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Abstract

In this paper the natural frequencies of composite tubular shafts have been analysed. Equivalent modulus
beam theory (EMBT) with shear deformation, rotary inertia and gyroscopic effects has been modified and
used for the analysis. The modifications take into account effects of stacking sequence and different
coupling mechanisms present in composite materials. Results obtained have been compared with that
available in the literature using different modelling. The close agreement in the results obtained clearly
show that, in spite of its simplicity, modified EMBT can be used effectively for rotordynamic analysis of
tubular composite shafts.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Several investigators [1–4] have used beam formulation in the analysis of composite shafts. In
this approach, the shaft is represented as a beam of a circular cross-section. Singh and Gupta [5]
have shown that equivalent modulus beam theory (EMBT) can be used effectively for the analysis
of tubular composite shafts of symmetric configurations and can be easily extended for
rotordynamic analysis. However, their analysis has shown that formulation based on EMBT has
some limitations for unsymmetric configurations because of which it may lead to inaccurate
see front matter r 2004 Elsevier Ltd. All rights reserved.
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predictions of rotordynamic behaviour. Cheng and Peng [6,7] used finite element model based on
Timoshenko beam theory to obtain the matrix equation of motion for rotating shafts.
In the present analysis several refinements have been made in EMBT to account for

unsymmetric configuration, plies stacking sequence and different coupling mechanisms effect. The
layerwise beam theory (LBT) has been refined to account for shear normal coupling effect.
Results obtained from both theories have been compared [5].
2. Formulation based on beam theory

The limitations of the existing EMBT have been presented. Refinements made in EMBT are
then presented. Later shear normal coupling effect has been incorporated in LBT.

2.1. Equivalent modulus beam theory (EMBT)

In EMBT, the equivalent longitudinal and inplane shear modulii are determined using Classical
Laminate Theory (CLT). These modulii are used to calculate shaft natural frequencies using
Timoshenko beam theory in the same manner as that for isotropic shafts. In spite of its simplicity
and good results obtained for balanced symmetric configuration, several limitations have been
pointed out and they are summarized below.
(i)
 In multilayered composite shaft, different layers (plies) have different contributions to the
overall stiffness of the shaft depending on their locations from the mid-plane. However,
EMBT does not account for the locations of the individual plies and accordingly the
equivalent longitudinal and inplane shear modulii are independent of the stacking sequence of
a particular configuration.
(ii)
 For unbalanced configuration, shear–normal and bending–twisting couplings are present.
These couplings affect significantly shaft natural frequencies. However, these effects are not
incorporated in EMBT formulation.
(iii)
 In unsymmetric configurations, bending–stretching coupling is present which affects the shaft
natural frequencies. This effect is also not included in the EMBT formulation.
2.2. Modified equivalent modulus beam theory

A Bresse–Timoshenko beam with transverse shear deformation, rotary inertia and gyroscopic
effects included is considered. The theory is generalized to include bending–twisting,
shear–normal and bending–stretching coupling effects. To account for the locations of different
plies and their stacking sequence, longitudinal and inplane shear modulii are taken in the ply level.

2.2.1. Assumptions
The following are the main assumptions adopted for the analysis of shaft natural frequency

using beam theory:
(i)
 The cross-section of the shaft is circular,

(ii)
 No axial forces and torque on the shaft and,

(iii)
 All nonlinearities and higher order terms are neglected.
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2.2.2. Formulation
Consider a simply supported shaft as shown in Fig. 1a and b. The displacement field is

described by the transverse displacements, w and v measured in the z and y directions, the bending
slopes a and b in the x–z and x–y planes and j is the shaft twist angle. The quantities w, v, a; b and
j are assumed to be time dependent and are expressed as

w ¼ �weiOt; v ¼ �veiOt; a ¼ �aeiOt; b ¼ �beiOt; f ¼ �feiOt; ð1Þ

where O is the whirl frequency.
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Fig. 1. (a) Coordinate system of the rotor, (b) Cartesian and (c) cylindrical.
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The strain energy of the shaft including bending in two planes, shear deformation and torsional
energy can be expressed [8] as

U ¼
1

2

Z l

0

CB
qa
qx

� �2

þ
qb
qx

� �2
" #

þ CS
qw

qx
� a
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þ
qv

qx
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" #
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where CB is the bending stiffness coefficient which can be given [3] by

CB ¼
p
4

Xn

k¼1

�Q
ðkÞ

11 r4oðkÞ � r4iðkÞ

h i
: ð3Þ

The torsional stiffness coefficient CT [3] is

CT ¼
p
2

Xn

k¼1

�Q
ðkÞ

66 r4oðkÞ � r4iðkÞ

h i
ð4Þ

and the shear stiffness coefficient CS is given by

CS ¼ k0AGXy; ð5Þ

where k0 is the shear correction factor which can be taken, for thin tubes, as 1
2
:

In Eqs. (3) and (4), rk
o ; r

k
i ;

�Q
ðkÞ

11 and �Q
ðkÞ

66 are the outer radii, inner radii, longitudinal and shear
stiffness coefficients of the kth ply, respectively.
The total kinetic energy is the sum of the kinetic energies the shaft and the discs mounted on it.

