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Abstract

An eigenanalysis problem concerning planar closed-frame structures is investigated. A hybrid analytical/
numerical method is proposed that permits an efficient dynamic analysis of these structures. The method
utilizes a numerical implementation of a transfer matrix solution to the analytical equation of motion. By
using the Timoshenko beam theory, by analyzing the transverse and longitudinal motions of each segment
simultaneously, and by considering the compatibility requirements across each frame angle, the
undetermined variables of the entire frame structure system can be reduced to six. Then, by considering
the relationship between the first segment and the last segment in the closed structure, the eigenvalues can
be obtained by the existence of the non-trivial solutions. The main feature of this method is decreasing the
dimensions of the matrix involved in the finite element methods and various other analytical methods.
© 2004 Published by Elsevier Ltd.

1. Introduction

Frame structures are usually used in the engineering designs, i.e., cranes, bridges, aerospace
structures, etc. The dynamic behaviors of frame structures can be predicted by using various
analytical and numerical methods such as the dynamic stiffness method (DSM) and the finite
element method (FEM). The DSM employs the solutions of the governing equations under
harmonic nodal excitations as shape functions to formulate the analytical stiffness matrix. The
method requires the closed-form solutions of the governing equations and which restricts the
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application areas [1]. The FEM has been used very commonly in recent years in this field.
However, the FEM requires a large amount of computer memory and computation time, since it
requires many degrees of freedom for solving dynamic problems accurately for these structures
[2,3]. To solve this problem, various methods have been studied to overcome these disadvantages
[2,4,5]. In most of the previous studies, the model of the Euler—Bernoulli beam theory by deriving
the differential equation and the associated boundary conditions for a basic uniform
Euler—Bernoulli beam are often used and discussed. The model of an Euler—Bernoulli beam is
simpler; however, it has some restrictions in its applications, especially, in cases of short beams [6].
Some research has also studied the different results between the models of the Euler—Bernoulli
beam theory and the Timoshenko beam theory. Finally, it is possible to evaluate natural
frequencies simply by finding roots of the high-order determinant of the coefficient matrix of the
linear system if the accuracy of the eigensolutions is required.

This investigation presents a hybrid analytical/numerical method that permits an efficient
computation of the eigensolutions for closed-frame structures by using the Timoshenko beam
model. The method is based on partitioning a closed-frame structure to the sub-beam segments. By
considering the transverse and longitudinal motions of each segment simultaneously, and by the
compatibility requirements across each frame angle, the relationships among the six integration
constants of the eigenfunctions between adjacent sub-beams can be determined. By using the
transfer matrix methods [11-13], as a consequence, the entire system has only six unknown
constants. Then, by considering the relationship between the first segment and the last segment in
this closed structure, the eigenvalues can be obtained by the existence of the non-trivial solutions.

2. Theoretical model

A typical planar closed-frame structure with K frame angles 01,0, ..., 0; is shown in Fig. 1.
This structure is partitioned into K components at the angle positions, thereby enabling a
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Fig. 1. A planar closed-frame structure with K frame angles 0y,0,,...,0k located at positions X, X5..., Xk,

respectively, with sub-beams Ly, L,,...,Lx where Ly + L, +---+ Lg = L.
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sub-structure approach. There are K sub-beams with lengths L, L,,..., L; and the positions of
the frame angles are located by X, X», ..., Xk, respectively, in Fig. 1. When doing a vibration
analysis of the system presented in this article, each component member (sub-beam) is analyzed by
its transverse and longitudinal motions, respectively. Let the X-axis represent the longitudinal
direction and the Y-axis represent the transverse direction of each component member; then, the
transverse vibration by Timoshenko beam theory and the axial vibration of a rod is considered.
The vibration amplitudes of the transverse and longitudinal displacements of component i (sub-
beam) are denoted by Y;)(X, T) and U;(X, T) on the interval X;_; <X <X}, where the sub-index
i represents the ith segment and i = 1,2, ..., K, as shown in Fig. 2. The entire system is now divided
into K segments and the total length of this planar closed-frame system is L(= L; + L, + ... + Lg).
From Ref. [6-10], the equations of motion for each segment, assumed with a uniform cross-
section, are
Transverse motion:

EIa“Y@(X, 7. AaZY@(X, T) T ENYp(X,T) Pt Y, D_,
ox* oT? kG) oT*0X? kG or* ’
Xiog<X<X;, i= 1,2,...,K. (1)
Slope due to bending:
Ela4q§(,~)(X, 7. Aazqs(,-)(x, D_ i1+ E ' py(X,T) | p 13 (X, T) _o
ox* oT? kG) oT*Xx*> kG  oT* ’
Xiog<X<X;, i=12,..,K. (2)
Longitudinal motion:
PUHX,T) UuX, T
plYoXT) ol )zo, Xi<X<X, i=12.K, 3)

ox? oT?

where @;)(X, T) is the rotation of the line elements along the centerline only due to bending, E is
Young’s modulus of the material, / is the moment of inertia of the beam cross-section, p is the
density of material, 4 is the cross-section area of the beam, G is the shear modulus, k is
the Timoshenko shear coefficient, which may also be a function of Poisson’s ratio v [6], and T
is the time. The shear force V" and bending moment M at each cross-section of the beam can be

Y axis

Yi(X,T): transverse displacement

Component i Ui(X,T): longitudinal displacement
X axis

Xia Xi

—_——»X

1
L

Fig. 2. Transverse and longitudinal motions of a segment.
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expressed as [6]
V(X,T)=—kGA[Y'(X,T) — &(X, T)]

M(X,T) = EI®' (X, T).

