Superscripts

� first derivative with respect to time
(velocity)

� � second derivative with respect to time
(acceleration)

� non-dimensional value when placed
over a variable

+ pseudo-inverse of matrix
T transpose of matrix
�1 inverse of matrix
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Abbreviations

DFT discrete Fourier transform
HBM harmonic balance method
MDOF multi-degree-of-freedom
NS numerical simulation (Runge–Kutta

4(5))

NSU numerical simulation (up frequency
sweep)

NSD numerical simulation (down fre-
quency sweep)

SDOF single-degree-of-freedom
SLM stochastic linearization method
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suggested damping force or torque be described as bKdq _d where b is the impact damping
coefficient, K is the contact stiffness, d is the dynamic displacement, _d is the velocity, and q is the
Hertzian compliance exponent. In particular, this model removed the non-physical artifact
associated with a linear model that assumes the C _d from where C is the viscous damping
coefficient as utilized earlier by Dubowsky and Freudenstein [2,3]. Subsequent investigators [4–8]
have employed the nonlinear impact damping model where C could be defined in terms of bKdq:
Veluswami et al. [4,5], Azar and Crossley [6], and Padmanabhan and Singh [8] have reported
reasonable agreements between simulations based on the nonlinear impact damping model and
experiments.
In this article, we examine the effect of Hunt and Crossley’s impact damping model

(with q=1) on the nonlinear frequency response characteristics of a torsional system with
clearance nonlinearity as depicted in Fig. 1. The physical system is under the influence of a mean
load and is subject to harmonic excitation. This particular issue was earlier examined by
Padmanabhan and Singh [8]. They along with Herbert and McWhannell [9] found significant
changes in frequency responses when the nonlinear impact damping term was included.
Yet, the characteristics of impact damping itself, without the influence of clearance-type
nonlinearity, were not studied. Furthermore, super- and sub-harmonics have not been studied for
this type of system before.
Torsional systems with clearances have mostly been examined with viscous or fluid-induced

drag damping elements [1–3,8]. Both digital and analog simulations have been successfully utilized
[10–21]. Also, semi-analytical techniques have been used to construct the nonlinear frequency
responses [13–21]. Refer to Kim et al. [20,21], Comparin and Singh [12,13], and Rook and Singh
[19] for a comprehensive review of the methods employed earlier. In this article, we will be
employing several semi-analytical techniques to examine the nonlinear characteristics of impact
damping, with and without the clearance nonlinearity.
2. Problem formulation

2.1. Torsional sub-system

Vehicle drivetrains and other torsional systems often contain multi-staged clutches and at least
one gear pair with backlash [11–21]. Dual-mass flywheel or spline/synchronizer with clearances
may also be found in practice [22,23]. One could decompose such practical systems in terms of
coupled torsional sub-systems, each containing one clearance-type nonlinear stiffness as given by
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Fig. 1. Torsional sub-system with clearance nonlinearity f ðd; _dÞ: (a) Two degree-of-freedom semi-definite system; and

(b) single degree-of-freedom definite system when d ¼ y1 � y2:
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function f ðd; _dÞ where d and _d are the relative displacement and velocity, respectively, as shown in
Fig. 1. Here, piecewise linear or nonlinear restoring force (torque) characteristics may be
employed.
The excitation torque Te(t), say from an internal combustion engine, fluctuates significantly

between low (around the compression stage) and high (around the ignition stage) values.
Therefore, the Te(t) can be decomposed into mean Tm and perturbation Tp(t) parts. Also, one
must note that the relationship between the crankshaft rotational frequency oe and the
fundamental excitation frequency (firing frequency) op of Tp(t). It depends on type of the engine,
number of cylinders and crankshaft configuration. For example, op=2oe for an I-4 engine with
1801 crankshaft configuration. Te(t) is expanded via Fourier series:

TeðtÞ ¼ Tm þ
X1
j¼1

Tpj sin ðjopt þ fjÞ or TeðtÞ ¼ Tm þ
X1
j¼1

Tpj cos ðjopt þ fjÞ: (1)

Here, j represents the torque harmonic (order) index, and the mean term Tm ¼ E½ ~TeðtÞ	; where E½ 	

is the expectation operator.
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The coupled equations for the semi-definite torsional system of Fig. 1(a) can be
reduced to a single equation for the equivalent SDOF system of Fig. 1(b) where
d ¼ y1 � y2:

€dþ
C

I
_dþ TGðd; _dÞ ¼ F ðtÞ; TGðd; _dÞ ¼ Kf ðd; _dÞ; (2a,b)

F ðtÞ ¼ Fm þ
X1
j¼1

Fpj sin ðjopt þ fjÞ: (2c)

Here, I ¼ I1I2=ðI1 þ I2Þ is the effective torsional inertia, Fm ¼ Tm=I is the effective mean torque,
TG is the constraining torque, K is the contact stiffness, and Fpj ¼ Tpj=I1 is the effective amplitude
for the jth harmonic of pulsating torque. A viscous damping term (C) is included so that it may
describe the fluid-induced damping in drivetrains. Note that TG is in the units of Nm, f ðd; _dÞ is in
rad, and K is in Nm/rad.
2.2. Clearance and impact damping nonlinearities