This can be expressed [8] as
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Here r is the mass density of the shaft material, A, I and Ip are area, lateral and polar area
moments of inertia of the shaft cross-section. MDi, IDTi and IDPi are mass, lateral and polar mass
moments of inertia of the ith disc, respectively. The rotational angular speed of the shaft is o. The
first, second, third and fourth set of terms within the integral sign give the effect of translatory,
rotary and torsional inertia, and gyroscopic moment of the shaft. The four terms within the
summation sign give the same effects for the discs mounted on the shaft.
2.2.3. Solution equations
The series solution functions are assumed for w, v, a; b and f in the form

�wðxÞ ¼
Xn

j¼1

W j sin
jpx

l
; �vðxÞ ¼

Xn

j¼1

Vj sin
jpx

l
;

�aðxÞ ¼
Xn

j¼1

Aj cos
jpx

l
; �bðxÞ ¼

Xn

j¼1

Bj cos
jpx

l
;
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�fðxÞ ¼
Xn

j¼1

Fj cos
jpx

l
: ð7Þ

Here n is the total number of terms in the series solutions. The above functions satisfy geometric
boundary conditions at x ¼ 0 and x ¼ l: The Lagrangian L ¼ U � T is set up from strain and
kinetic energies and made stationary with respect to the solution coefficients, i.e.

qL

qW j

¼ 0;
qL

qVj

¼ 0;
qL

qAj

¼ 0;
qL

qBj

¼ 0;
qL

qFj

¼ 0: ð8Þ

The time dependence cancels out in all the terms and a set of 5n simultaneous algebraic
equations in the form of a quadratic eigenvalue problem is obtained as

�O2½M� þ iO½D� þ ½K �

 �

Xf g ¼ 0f g: ð9Þ

Here the matrix [D] involves the contribution due to the gyroscopic effect and is dependent on
rotational speed. The eigenvector fX g is given by

fXg ¼ W 1;W 2; . . . ;W n V1;V2; . . . ;Vn A1;A2; . . . ;An B1;B2; . . . ;Bn F1;F2; . . . ;Fn½ �T:

ð10Þ
2.3. Improvement to include different coupling mechanisms

Several refinements have been made to account for different coupling mechanisms effects,
namely, Poisson’s effect, shear–normal and bending–twisting coupling effects. Generally, the
strain energy in the shaft is given by

U ¼
Xn

k¼1

Uk ¼
1

2

Xn

k¼1

Z
v

½sk�f�kg dv: ð11Þ

The summation is taken over all the plies contained in the laminate, and
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Here sxx and syy are inplane normal and hoop stresses and txy is the inplane shear stress, �xx

and �yy are the inplane normal and hoop strains and �xy is the inplane shear strain in x and y
coordinates as shown in Fig. 1c. ½ �Q� is the transformed stiffness matrix of the kth ply.

2.3.1. Improvement to include Poisson’s coupling effect

In a thin single ply, shear effect is negligible and bending–stretching and shear–normal coupling
effects are not present. However, in calculating strain energy, �y is taken to be zero, which implies
some effective stress occurs in y-direction. But in the actual case no such stress acts. Thus,
imposition of the condition of no cross-section deformation results in no strain condition in the
circumferential direction and this gives higher frequency values. The circumferential stress in each
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ply is assumed to be zero, thus from Eq. (12),

sðkÞyy ¼ �Q
ðkÞ

22 �
ðkÞ
yy þ �Q

ðkÞ

12 �
ðkÞ
xx ¼ 0:

This gives

�ðkÞyy ¼ �
�Q
ðkÞ

12 �
ðkÞ
xx

�Q
ðkÞ

22

:

Also from Eq. (12) we have

sðkÞxx ¼ �Q
ðkÞ

11 �
ðkÞ
xx þ �Q

ðkÞ

12 �
ðkÞ
yy :

Substituting for �ðkÞyy from above

sðkÞxx ¼ �Q
ðkÞ

11 � ð �Q
ðkÞ

12 Þ
2= �Q

ðkÞ

22

� �
�ðkÞxx ¼ �Q

ðkÞ

11m�
ðkÞ
xx ; ð13aÞ

where

�Q
ðkÞ

11m ¼ �Q
ðkÞ

11 � ð �Q
ðkÞ

12 Þ
2= �Q

ðkÞ

22

� �
: ð13bÞ

Thus the value of �Q11 is updated to account for Poisson’s effect according to Eq. (13b).
2.3.2. Improvement to include shear–normal coupling effect
In conventional filament winding procedure the fibres at winding angles �y are interwoven in