The transverse and the longitudinal motions at the end of the segment before each frame angle
constrain the motions of the adjacent segment after the same frame angle. Therefore, the
“compatibility conditions” enforcing continuities of the displacement fields (both in transverse
and longitudinal), the slope, the bending moment, the shear force and axial force, respectively,
across each frame angle 0;, as shown in Fig. 3a (displacements) and 3b (forces), and can be

~w
YiXT) o7 \ segment i+1

(a) || segment i

segment i+1

f—————— segment ;

(b) ]

Fig. 3. (a) Displacement compatibility requirements across ith frame angle 0;: Y; and U; are transverse and longitudinal
displacements of segment 7 at position X;. (b) Force compatibility requirements across ith frame angle 0;: V; and F; are
shear and axial forces of segment i at position X;.
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expressed as [13]

Yirny(XH, T) ==Y (X7, T)cos0;+ Uy(X;,T)sin0;, displacement continuity, (4a)
Uiy X, T) = =Y u(X;, T)sin0; — Uy (X;, T)cos0;, displacement continuity, (4b)
Yin(X{,T)=Y,(X7,T), slope continuity (4c)

EI®' 11X, T) = EI &,(X;,T), moment continuity (4d)

—kGA[Y (i (XF,T) = Gey(X{, T)] = kGA[Y (X7, T) — (X7, T)]cos b;

— EA UEi)(X ;»T)sin 0;, shear continuity, (4e)

EAU,, (X[, T) = —kGA[Y (X[, T) — & (X7, T)lsin 0;

— EA UE:')(X ;> T)cos0;, axial force continuity, (4f)

where the symbols X} and X; denote the locations just above and below the angle position X.
All the assumptions in the above compatibility conditions are the same as the traditional analysis
of the transverse vibrations of a Timoshenko beam and the axial vibrations of a rod. The frame
angles are also assumed to be unchanged during the motions of the frame.

In the above, the following quantities are introduced:

Yo X U T L; X,
N — "1 ':¢i> = 7> = 5 > == =75, i= 5 - a—
Thus, in each segment, Egs. (1)~(3) can then be expressed in non-dimensional form as
EI a4y(i)(X, 1) oA azJ’(i)(xa 7 ol 1 E a4J’(z’)(Xa - p @4)’(1')(?@ 1) —0
L} oxt or? L’ kG) ordx?  kGL  ort ’
X1 <X<Xj, i=12,.. K. (6)
EITpy(x0) | y oo _pl (| ENTdoten)  p1 by _
L oxt or? L’ kG) 0r*0x2 kGL  or* ’
Xio] <X <Xj, i=12,.. K. (7)
E qu(,-)(x, 1) azu(,-)(x, 1) .
T o2 0 o =0, x_1<x<x;, i=12,.,K. (8)
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The non-dimensional “‘compatibility conditions” across each frame angle are (from Egs. (4a)

to (4f))

Virn(Xi ) = =y (x;, 1) c0s 0; 4 up(x;, 1) sin 0, (92)
Uy (X7 . 1) = =Y (x; 5 D sinb; — u)(x;, 1) cos 0;, (9b)
Vi 1) = v (7, 0, (9c)
¢Ei+l)(x?_, 1) = ¢ (x5 0), (9d)
/ / — — E / — .
Y(i+l)(xj_, 1) — <75(i+1)(X,7L, ) ==y, 0 — ¢u(x;, D]cos0; + Eu(i)(xi ,1)sin 0, (%¢)

/ kG, . -
U (X7, 1) = _sz(i)(xi 1) = (X, D]sin 0; — u (x;7, ) cos 0;,
wherei=1,2,.... K. (1)

3. Calculation of eigensolutions

Using the separable solutions y;(x, 1) = w(;(x) el and ugy(x, 1) = v(i)(x)ej‘“’ in Egs. (6) and (8)
leads to an associated eigenvalue problem

Wiy (X) + (6 + Dw(p(x) — (@0 = owep(x) =0,  x1<x<x;, i=12,..,K, (10)
vg.)(x) + Vzv(,-)(x) =0, x_1<x<x;, i=12,.,K, (11)
where
Loy’ Lo’ ApL’w? Loy’
g = pEco , T= pk?;) , o= pEIw and % = pEa) ag. (12a—12d)