Nonlinear elastic torque TG ¼ Kf ðd; _dÞ relationship for a torsional system with clearance and
impact damping nonlinearities is described in Fig. 2(a). Here, I is viewed as rigid mass oscillating
between two perfectly elastic walls with clearance 7b. We express the nonlinear stiffness function
Fig. 2. Illustration of clearance and impact damping nonlinearities. (a) Dual-staged stiffness with impact damping; and

(b) impact damping alone.
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f SðdÞ for the dual-staged curve of Fig. 2(a) (with stiffnesses a and 1) as

f SðdÞ ¼

d� ð1� aÞb; bod

ad; �bpdpb

dþ ð1� aÞb; do� b

8>><
>>:

¼ dþ ð1� aÞ
absðd� bÞ � absðdþ bÞ

2
: ð3Þ

Next we define the impact damping function f IMPðd; _dÞ where b is the impact damping
coefficient; note that b is in s/rad:

f IMPðd; _dÞ ¼ f SðdÞb_d: (4)

Therefore, the combined nonlinear function f ðd; _dÞ which includes f SðdÞ and the impact
damping element is described as

f ðd; _dÞ ¼

ðd� ð1� aÞbÞð1þ b_dÞ; bod

adð1þ b_dÞ; �b 
 d 
 b

ðdþ ð1� aÞbÞð1þ b_dÞ; do� b

8>><
>>:

¼ dþ ð1� aÞ
absðd� bÞ � absðdþ bÞ

2

� �
ð1þ b_dÞ: ð5Þ

The backlash b is defined in angular terms (deg) along the line of action. When I1 and I2 move
towards each other, _d40 and the contact regime experiences elastic deformation according to b
and TG follows the lower locus (dash–dot line) in Fig. 2(b). Likewise, when _do0; I1 and I2
rebound and TG follows the upper locus (dashed line). A thin oil film between the gap generates
the near-zero first stage stiffness, a � 0; within the initial displacement of �bodob: When d is
larger than 7b, TG is governed by K.
Finally, consider a special case of the above, when there is no backlash, i.e. b=0. This condition

simulates a purely linear stiffness case with nonlinear impact damping as shown in Fig. 2(b). As
described by Hunt and Crossley [1], the gear teeth (being in compressive contact) impact
microscopically between the elastic deformations and thereby absorb a small amount of energy.
Note that in this condition, there is a sign change at b=0 as shown in Fig. 2(b). Eq. (5) for this
case is simplified as

f ðd; _dÞ ¼ dð1þ b_dÞ: (6)

2.3. Analytical and numerical methods

Several semi-analytical techniques will be employed to construct the nonlinear frequency
response characteristics of a system with clearance and impact damping. First, impact damping
formulation will be included in the describing function method (DFM) [24,25] that was
introduced by Comparin and Singh [12,13] for a vibro-impact pair. Second, we will also extend
the work of Padmanabhan and Singh [8] and Rook and Singh [19] who investigated both time and
frequency domain characteristics of clearance nonlinearities based on the application of harmonic
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balance method (HBM). Third, we will apply the concept of equivalent stiffness based on the
stochastic linearization method (SLM) as proposed earlier by Rook and Singh [19]. This would
allow us to determine the spectrally varying viscous damping and stiffness values. Fourth, we will
employ the multi-HBM that was recently described in our articles [20,21]. We will utilize it to
compare predictions based on DFM and SLM. Results will also be compared with those obtained
using numerical (digital) simulations (NI) based on the modified Runge–Kutta 5(4) integration
technique due to Dormand and Prince [26], which has been found to be reliable by Padmanabhan
and Singh [8].
Simple analytical predictions regarding the impact damping itself (without the contaminating

influence of clearance nonlinearity) will be introduced. Two cases of a are considered when both
nonlinear damping and clearance functions are included: (1) a=0 (gear backlash problem), and
(2) 0oao0:25 (a strong nonlinearity seen in clutches). In particular, we focus attention on super-
and sub-harmonics and explore some issues that were not fully resolved by Comparin and Singh
[12,13] and Padmanabhan and Singh [8]. For instance, we calculate equivalent viscous damping
and stiffness values corresponding to impact damping and clearance. The effect of impact
damping on quasi-periodic or chaotic response regimes is briefly examined as well. Finally, semi-
analytical methods will be evaluated by comparing time or frequency domain predictions with
those yielded by digital simulations [8,18,19,21].