the same ply; similarly for configurations in which corresponding to þy orientation ply above the
mid-plane, there is an identical ply (material and thickness) of �y orientation below the mid-plane
as shown in Fig. 2a; the shear–normal coupling effect is eliminated. However, if the shaft is made
from prepregs to provide a single winding angle, then shear–normal coupling (due to the terms
�Q16a0 and �Q26a0) will be present. Generally, coupling exists between normal stress ðsxxÞ with
shear strain ð�xyÞ and shear stress ðtxyÞ with normal strain ð�xxÞ: From the classical laminate
theory, the forces on the laminate are related with strain as follows

fNg ¼ ½Aij�f�g ð14Þ

or

f�g ¼ ½Aij�
�1fNg: ð15Þ

For a uniaxial load in longitudinal direction and laminate of total thickness t, Nxx ¼ tsxx;
Nyy ¼ 0; and Nxy ¼ 0: Then

�xx ¼
asxxt

D
or

sxx

�xx

¼ Exx ¼
D
at
;

where D ¼ A11a � A12b þ A16c and a, b and c are the cofactors of A11, A12 and A16, respectively
given by

a ¼ A22A66 � A2
26 for single ply k; ak ¼ �Q

k

22
�Q

k

66 � ð �Q
k

26Þ
2;
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b ¼ A12A66 � A16A26 for single ply k; bk
¼ �Q

k

12
�Q

k

66 �
�Q

k

16
�Q

k

26;

c ¼ A12A26 � A16A22 for single ply k; ck ¼ �Q
k

12
�Q

k

26 �
�Q

k

16
�Q

k

22:

The longitudinal and shear modulii can be given by

Exx ¼
sxx

�xx

¼ ðA11a � A12b þ A16cÞ=ðatÞ: ð16aÞ

Similarly, applying Nxy and keeping Nxx ¼ Nyy ¼ 0; one obtains

Gxy ¼
txy

�xy

¼ ðA11a � A12b þ A16cÞ=ðftÞ; ð16bÞ

where f ¼ A11A22 � A2
12; for single ply k, f k

¼ �Q
k

11
�Q

k

22 � ð �Q
k

12Þ
2:

Taking a configuration of single ply, then Eqs. (16a) and (16b) become

Exx ¼
sxx

�xx

¼ ð �Q11a
k � �Q12b

k
þ �Q16c

kÞ=ak ð17aÞ

and

Gxy ¼
txy

�xy
¼ ð �Q11a

k � �Q12b
k
þ �Q16c

kÞ=f k: ð17bÞ

To account for shear–normal coupling effect, the value of �Q
k

11in Eq. (12) and the value of Gxy in
calculating Cs are replaced by Exx and Gxy obtained in Eqs. (16a) and (16b), respectively. For
symmetric balanced laminate or orthotropic plies, the terms �Q16 and

�Q26 vanish and Eqs. (16a)
and (16b) can be re-written as

Exx ¼ A11 �
A2
12

A22

� �
=t: ð18aÞ

Similarly Gxy reduces to

Gxy ¼ A66=t: ð18bÞ
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For single ply, Eqs. (18a) and (18b) become

Exx ¼ �Q
k

11 �
ð �Q

k

12Þ
2

�Q
k

22

 !
ð19aÞ

and

Gxy ¼ �Q
k

66: ð19bÞ

Eqs. (18a) and (18b) are similar to that of Bauchau [2] and Singh and Gupta [5], used to
evaluate equivalent modulus in EMBT. However, Eq. (19a) is similar to Eq. (13b) for updating
the value of �Q11 to account for Poisson’s effect. It is to be noted that, in the present formulation,
Poisson’s effect is inherently included in the formulation of shear–normal coupling. This is clear
by substituting ( �Q16 ¼

�Q26 ¼ 0) for 01 and 901 ply angles in Eqs. (16a) and (16b) which reduce to
Eqs. (13b) and (18a) and (18b).
2.3.3. Improvement to include bending–twisting coupling effect
In configurations at which +y orientations are above the mid-plane there is an identical lamina

(in the thickness and material) of �y orientation at the same distance below the mid-plane (as
shown in Fig. 2b), the bending–twisting coupling represented by the terms D16 and D26 (in the
bending stiffness matrix [D]) for the laminate is zero. For symmetric laminate the terms D16 and
D26 cannot be zero unless y ¼ 01 or 901. The bending–twisting stiffness coefficient [3] is given by

CBT ¼
Xn

k¼1

�Q
ðkÞ

16 r4oðkÞ � r4iðkÞ

h i
: ð20Þ

The expression for strain energy is modified as

U ¼
1

2

Z l
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þ
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� �2
" #
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þ
qv

qx
� b

� �2
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þ
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� �
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� �
þ
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qx

� �
�
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qx

� � !
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qf
qx

� �2
)
dx: ð21Þ
3. Layerwise beam theory

Several investigators (Singh and Gupta [5] and Gubran [9]) have used layerwise beam theory for
the analysis of composite tubular shafts. This theory is obtained by reduction from the layerwise
shell theory after imposing the condition of zero cross-section distortion. Referring to Fig. 3, the
displacement field of shell theory modified to give rise to flexural modes only is given by

Uzk ¼ �ukðxÞ cos y; Vzk ¼ � �wðxÞ sin y; W ¼ �wðxÞ cos y: ð22Þ
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The strain and kinetic energies can be expressed [5] as

U ¼
p
2

Xn

k¼1

Z l

0

u2kþ1;x þ u2k;x þ ukþ1;xuk;x

� � rktk

3
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� �
=12

n o
�Q11k

"

þ ukþ1 þ ukð Þ
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4
þ u2kþ1 � u2k
$ %

1þ
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� �&
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$ %
=t2k þ w2

;xrktk þ w;x ukþ1 þ ukð Þtk

'
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�Q55k

#
dx ð23Þ

where

ak ¼ ln
rk þ tk=2
$ %
rk � tk=2
$ %
" #

;

T ¼
p
2

Z l

0

Xn

k¼1

rk

rktk

3
_u2kþ1 þ _u2k þ _ukþ1 _uk

$ %
þ 2 _w2rktk þ

t2k
12

_u2kþ1 þ _u2k
$ % !

dx; ð24Þ

where uzkðxÞ and wðxÞ are the amplitudes of u and w displacements in Cartesian coordinates which
are expressed in series functions as

�uzkðxÞ ¼
Xm

k¼1

Ukf k
ðxÞ; �wðxÞ ¼

Xm

k¼1

W kgkðxÞ: ð25Þ
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On substituting Eq. (25) in the expressions of U and T and taking the variation of the total
energy with respect to the unknown solution coefficients, a set of (n+2)m equations are obtained
which can be solved as a standard eigenvalue problem.
The values of longitudinal and shear stiffness �Q11 and

�Q66 in Eq. (23) are updated to account
for shear–normal coupling in a similar manner as that of modified EMBT and substituted for
calculating the natural frequencies.
4. Results and discussion

A graphite/epoxy shaft simply supported on rigid bearings is considered. Shaft material
properties are: longitudinal, transverse and shear modulii of 130, 10 and 7GPa, respectively.
Poisson’s ratio and density are 0.25 and 1500 kg/m3. Shaft geometrical parameters are: length 1m,
mean diameter 100mm and a total thickness of 4mm. To study the effects of stacking sequence
and different coupling mechanisms on shaft natural frequencies, several cases have been
considered. Both formulations of modified EMBT and LBT have been used. Natural frequencies
obtained from both theories have been compared and studied in detail.

4.1. Comparison between modified EMBT and LBT excluding different coupling effects

To study the validation of formulation and programming, the results obtained from modified
EMBT are compared with that of the LBT [5]. In order to have a basis for comparison, Poisson’s
and other coupling effects are ignored. Results presented in Table 1, clearly show excellent
agreement of the natural frequencies obtained from both theories for shafts with single ply of fibre
angle varying from 0 1 to 90 1. As expected, natural frequencies in the first three modes are found
to decrease with the value of fibre angle increasing from 0 1 to 90 1. The shaft studied by Zinberg
and Symmonds [1] is also analysed using the two theories. As it is clear from Table 2, the
fundamental natural frequency obtained from the present work using modified EMBT (i.e.
5552 rev/min) is very close to the value of 5555 rev/min obtained by the present work using LBT
[5] with G13 ¼ G23 ¼ 0:
Table 1

Comparison of natural frequencies (Hz) excluding Poisson’s and different coupling effects

Ply angle (1) LBT Modified EMBT

1st 2nd 3rd 1st 2nd 3rd

0 428.04 1227.72 2056.44 427.85 1226.63 2052.49

15 442.50 1432.92 2576.95 442.40 1434.94 2574.00

30 390.52 1410.59 2787.43 390.49 1410.65 2785.92

45 292.75 1105.74 2297.63 292.74 1105.58 2297.00

60 199.99 767.66 1627.53 199.98 767.59 1627.27

75 150.77 577.09 1219.06 150.77 577.04 1218.84

90 140.57 528.59 1092.06 140.56 528.50 1092.18
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Table 2

Comparison of critical speed as obtained by different investigators using different formulations with that obtained

using modified EMBT

Investigator Critical speed

(rev/min)

Method of determination

Zinberg and Symmonds [1]

(theoretical)

5780 Equivalent modulus beam theory

Zinberg and Symmonds [1]

(experimental)

5500 Forced vibration response for the shaft supported on

rolling element bearing conditions but under non-

rotating conditions

Henrique dos Reis et al. [10] 4950 FEM, with beam elements derived from Donnell’s shell

theory

Singh and Gupta [5] 5746 Equivalent modulus beam theory, simple support

function

5747 Equivalent modulus beam theory, flexible supported

function with high support stiffness (0.17
 1012N/m) as

used by Henrique dos Reis et al. [10].