3. Describing function method (DFM)

3.1. Formulation

The steady-state solution dðtÞ ¼ dðt þ tpÞ of Eq. (2) is assumed to be periodic (with tp ¼ 2p=op)
in order to find the Fourier series approximation of nonlinear functions [19–25]. The periodic
forms of the assumed excitation F(t) and response d(t) are reduced to sinusoidal waveforms of
frequency op as

Fðt þ tpÞ ¼ Fm þ
X1
j¼1

Fpj sin ðjopt þ fejÞ ffi Fm þ Fp1 sin ðopt þ fe1Þ; (7)

dðt þ tpÞ ¼ dm þ
X1
j¼1

dpj sinðjopt þ fjÞ ffi dm þ dp1 sinðopt þ f1Þ: (8)

Expand f ðd; _dÞ of Eq. (5) with only the primary harmonic (j=1) as follows where Fp is defined
as Fp ¼ opt þ fe1; and Nfm; Nfp1 and Nfp2 are the describing functions or coefficients:

f ðd; _dÞ ffi Nfmdm þ Nfp1dp1 sin Fp þ Nfp2dp1 cos Fp: (9)

First, write the harmonic solution as follows where the natural frequency or ¼
ffiffiffiffiffiffiffiffiffi
K=I

p
of

corresponding linear system is introduced:

� o2
pdp1 sinðFpÞ þ

C

I
opdp1 cosðFpÞ

þ o2
r ðNfmdm þ Nfp1dp1 sinðFpÞ þ Nfp2dp1 cosðFpÞÞ ¼ Fm þ Fp1 sinðopt þ fe1Þ: ð10Þ
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Second, define the describing functions Nfm, Nfp1 and Nfp2 as

Nfmðdm; dp1Þ ¼
1

2pdm

Z tp

0

f ðd; _dÞdFp; Nfp1ðdm; dp1Þ ¼
1

pdp

Z tp

0

f ðd; _dÞ sin Fp dFp; (11a,b)

Nfp2ðdm; dp1Þ ¼
1

pdp

Z tp

0

f ðd; _dÞ cos Fp dFp: (11c)

Once the Fourier series expansions for f ðd; _dÞ are developed, they are substituted into the
original differential equation along with the assumed forms of solution and excitation [24,25]. The
coefficients of like harmonics are equated to yield a set of nonlinear-coupled algebraic equations
in terms of unknown amplitudes and phases. The bias or mean (with subscript m) term is given by
the following where Nfm is a function of both dm and dp1:

o2
r Nfmðdm; dp1Þdm ¼ Fm: (12a)

The response at the primary harmonic of op is given by sinðFpÞ and cosðFpÞ terms as

ð�o2
p þ o2

r Nfp1ðdm; dp1ÞÞdp1 ¼ Fp1 sinðfe1 � f1Þ; (12b)

C

I
op þ o2

r Nfp2ðdm; dp1Þ

� �
dp1 ¼ Fp1 cosðfe1 � f1Þ: (12c)

Since the above equations are nonlinear algebraic equations with two unknowns, dm and dp1; we
prepare to solve them using the Newton–Raphson method. Therefore, the desired solutions can be
written in the following form. These represent the nonlinear frequency response characteristics:

dm ¼ Fm=ðo2
r NfmÞ; dp1 ¼ Fp1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�o2

p þ o2
r Nfp1Þ

2
þ

C

I
op þ o2

r Nfp2

� �2
s

; (13a,b)

f1 ¼ tan�1
�o2

p þ o2
r Nfp1

ðC=IÞop þ o2
r Nfp2

 !
þ fe1: (13c)

3.2. Fourier coefficients for impact damping alone

Now, we consider Eq. (6), with only impact damping nonlinearity. The DFM coefficients of Eq.
(11) are evaluated over a period tp ¼ 2p:

Nfmðdm; dp1Þ ¼
1

2pdm

Z 2p

0

dð1þ b_dÞdFp ¼ 1; (14a)

Nfp1ðdm; dp1Þ ¼
1

pdp

Z 2p

0

dð1þ b_dÞ sin Fp dFp ¼ 1; (14b)

Nfp2ðdm; dp1Þ ¼
1

pdp

Z 2p

0

dð1þ b_dÞ cos Fp dFp ¼ dmopb: (14c)
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Thus, we find that the impact damping affects only the Nfp2 term, and the mean and effective
stiffness terms are not influenced. Therefore, dm; dp1; and f1 can be written as below when the
viscous damping coefficient is ignored, and the excitation phase angle fe1 is assumed to be equal
to 0:

dm ¼ Fm=o2
r ; dp1 ¼ Fp1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�o2

p þ o2
r Þ

2
þ ðo2

rdmopbÞ
2

q
; (15a,b)

f1 ¼ tan�1
ð�o2

p þ o2
r Þ

ðo2
rdmopbÞ

 !
: (15c)

3.3. Fourier coefficients for combined nonlinearities

For the case when clearance-type nonlinearity is combined with impact damping, the integrals
of Eq. (11) are very difficult to evaluate. In general, we define three possible impact conditions; no
impact, single-sided impact, and double-sided impact [12,13]. For the sake of illustration, consider
the nonlinear function f ðd; _dÞ of a backlash problem (with a=0) with impact damping as

f ðd; _dÞ ¼
ðd� bÞð1þ b_dÞ; d4b;

0; �bpdpb;

ðdþ bÞð1þ b_dÞ; do� b:

8><
>: (16)