Singh and Gupta [5] 5332 LBT (with G13 ¼ G23 ¼ 0)

5617 LBT (with G13 ¼ 6:9GPa, G23 ¼ 0),

5620 LBT (with G13 ¼ G23 ¼ 6:9GPa),

Kim and Bert [4] 5872 Sanders shell theory

6399 Donnell shallow shell theory

Bert [3] 5919 Bernoulli–Euler beam theory

Bert and Kim [4] 5788 Bresse–Timoshenko beam theory

Chen and Peng [6] 5714 Timoshenko beam theory and finite element method

Present work 5332 Modified equivalent beam theory (including Poisson’s

effect)

5552 Modified equivalent beam theory (without including

Poisson’s effect)

Present work, using LBT

(Singh and Gupta [5])

5555 LBT (without including Poisson’s effect, with

G13 ¼ G23 ¼ 0)

5817 LBT (without including Poisson’s effect, with

G13 ¼ 6:9GPa, G23 ¼ 0)

5820 LBT (without including Poisson’s effect, with

G13 ¼ G23 ¼ 6:9GPa)

Rotor properties: L=2.47m, mean radius=0.0635m, t=0.1321
 10�3 m, 10 layers of equal thickness from inner most

(901, 451, �451, [01]6, 901); r=1965 kg/m3; E11=211 GPa, E22=24.1 GPa, G12=6.9 GPa, v12=0.36

H.B.H. Gubran, K. Gupta / Journal of Sound and Vibration 282 (2005) 231–248 241
4.2. Comparison between modified EMBT and LBT theories including Poisson’s effect only

The effect of Poisson’s coupling on shaft natural frequencies is studied in the case of a shaft
made of single ply of 4mm thickness. Both the modified EMBT and LBT are used for calculating
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shaft natural frequencies. As explained earlier, Poisson’s coupling effect is incorporated by
replacing �Q

k

11 in Eq. (3) by �Q
k

11m as defined in Eq. (13b). Effects of shear–normal and
bending–twisting coupling are excluded. Results obtained are presented in Table 3. These clearly
show very good agreement between the natural frequencies as obtained from modified EMBT and
LBT for the first three modes of shafts with different ply angles. Comparison of results of Tables 1
and 3 shows that Poisson’s coupling gives rise to a reduction in the shaft natural frequencies. The
amount of reduction is dependent on the shaft ply angle. Table 4 gives the amount of reduction in
the first mode as calculated by LBT. It is minimum for 01 and 901 ply angles and has a maximum
value at 451 ply angle. The maximum reduction in the natural frequency of the first mode (as
obtained by LBT as shown in Table 4) is about 26% (i.e from 292.7 to 216.7Hz) for 451 ply angle.
The fundamental natural frequency of Zinberg and Symmonds [1] shaft is also calculated. As
shown in Table 2, natural frequencies obtained from present analysis (5332 rev/min) agree well
with that of Singh and Gupta [5] using LBT with (G13 ¼ G23 ¼ 0) and taking Poisson’s effect into
account. It also shows a close agreement with the value (5500 rev/min) obtained experimentally by
Zinberg and Symmonds [1] and to that obtained by Henrique dos Reis et al. [10]. Both the
modified EMBT and LBT are used to calculate the natural frequency of the same shaft excluding
Poisson’s effect. The results obtained, for this case with G13 ¼ G23 ¼ 0; by both theories are in
close agreement. Layerwise beam theory excluding Poisson’s effect, for a shaft with G13 ¼ G23 ¼

6:9GPa; gives a slightly less value (by 0.9%) for the first mode natural frequency (5820Hz) than
that predicted by Bert and Kim [4] using Sander shell theory (5872Hz). It is also slightly higher
(by about 0.5%) compared to that predicted by Bert and Kim [4] using Bresse–Timoshenko beam
theory (5788Hz). It is also observed that including Poisson’s effect reduces the natural frequency
from 5552 to 5332Hz (i.e. by about 4%) as in the case of modified EMBT, and from 5555 to
Table 3

Comparison of natural frequencies (Hz) including Poisson’s effects only

Ply angle (1) LBT Modified EMBT

1st 2nd 3rd 1st 2nd 3rd

0 427.328 1226.653 2055.427 427.135 1225.237 2051.499

15 430.316 1405.966 2544.83 430.221 1405.054 2542.049

30 325.367 1204.32 2443.779 325.347 1204.064 2442.807

45 216.786 833.341 1769.57 216.781 833.176 1769.302

60 165.300 639.131 1367.839 165.297 639.094 1367.689

75 145.906 559.376 1184.081 145.902 559.326 1183.878

90 140.240 527.461 1090.432 140.234 527.379 1090.106

Table 4

Percentage reduction in the first mode due to Poisson’s effect as calculated by LBT

Ply angle (1) 0 15 30 45 60 75 90

% reduction 0.164 2.754 16.684 25.947 17.345 3.226 0.227
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5332Hz in the case of LBT with G13 ¼ G23 ¼ 0: Similarly, for the case G13 ¼ G23 ¼ 6:9GPa, there
is a reduction in the natural frequency from 5820 to 5620Hz (i.e. by about 3.5%).
4.3. Effect of stacking sequence

To study the effect of stacking sequence on shaft natural frequencies, a shaft with four plies
scheme was considered with two plies of 01 and 901 ply angles. The natural frequencies have been
calculated for different combinations. Poisson’s effect is taken into account; however, other
coupling effects of shear–normal and bending–twisting are excluded. It is well known that the
longitudinal modulus is maximum for 01 ply angle and minimum for 901 ply angle. For this
reason, different locations of 01and 901 ply angles give rise to different shaft natural frequencies.
Singh and Gupta [5] have reported that EMBT does not differentiate between the stacking
sequences; it considers the laminate so thin that the effect of all layers is assumed to act at the
mean radius. However, in the present modified EMBT, the effect of the stacking sequence is taken
into account while calculating the equivalent longitudinal and inplane shear modulii. Results
presented in Table 5 show that the natural frequencies as obtained by both theories are different
for different stacking sequences of 01 and 901 ply angles. As expected, it is maximum for
configurations in which 01 ply angle is placed at the outermost position and minimum for
configurations in which 01 ply is placed at the innermost position. From the results obtained by
modified EMBT, it is clear that the first mode natural frequency varies in the range from 331.5 to
345.5Hz (4.5%). Similarly the second and third mode natural frequencies vary in the ranges
1055.6–1084Hz (2.5%), and 1876.3–1907.9Hz (1.5%), respectively. The results obtained by
EMBT [5] show the same values of 339, 1071 and 1895Hz for the first, second and third modes,
respectively for all stacking sequences. However, the modified EMBT has taken into account the
effect of different stacking sequences similar to that of LBT. This is clear from the close agreement
of the results obtained from both theories for different configurations. In a similar study, the
effect of placing different ply angles at different positions along the shaft thickness on the natural
frequency is studied. Two plies of 01 and 451 ply angles were taken, as it is well known that 01 ply
angle has a longitudinal modulus much larger than that of 451 ply angle. Accordingly, the bending
Table 5

Variation of natural frequencies (Hz) with stacking sequence

Configuration LBT Modified EMBT

1st 2nd 3rd 1st 2nd 3rd

90,90,0,0 346.735 1093.655 1931.904 345.508 1083.983 1907.939

0,0,90,90 330.444 1047.112 1855.032 331.500 1055.628 1876.276

0,90,90,0 338.925 1071.792 1896.808 338.787 1070.539 1893.051

90,0,0,90 338.548 1070.329 1893.407 338.507 1069.973 1892.419

0,90,0,90 334.630 1059.275 1875.537 335.110 1063.059 1884.671

90,0,90,0 342.775 1082.544 1913.962 342.112 1077.228 1900.487

45,45,45,0 319.837 1188.506 2422.782 319.565 1185.038 2409.689

0,45,45,45 305.028 1134.293 2313.571 305.28 1137.543 2325.98
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natural frequencies are controlled by the position of 01 ply angle rather than 451 ply angle. It is
expected that as 01 ply angle moves towards the outer radius, the natural frequencies will increase.
Table 5 presents the effect of relative positions of 01 and 451 ply angles on the shaft natural
frequencies. It is observed that first mode natural frequency increases from 305 to 319Hz as 01 ply
angle is moved from the innermost to outermost position. An increase of the order 5% is observed
in the second and third mode natural frequencies also. This is clear from the results obtained by
modified EMBT and LBT. However, EMBT gives the same value of 313, 1165 and 2375Hz for
first, second and third modes, respectively for both configurations.
4.4. Effect of shear–normal coupling

In the present analysis shear–normal coupling effect is accounted for by taking the contribution
of the terms �Q16 and

�Q26 in the calculation of longitudinal and inplane shear modulii in both of
modified EMBT and LBT. The effect of bending–twisting coupling is not included here.
Generally, for a laminate of configurations having þy in one side from the mid-plane and �y (of
the same thickness and material) on the other side of the mid-plane, the coupling terms �Q16 and
�Q26 are automatically cancelled and shear–normal coupling is not present. Examination of Eq.
(16b) which accounts for updating the value of �Q11 to be substituted in the calculations of
longitudinal modulus shows that Poisson’s effect is inherently accounted for. This is clear by
putting �Q16 and

�Q26 ¼ 0; which reduces Eq. (16a) to Eq. (13b) which accounts for Poisson’s effect
only. Table 6 shows the effect of shear–normal coupling on the natural frequencies of the shaft
considered earlier, but made of single ply of total thickness of 4mm. Results obtained from
modified EMBT and LBT are in excellent agreement. These also show that there is a significant
reduction in the shaft natural frequencies obtained by including shear–normal coupling effect.
However, the amount of reduction is different for different ply angles which indicates that
shear–normal coupling depends strongly on the fibre angle. Observations made from Table 6
show that for 01 and 901 ply angle, shear–normal coupling is not present and the natural
frequencies are the same as that obtained by accounting for Poisson’s effect only (as shown in
Table 3). However, for other ply angles there is a considerable reduction in the natural
frequencies. The maximum reduction in the first mode is about 30% (i.e. from 325.4 to 226.9Hz)
Table 6