For the no impact case, Eqs. (14a–c) represent the DFM coefficients. Next, consider the single-
sided impact case when the mean operating point is in the second stage ðdm4bÞ; and impact
condition is guided by: dm � bpdp1odm þ 2b: Define, c1 ¼ arcsinðdm � bÞ=dp1 and c2 ¼

arcsinðdm þ 2bÞ=dp1 as the corresponding spatial ‘‘times’’ to reach the transition points b
and �b. One must note that even finding exact value of c1 and c2 are impossible when multi-
harmonic terms are involved. The DFM coefficients for the fundamental harmonic only case are
formulated as

Nfmðd; _dÞ ¼
1

2pdm

Z pþc1

0

ðd� bÞð1þ b_dÞdFþ

Z 2p

2p�c1

ðd� bÞð1þ b_dÞdF

( )
; (17a)

Nfp1ðd; _dÞ ¼
1

pdp1

Z pþc1

0

ðd� bÞð1þ b_dÞ sin FdFþ

Z 2p

2p�c1

ðd� bÞð1þ b_dÞ sin FdF

( )
; (17b)

Nfp2ðd; _dÞ ¼
1

pdp1

Z pþc1

0

ðd� bÞð1þ b_dÞ cos FdFþ

Z 2p

2p�c1

ðd� bÞð1þ b_dÞ cos FdF

( )
: (17c)
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For the double-sided impact case ðdp14dm þ 2bÞ given the mean operating point is in the second
stage ðdm4bÞ; express the DFM coefficients as follows:

Nfm ¼
1

2pdm

Z pþc1

0

ðd� bÞð1þ b_dÞdFþ

Z 2p�c2

pþc2

ðdþ bÞð1þ b_dÞdF

(

þ

Z 2p

2p�c1

ðd� bÞð1þ b_dÞdF

)
; ð18aÞ

Nfp1 ¼
1

pdp1

Z pþc1

0

ðd� bÞð1þ b_dÞ sin FdFþ

Z 2p�c2

pþc2

ðdþ bÞð1þ b_dÞ sin FdF

(

þ

Z 2p

2p�c1

ðd� bÞð1þ b_dÞ sin FdF

)
; ð18bÞ

Nfp2 ¼
1

pdp1

Z pþc1

0

ðd� bÞð1þ b_dÞ cos FdFþ

Z 2p�c2

pþc2

ðdþ bÞð1þ b_dÞ cos FdF

(

þ

Z 2p

2p�c1

ðd� bÞð1þ b_dÞ cos FdF

)
: ð18cÞ

Even though Eqs. (17a–c) and (18a–c) look complicated, we have found that the nonlinear
impact damping element affects only the Nfp2 term as summarized in Table 1. Like Eqs. (14a–c),
this term is found to be proportion of bopdm with some dp influence. The Nfm and Nfp1 terms only
depend on clearance-type nonlinearity since they are free from the influence of the impact
damping term b: The Nfm and Nfp1 terms range between 0 and 1 according to the three impact
conditions. When the system stays dominantly in a=0 (backlash) regime, the Fourier coefficients
have lower values. Refer to Comparin and Singh [12,13] for results on the clearance nonlinearity
alone. Overall, we observe that the nonlinear response seems to be more governed by the clearance
and less by the impact damping.
4. Stochastic linearization method (SLM)

4.1. Fourier coefficients for combined nonlinearity

This SLM is developed from the ‘‘effective stiffness concept’’ that was introduced by Rook and
Singh [19] to qualitatively understand the impact behavior of a clearance nonlinearity, based on
the concept given by Wallaschek [27]. In this article, we employ this concept to find the effective
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Table 1

Describing function coefficients of a clearance with impact damping

(a) Single-sided impact case

Nfmðd; _dÞ 1

2pdm

ððpþ 2C1Þdm þ 2Gdp1 � ðpþ 2C1ÞbÞ

Nfp1ðd; _dÞ 1

2pdp1
ðð2dmG þ ðpþ 2C1Þdp1 � 2GbÞ

Nfp2ðd; _dÞ bop

6pdp1
ð3pdmdp þ 2Gd2m � 4bGdm � 3pbdp � 6bC1dp þ 4Gd2p þ 2b2G þ 6dmdpC1Þ

(b) Double-sided impact case

Nfmðd; _dÞ 1

pdm

ððpþC1 �C2Þdm þ ðG � HÞdp1 � ðC1 þC2ÞbÞ

Nfp1ðd; _dÞ 1

pdp1
ððG � HÞdm þ ðpþC1 �C2Þdp1 � GbÞ

Nfp2ðd; _dÞ bop

3pdp1
ððG � HÞd2m þ ðpþC1 �C2Þ3dmdp þ ðG � 2HÞb2

þ 2ðG � HÞd2p � ð2G � HÞdmb � 3bdpðC1 þC2ÞÞ

C1 ¼ arcsin
dm � b

dp1
; C2 ¼ arcsin

dm þ 2b

dp1

G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2p1 � d2m þ 2dmb � b2

d2p1

vuut

H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2p1 � d2m � 4dmb � 4b2

d2p1

vuut

T.C. Kim et al. / Journal of Sound and Vibration 281 (2005) 995–1021 1005
viscous damping as well as stiffness values. For example, the nonlinear function f ðd; _dÞ in rad is
estimated by a linear model gðd; _dÞ ¼ C _dþ Kd; and the error between these two functions is
minimized in the least squares sense. Here, effective viscous damping coefficient C is in s, and the
effective stiffness coefficient K is dimensionless. Since we assume the response of dðtÞ to be
periodic, only the ergodic data which provide the relationships hd_di ¼ 0 and h_d€di ¼ 0 are used in
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subsequent analysis. Then the following equations for effective terms must be satisfied at any op:

KðopÞ ¼
hf ðd; _dÞdi � hf ðd; _dÞihdi

hd2i � hdi2
; CðopÞ ¼

hf ðd; _dÞ_di

h_d
2
i

; (19a,b)

Kef ðopÞ ¼ KKðopÞ; Cef ðopÞ ¼ KCðopÞI ; (19c,d)

where h i is the expectation operator or time domain average, and the units of Cef are in Nms/rad.
For the effective viscous damping, the term hf ðd; _dÞ_di represents the actual power dissipated. Thus
the Ch_d

2
i term implies an equivalent but normalized dissipated power.

4.2. Effective terms for impact damping alone

Now, consider the case of the nonlinear impact damping only with f ðd; _dÞ ¼ dð1þ b_dÞ: The
effective stiffness is

KðopÞ ¼
hf di � hf ihdi

hd2i � hdi2
¼

hd2 þ bd2 _di � hd2i � bhd_di

hd2i � hdi2
(20)

and hd_di ¼ hd=dtð12d
2
Þi ¼ 1

2d=dthd2i ¼ 0 since d and _d are orthogonal to each other and we are
considering stationary responses. Then simplify the effective stiffness expression as

KðopÞ ¼ 1þ b
hd2 _di

hd2i � hdi2
: (21)

The term hd2 _di can be calculated as below given the assumed solution as dðtÞ ¼ dm þ dp1 sinðFpÞ:

hd2 _di ¼
d

dt
1
3
d3

� �� �
¼

1

3

d

dt
hd3i

¼

Z 2p

0

ðdm þ dp1 sin ðFpÞÞ
2
ðopdp1 cos ðFpÞÞdFp ¼ 0: ð22Þ

Therefore, Kef ðopÞ ¼ 1: The effective damping is calculated next as

CðopÞ ¼
hf _di

h_d
2
i
¼

hd_di þ bhd_d
2
i

h_d
2
i

¼ dmb: (23)

Here, hd_di ¼ 0; and hd_d
2
i ¼ hdih_d

2
i owing to the fact that the covariance S2

d_d
2 ¼ hd_d

2
i �

hdih_d
2
i ¼ 0 because the two signals are uncorrelated. Therefore, hd_d

2
i ¼

R 2p
0 ðdm þ dp1 sin FÞ �

ðopdp1 cos FÞ2 dF ¼ dmo2
pd

2
p1p ¼ hdih_d

2
i: Terms hdi ¼ dm and h_d

2
i ¼

R 2p
0 ðdp1 cosðFÞÞ2 dF ¼

o2
pd

2
pp:
5. Harmonic balance method (HBM)

As explained in our previous article [21], this method is essentially a form of Galerkin’s method
based on the least squares fit in error reduction [28–35]. The residual or error rðtÞ is the gap
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between true input and estimated solutions, and it should go to zero for dðtÞ when it satisfies the
nonlinear differential equation. In the time domain, the strong form of residual is defined as

rðtÞ ¼ TðtÞ � I €d� C _d� Kf ðd; _dÞ ! 0 8t: (24)
Table 2

Parameters and excitations of a torsional sub-system

(a) With impact damping alone

Case Torque condition Parameters and excitation

K ¼ 1:0; I ¼ 1:0; C ¼ 1:0e� 6

1 Large perturbation torque Fm ¼ 0:25; Fp=Fm ¼ 1:0; b ¼ 01; a ¼ 1:0
2 Small perturbation torque Fm ¼ 0:10; Fp=Fm ¼ 0:2; b ¼ 01; a ¼ 1:0

(b) With impact damping and clearance nonlinearities

Case Frequency response Parameters and excitation

K ¼ 1:0; I ¼ 1:0; C ¼ 0:05
3 Super- and sub-harmonics Fm ¼ 0:25; Fp=Fm ¼ 1:0; b ¼ 1:0; a ¼ 0:15
4 Super-harmonics Fp ¼ 0:01; Fp=Fm ¼ 0:185; b ¼ 101; a ¼ 0:0020:15

Fig. 3. Frequency response of nonlinear impact damping alone, for Case 1 of Table 2 when b ¼ 0:10: Key: J, stable

HBM (nmax=12); +, unstable HBM; � � , DFM; and � � � , NSD.
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Here, f ðd; _dÞ of Eq. (5) can be written as below after employing the ‘‘smoothening’’ function
g
_
ðd� bÞ: The term s is ‘‘smoothening factor’’ and the detailed explanations about g

_
ðd� bÞ can be

found in our previous article [21]

f ðd; _dÞ ¼ dþ ð1� aÞ
g
_
ðd� bÞ � g

_
ðdþ bÞ

2

 !
ð1þ b_dÞ; (25a)

g
_
ðd� bÞ ¼ ðd� bÞ tanh ðsðd� bÞÞ: (25b)