Variation of the natural frequencies (Hz) including shear–normal coupling effect

Ply angle (1) LBT Modified EMBT

1st 2nd 3rd 1st 2nd 3rd

0 427.328 1226.653 2055.427 427.135 1225.237 2051.499

15 326.468 1055.622 1896.457 326.391 1054.897 1894.269

30 226.898 813.504 1595.378 226.875 813.240 1594.441

45 177.790 661.52 1350.92 177.778 661.497 1350.355

60 154.100 579.373 1197.217 154.093 579.282 1196.850

75 143.332 539.377 1115.778 143.325 539.293 1115.449

90 140.240 527.461 1090.432 140.234 527.378 1090.106
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corresponding to 301 ply angle. The variation of shear–normal coupling is associated with the
variations of the coupling terms �Q16 and

�Q26 with different ply angles. It is maximum at 301 ply
angle and absent at 01 and 901 ply angles. This explains the maximum reduction in the natural
frequency obtained at 301 ply angle. The decrease in the second and third modes natural
frequencies due to the presence of shear–normal effect is also substantial, i.e. 1024.3–813.2Hz,
and 2442.8–1594.4Hz, respectively, for 301 ply angle.

4.5. Effect of bending–twisting coupling

Bending–twisting coupling is a phenomenon associated with composite structures. This gives
significantly different results as compared to cases in which this coupling is exactly zero. However,
if the number of plies in the structure is increased, the effect of bending–twisting coupling will be
small and can be neglected. In the present work, EMBT is modified to account for
bending–twisting effect. The strain energy associated with bending–twisting is added to the total
strain energy of the shaft. Initially, a shaft of similar geometrical and material properties to that
analysed by Bert and Kim [4] is studied. Later, this work has been extended to account for
Poisson’s effect. The shaft material properties as given by Bert and Kim [4] are: longitudinal and
transverse modulii of 139GPa, 11GPa, shear modulii G12 ¼ G13 and G23 are 6.05GPa and
3.78GPa. Poisson’s ratio and density are 0.313 and 1578 kg/m3 respectively. Shaft geometrical
parameters are length 2.47m, mean diameter 126.9mm and total thickness of 1.321mm.
Results as obtained by the present work using modified EMBT taking into account

bending–twisting coupling effect only (all other coupling effects are excluded) are compared
with that of Bert and Kim [4]. Table 7 (columns 3 and 5) gives a comparison for the first mode
natural frequency obtained by Bert and Kim [4] and the present work using modified EMBT.
Bending–twisting coupling effect is taken in both formulations. Analyses of the results show a
close agreement in the natural frequencies for different configurations as obtained by both
formulations. It also shows the reduction in the natural frequencies for shafts with different ply
angles due to bending–twisting coupling effect. This reduction is maximum, 14.35% (i.e. from
82.2–70.3Hz), as shown in Table 8 for 301 ply angle. No reduction is observed for 01 and 901 ply
angles. This is expected for such ply angles which have no coupling terms, i.e. �Q16and

�Q26 ¼ 0 and
consequently D16 and D26 are also absent.

4.6. Effects of combined shear–normal and bending–twisting coupling

Further, the previous study of Bert and Kim [4] shaft has been extended to include Poisson’s
effect only and combined effects of Poisson’s and bending–twisting coupling. Results for these
cases are presented in columns 6 and 7 of Table 7. Comparison of the results presented in column
6 obtained by including Poisson’s effect only and that of column 5 obtained by including
bending–twisting only shows that Poisson’s effect causes greater reduction in the shaft natural
frequency as compared to that obtained by bending–twisting coupling effect. Also, the amount of
reduction in the natural frequency is maximum at 451 ply angle, while for bending–twisting
coupling, it is maximum at 301 ply angle. The variation in the reduction of shaft natural frequency
due to Poisson’s effect and bending–twisting coupling can be explained as follows. Reduction in
the natural frequency due to Poisson’s effect is mainly due to variation of the coupling term �Q12



ARTICLE IN PRESS

Table 8

Percentage reduction in the first mode due to different coupling effects

Ply angle (1) 0 15 30 45 60 75 90

% reduction due to BT only (cols. 4&5 of Table 7)* 0 10.0 14.3 13.3 7.5 0.9 0

% reduction due to Poisson’s only (cols. 4&6 of Table 7)* 0.34 3.6 20.3 31.6 21.0 4.0 0.36

% reduction due to SN only (cols. 6&8 of Table 7)* 0 25.8 36.5 14.0 2.6 0.2 0

% reduction due to combined effect (cols. 4&9 of Table 7)* 0.34 45.2 87.2 70.9 33.7 5.4 0.36

*The percentage decrease at any column is calculated based on the values given in Table 7.