Since input and response characteristics of a nonlinear system are assumed as periodic,
frequency domain analysis can be applied by introducing the Fourier transformation ðIÞ of both
sides of Eq. (24). This yields the weak form residual (i.e. satisfied in only a least squares sense):

IðrðtÞÞ ¼ R ¼ IðTðtÞÞ � IIð€dÞ � CIð_dÞ � KIðf ðd; _dÞÞ ! 08t: (26)

Let the Fourier component vector of the sampled output be vector a ¼ IðdðtÞÞ; then the
minimization of the residual in Newton–Raphson form is expressed as below. Finding a true a is
an iterative process using R0; the residual from an initial guess, and the correction factor and D a;
defined as D a ¼ �ðqR =q a Þ�1 R : Here, the term qR =q a is the Jacobian matrix J used in the
Newton–Raphson corrector

J ¼
qR

q a
¼ � I X2 � C X1 � K

q c

q a
: (27)

Now, the term q c =q a is very difficult to calculate directly, and we choose to calculate the
partial derivative of the nonlinearity in the time domain and convert it to the frequency domain
[28–32]. As defined before, the Fourier components of the nonlinear function is vector c ¼ Gþ f
with f ¼ I½f ðd; _dÞ	; and amplitudes of each Fourier component of solution is vector a ¼ Gþ d :
Here, matrix Gþ is the pseudo-inverse of the DFT matrix G defined as Gþ ¼ ðGT G Þ

�1GT : Now,
rewrite the term q c =q a as below since d ¼ G a ! q d =q a ¼ G:

q c

q a
¼

qðGþ f Þ

q a
¼ Gþ

q f

q a
¼ Gþ

q f

q d
q d
q a

¼ Gþ
q f

q d
G : (28)

Here, the term

q f

q d
¼ f d ¼ diag

qf

qd
ðt0Þ

qf

qd
ðt1Þ � � �

qf

qd
ðtN�2Þ

qf

qd
ðtN�1Þ

� �
(29)

means the instantaneous stiffness of nonlinear function of each sampling time per given cycle with
resolution N [28]. As shown in Eq. (3), f d of dual stage stiffness f SðdÞ with a=0 only displays a
vector string of zeros and ones according to the impact conditions. When nonlinear impact
damping is added as Eq. (25), f SðdÞb_d term affects f d; and instantaneous stiffness vector now
includes elastic softening and spring back. Additionally, an arc-length continuation scheme based
on excitation frequency op [28–30], and a stability indicator using modified Hill’s method [34,35]
are implemented in the HBM as used in this article. Refer to the companion paper [21] for more
details. A comparison of the calculation efficiency between the semi-analytical method (HBM
with nmax ¼ 12) and numerical simulation is also demonstrated in that work.
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6. Nonlinear responses with impact damping alone

Typical nonlinear frequency response characteristics of impact damping, as expressed by Eq.
(6), are studied first. Refer Table 2 for the relevant parameters and excitations. It should be noted
that a ¼ 1 in f SðdÞ of Eq. (3) produces a linear stiffness. The viscous damping C of Eq. (2) is
Fig. 4. Time history responses with impact damping alone with b ¼ 0:10 (Case 1 of Table 2). (a) Super-harmonic

response (at O ¼ 0:5); and (b) primary harmonic response (at O ¼ 0:97). Key: as in Fig. 3.
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Fig. 5. Effect of b on primary harmonic and super-harmonic peaks for Case 1 of Table 2. All results are simulated by

HBM with nmax ¼ 12: Key: —, b ¼ 0:00; - -, b ¼ 0:10; and J, b ¼ 0:20:

T.C. Kim et al. / Journal of Sound and Vibration 281 (2005) 995–10211010
virtually zero so that its influence is negligible. Two cases of perturbation and mean torque ratios
ðFp=FmÞ are studied. The first ratio (Case 1) represents a condition when amplitude of Fp is about
to exceed Fm: The Fp=FmX1 condition typically triggers significant nonlinear responses including
super- and sub-harmonics and unstable conditions in the clearance-type nonlinearity
[8,12,13,19–21]. Such tendencies are also observed in the impact damping case as seen in
Figs. 3–5. Here, the non-dimensionalized frequency O is defined as O ¼ op=or: The responses in
Figs. 3 and 5 are given in terms of the maximum or rms value of relative displacement dðtÞ: Here,
the d value is presented on a log scale to magnify the super-harmonic responses at O ¼ 0:5; and to
compare the effect of damping at O ¼ 0:1: Fig. 4 shows time domain response with N resolutions
per cycle.
First, the frequency response results from various semi-analytical methods are correlated in Fig.

3 to that yielded by the numerical integration (NS). Both down (NSD) and up (NSU) frequency
are needed in numerical simulation to acquire the nonlinear frequency shift around the resonance
O ¼ 1:0: The super-harmonic response at O ¼ 0:5 is clearly simulated by NS. This super-harmonic
peak is related to the sin ðFpÞ cos ðFpÞ component of the nonlinear Eq. (6) that can be expressed
with sinð2FpÞ: As seen in Fig. 3, multi-harmonic HBM (with nmax ¼ 12) can simulate the
frequency shift around the resonance as well as the super-harmonic response like NS. With a
single frequency sweep, HBM can also adjust its frequency step size to suit the Newton–Raphson
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convergence criteria, and provides the solution stability results. Typical HBM results of the
frequency shift around O ¼ 1:0 indicate some unstable solutions, as evident from the time history
of Fig. 4(a). Even though these solutions are unstable, HBM yields a periodic time history in
contrast with the quasi-periodic results from NS. For the super-harmonic response, time histories
from HBM and NS match well since the response stays periodic as seen in Fig. 4(b). Both DFM
and SLM methods can also simulate this frequency shift around the resonance with reasonable
accuracy as evident from Fig. 4(b), but not the super-harmonic response. This is because they rely
only on the fundamental harmonic. However, both DFM and SLM are better tools for a weakly
nonlinear system since they provide analytical solutions. They also yield an improved
understanding of the underlying physical effects.
The effect of the impact damping is studied by varying b from 0.0 to 0.2 using the multi-

harmonic HBM, and nonlinear responses are shown in Fig. 5. When b assumes a larger value, the
extent of nonlinearity increases. The peak amplitude around O ¼ 1:0 decreases as b increases, and
the frequency shift around O ¼ 1:0 follows the same tendency. This may be thought of as a
‘‘damped’’ natural frequency of the system ord ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2

p
or where or is affected by the impact
Fig. 6. Comparison of nonlinear responses with impact damping as simulated by DFM, HBM and SLM (with effective

viscous damping) methods for Case 1 of Table 2. (a) b ¼ 0:10;(b) b ¼ 0:20: Key: —, HBM; - -, DFM; and K, SLM.
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damping-related term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2

p
; but not by the stiffness-related or ¼

ffiffiffiffiffiffiffiffiffi
K=I

p
term. Such effects

can also be predicted using other semi-analytical methods like DFM and SLM with reasonable
accuracy as shown in Fig. 6. When comparing with HBM, both DFM and SLM provide faster
and simpler predictions of the impact damping effect at and near the resonance. Based on SLM,
the effective but spectrally varying viscous damping ðCÞ and effective stiffness ðKÞ values are
calculated using Eqs. (19c) and (19d). The effective stiffness of the system stays as unity as
predicted by Eq. (21). Only C changes when b is varied. Fig. 7(a) shows C values as calculated by
SLM when b is varied from 0.05 to 0.2. Fig. 7(b) clearly indicates a significant drop in C near the
fundamental harmonic and super-harmonic resonances, as calculated by HBM. However, C
results as calculated by SLM cannot reproduce the nonlinear characteristics when the nonlinear
impact damping is replaced by an equivalent viscous damping as seen earlier in Fig. 6. Such results
fail to simulate both the amplitude changes and frequency shifts included by the impact damping.
From the observations stated above, the unstable frequency response regime around O ¼ 1:0 and
a small super-harmonic response at O ¼ 0:5 constitute the unique nonlinear response
characteristics corresponding to the impact damping nonlinearity itself. The spectrally invariant
viscous damping could be viewed as the proper model except near O ¼ 1:0 and 0.5 since such
resonance regimes produce a significant drop in C values.
The same phenomena and responses are observed for Case 2 of Table 2. This represents a

condition that has a large mean torque but small perturbations. As seen in Fig. 8, the ratio
Fig. 7. Effective viscous damping values for the impact damping alone (Case 1 of Table 2). (a) b ¼ 0:10; and (b)

b ¼ 0:20: Key: as in Fig. 6.
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Fig. 8. Effect of b on primary harmonic peaks for Case 2 of Table 2. All results are simulated using HBM with

nmax ¼ 12: Key: —, b ¼ 0:00; ��; b ¼ 0:10; and J, b ¼ 0:20:
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Fp=Fm ¼ 0:2 does not show any unstable solution regime around the resonance peak. But the
frequency shifts and amplitude reductions can still be found. The super-harmonic response at
O ¼ 0:5 is also observed, but with a very small amplitude. The C values as calculated by HBM
show in Fig. 9 some reductions in resonant and super-harmonic response peaks, but not as much
as those seen in Fig. 7 for the higher torque perturbation case. This shows that the Fp=Fm ratio
affects the reliability of predictions when DFM or SLM is used. Lower Fp=Fm ratios yield good
predictions, as evident from a comparison of results between Figs. 6 and 10. When the C value is
substituted in a linear model as the overall viscous damping, the amplitude of response matches
solutions from the nonlinear damping model, but the frequency shift cannot be simulated.
7. Effect of impact damping and clearance nonlinearities