Table 7

Variation of first mode natural frequency (Hz) with different coupling effects

Ply angle

(1)

Bert and Kim [4] Present work Present work

Bending

Twisting

excluded

Bending

Twisting

included

Bending

Twisting

excluded

Bending

Twisting

included

Poisson’s effect included Shear–normal included

Bending

Twisting

excluded

Bending

Twisting

included

Bending

Twisting

excluded

Bending

Twisting

included

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0 101.2 101.2 101.33 101.33 100.99 100.99 100.99 100.99

15 96.47 86.82 96.56 86.87 93.06 82.78 69.03 52.86

30 81.67 69.95 82.16 70.3 65.48 48.98 41.56 10.49

45 60.4 52.38 61.1 52.83 41.77 27.89 35.9 17.77

60 41.07 37.97 41.57 38.32 32.84 28.56 31.96 27.55

75 31.53 31.23 31.91 31.53 30.63 30.23 30.57 30.17

90 30.05 30.05 30.38 30.38 30.27 30.27 30.27 30.27
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which is maximum at 451 ply angle. However, the reduction in the natural frequency due to
bending–twisting coupling effect is mainly due to the coupling term �Q16 which is maximum at
about 301 ply angle. Later, this study has been extended (using modified EMBT) to take into
account, first, shear–normal coupling effect only, and second, all coupling effects in combination.
Results are presented in columns 8 and 9 of Table 7, respectively. The reduction in the natural
frequency due to shear–normal coupling is more than that due to bending–twisting coupling and
Poisson’s effect. This is also maximum at 301 ply angle which is mainly due to the variation of the
coupling term �Q16: A drastic reduction in the shaft natural frequency for different ply angles is
obtained by including all coupling effects in combinations as shown in column 9 of Tables 7 and 8.
For example, for 301 ply angle, the fundamental natural frequency drops down to 10.49Hz from a
value of 81.67Hz, when both the bending–twisting and shear–normal coupling effects are taken.
Effects of different coupling mechanisms on shaft first natural frequency for different ply angles
are shown in Fig. 4. It is observed that different couplings give rise to different amounts of
reduction in the natural frequency for shafts with different ply angles. At 01 and 901 ply angles, no
reduction is observed in the natural frequency due to bending–twisting coupling; however,



ARTICLE IN PRESS

Fig. 4. Variation of natural frequency with different ply angles due to different coupling mechanisms. —J—, excluding

all coupling; —&—, with bending–twisting (only); —n—, with Poisson’s effect (only); - -J- -, with Poisson’s effect and

bending–twisting; - -&- -, with shear–normal (only); - -D- -, including all coupling.
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Poisson’s effect is minimum. At ply angles in the range 70–901, coupling effects either taken
individually or in combination are small. It is also clear from Fig. 4, that the amount of reduction
in the natural frequency due to bending–twisting coupling is more than that due to Poisson’s
effect for ply angles in the range 5–271. However, for ply angles in the range 27–851, Poisson’s
effect is more dominant than that of bending–twisting coupling. This is mainly due to variation of
the coupling terms ( �Q12; �Q16 and

�Q26) with the ply angle. Similarly the amount of reduction in the
natural frequency due to shear–normal coupling is more than that due to the combined effect of
Poisson and bending–twisting for shafts with ply angles in the range 0–351. However, for shafts
with ply angles in the range of 35–901, the combined effect of Poisson and bending–twisting is
more than that due to shear–normal coupling. A significant amount of reduction in the shaft
natural frequency is obtained due to combined effect at ply angles in the range of 30–351.
5. Conclusion

In this paper, EMBT with transverse shear deformation, rotary inertia and gyroscope effects
has been modified. The modifications take into account plies stacking sequence and different
coupling mechanism effects. Shear–normal coupling effect also has been included in the LBT.
Results obtained from both theories have been compared with each other and with that available
in the literature. The following are the main points which can be drawn from the results of this
study:
1.
 In spite of its simplicity, the natural frequencies obtained using modified EMBT excluding
different coupling effects agree well with those obtained using LBT and with that reported in
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the literature. Effects of stacking sequence and unsymmetric configuration, which are the main
disadvantages of EMBT, have been incorporated and the results obtained compared well with
that of LBT.
2.
 Different coupling mechanisms, as obtained from both theories, were found to reduce shaft
natural frequencies. The percentage reduction depends on coupling mechanisms available in
different ply angles. For Poisson’s effect the maximum reduction in the shaft natural frequency
is found to be at about 451 ply angle, however for shear–normal and bending–twisting
coupling, the maximum reduction is found to be at about 301 ply angle.
3.
 Analysis has shown that, Poisson’s effect will be inherently incorporated in the formulation of
shear–normal coupling. For balanced configuration shear–normal effect is not present, but
Poisson’s effect will be present and has to be incorporated.
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