The effect of combined nonlinearities is studied next with focus on super- and sub-harmonic
responses. Figs. 11 and 12 show results for Case 3 of Table 2. The drmsðOÞ curves as calculated by
HBM and NS are compared in Fig. 11 for b ¼ 0:02 and 0:04: The sub-harmonic response curve
exhibits a clear separation from the main frequency response in Fig. 11(b). As seen in Fig. 12, the
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Fig. 9. Effective viscous damping values for Case 2 of Table 2. (a) b ¼ 0:10; and (b) b ¼ 0:20: Key: as in Fig. 6.
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separation (‘ in O units) between the fundamental harmonic resonance ðOP1Þ to the mean point
ðdmÞ intersection is not affected by the impact damping. Therefore, the existence of sub-harmonic
remains the same as we found earlier from a pure clearance nonlinearity [8,12,13,19–21].
The unstable solution regime associated with the sub-harmonic response diminishes when
b is increased as seen in Fig. 11. Similar reductions of the unstable solution regime are also
observed at the tip of sub-harmonic response, on quasi-periodic responses at O ¼ 0:53 and 0.38,
and at the super-harmonic peaks. Thus the impact damping adds more damping and tends to
stabilize the system. Numerical results from NS as shown in Figs. 11(a) and (b) validate
such observations.
The effect of impact damping on super-harmonics is illustrated in Fig. 13. Using the parameters

of Case 4 of Table 2, super-harmonic peaks (OP=2; OP=3 and OP=4) are predicted using the HBM.
Even when b is as high as 0:4; all the super-harmonic peaks still exist, though their amplitudes
diminish slightly. In Fig. 14(a,b), the spectrally varying effective C (from impact damping alone)
and K (from the clearance nonlinearity alone) spectra are presented. The effective stiffness K

based on DFM cannot predict a decrease in the first stage of the multi-staged stiffness function
f SðdÞ; but the multi-harmonic SLM and HBM simulate such characteristics. The effective
damping C values match with our simple prediction based on Eq. (6) for the linear stiffness
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Fig. 10. Comparison of nonlinear responses with impact damping as simulated using DFM, HBM and SLM (with

effective viscous damping) methods for Case 2 of Table 2. (a) b ¼ 0:10; and (b) b ¼ 0:20: Key: as in Fig. 6.
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regime. But additional damping is found when the stiffness transition occurs. Only the multi-
harmonic semi-analytical methods such as HBM can simulate the C values in the super-harmonic
regime.
Based on the results and observations stated above, it seems that the multi-staged stiffness

nonlinearity f SðdÞ governs the overall shape of frequency response curve, and as expected the
nonlinear impact damping affects the resonant and super- and sub-harmonic responses. The
impact damping does not affect the appearance of super-harmonics, rather it controls their
amplitudes. Finally, the impact damping may alter the sub-harmonic system response since it
tends to provide some stability.
8. Conclusion

Chief contribution of this article is the development of frequency response characteristics
of the nonlinear impact damping, without and with the influence of clearance-type nonlinearity.
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Fig. 11. Comparison between numerical simulation (NS) and multi-harmonic HBM results for clearance and impact

damping nonlinearities (Case 3 of Table 2 given a ¼ 0:15). (a) b ¼ 0:20; (b) b ¼ 0:40; Key: J, HBM stable (nmax ¼ 12);

+, HBM unstable (nmax ¼ 12); – � , NSU; ��; NSD; and � � � � , dm.

T.C. Kim et al. / Journal of Sound and Vibration 281 (2005) 995–10211016
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Fig. 12. Super- and sub-harmonic appearances related to clearance and impact damping nonlinearities for Case 3 of

Table 2 with a ¼ 0:15: (a) b ¼ 0:00; (b) b ¼ 0:20; and (c) b ¼ 0:40: Key: –, dm; � , dmax; J, dmin; and – � , 7b.

T.C. Kim et al. / Journal of Sound and Vibration 281 (2005) 995–1021 1017
Semi-analytical methods like HBM, DFM, and SLM can predict the effective viscous
damping value arising from the nonlinear damping mechanism, especially when the Fp=Fm

ratio is small. This implies that the nonlinear impact damping is more affected by the dynamic
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Fig. 13. Super-harmonic responses produced by clearance and impact damping nonlinearities (Case 4 of Table 2 with

Fp=Fm ¼ 0:185). Key: –, b ¼ 0:00; – � , b ¼ 0:20; and � , b ¼ 0:40:

T.C. Kim et al. / Journal of Sound and Vibration 281 (2005) 995–10211018
torque input. The impact damping reduces the peak resonant amplitudes, enhances dynamic
stability and reduces quasi-periodic or chaotic regimes, while introducing a small frequency shift.
The impact damping effects in a practical automotive driveline system may seem to be small, but it
controls the peak-to-peak acceleration levels. Consequently, one must include impact damping
elements in vibro-impact simulation codes. In a recent study [36], vibration of a double sphere-
plane pre-loaded system with Hertzian dry element and under a pure harmonic force was
examined. The authors of this study also recommend further research to determine the precise
mechanisms of damping under vibro-impact conditions.
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Fig. 14. Effective (a) viscous damping, and (b) stiffness spectra for Case 4 of Table 2 with a ¼ 0:0 (HBM with

nmax ¼ 12). Key: –, b ¼ 0:00; – � , b ¼ 0:10; and � , b ¼ 0:20:
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