The general solutions of Egs. (10) and (11), for each segment, are [10]
W(,’)(X) = A,'COSh )Vl(x — X,',l) + B,' Sinhil(x — Xifl)
4+ C;cos Ay(x — x;—1) + D;sin Ax(x — x;_1),

Xi_1<x<x;, i=12,..K, (13)

v (x) = E;jsiny(x — x;—1) + F;cos p(x — x;_1), X1 <x<x;, i=12,..,K, (14)

where

1/2 1/2
\ o—1T\?2 o+ ) g —1\2 o+
m:( ( > ) +o— > ) , @:( ( 5 ) + o+ > ) . (15a,b)
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Similarly, from Eq. (7), by letting ¢, (x, 1) = (p(l-)(x)ejwt, a general solution for ¢;(x) is derived
as [10]
¢)(x) = Bigy cosh Aj(x — x;—1) + Aiqy sinh 41(x — x;1)
— Diq,cos Zo(x — xj—1) + Cigy + sin Aa(x — xi_1),

X <x<x;, i=12,..,K, (16)
where
G =03+, a=05-2)/h, is=(pLo’/kG)". (17a—c)
In the above equations (Egs. (13), (14) and (16)), 4;, B;, C;, D;, E; and F; are constants
associated with the ith segment (i = 1,2, ..., K).

From Egs. (9a) to (9f), the corresponding compatibility conditions across each frame angle lead
to

Wi (X)) = —w(p(x7) cos 0; + vy (x; ) sin 0y, (18a)

v+ (xH) = —wp(x7) sin 0; — v (x;) cos b;, (18b)

WEHI)(X;F) = wéi)(xi_), (18¢)

Parn(X) = 04(x7), (18d)

W£i+1)(x;r) — go(l-H)(x;’) = —[wzi)(xl._) — @(;)(x; )] cos 0; + % vzi)(xl._) sin 0;, (18e)

/ kG / — — 3 / —
U(i+1)(xl+) = - f[w(,')(xi ) — (P(z')(xi ) sin6; — U(i)(xi )cos 0;,
for i=1,2,..,K. (18f)

A closed-form solution to this eigenvalue problem can be obtained by employing the transfer
matrix method [11-13]. The constants in the (i+1)th segment of Egs. (13), (14) and (16),
Aiv1, Bivi, Civ1, Div1, Eiq, Fip1, are related to those in the ith segment (A4;, B,
C;, D;, E; and F;) through the compatibility conditions in Eqs. (18a)—(18f); thus, these
constants can be expressed as

A1) NE (4
B 11 o N3 tis hts e B; B;
Cor L _ | Sl dSl i ko,
Dy : D; D;
Eivt || oo Loo E; E;
Fii1) ( F; F;

(19)
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where T(6’)X6 is the 6 x 6 transfer matrix which depends on the eigenvalue , the elements of which
are derived in Appendix A.

Through repeated application of Eq. (19), the six constants in the first segment (4;, B;, C,
D, E; and F;)can be mapped into those of the last segment (4dx, Bx, Cx, Dk, Ex and Fkg),

thereby reducing the number of independent constants in the entire system to six:

( Ay
By
Ck
Dk
Ex
Fx

( Ak
Bk

_ qk-n) Cx

6x6

Dk
Ex_

Fr_i

_ &-1)
_'T%xé

@ TO

T 6x6 7T 6x6

A
B
Ci
D
E,
\ Fy )

(20)

Because of the characteristics of the closed structures, the relationship of the constants in the
Kth segment (Ax, Bk, Ck, Dk, Ex and Fg) and the first segment (4;, B;, Ci, Dy, E; and Fy)
can be expressed as (refer to Fig. 1)

By substituting Eq. (20) into the above equation,

(A,
By
C
D,
E;
F

_ T K-

7

6x6 " 6x6

()

ra1(w)

L761()

Ay
B,
C
D,
E,
Fy

@ O

T 6x6 7T 6x6

ra(w)  ri(w)

Ak
By
C
K K
K
Ex
<FK V,

(Al (Al
By By
C C,

= Rexs
Dy D
E E,

L F1 ) Fy

rig(w)  ris(w)

r16(@) ]

r26(w)

res()

(Al

Ci
D,

F
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where Rgy6 = T(61i)6 Tgigl) . .T(62X)6T£31X)6 The above equation can then be expressed as
A Ay (A
B, B, B,
Rexe ol ot (Rex6 — Toxo) “t_ 0, 21
D, D, D,
E| E, E,
 Fy Fy Fy)

where I¢y¢ 1s an identity matrix. Thus, the existence of non-trivial solutions requires
det|Rgxs — Igxsl = 0. (22)

This determinant provides the single (characteristic) equation for the solution of the eigenvalue
w,. When eigenvalues are obtained, the coefficients of the eigenfunctions, w(,(x) and v, (x), are
then determined by back-substitution into Egs. (21) and (19) first and then into Eqgs. (13) and (14).

4. Numerical results and discussion

The method for obtaining the eigenvalues (natural frequencies) proposed in this article is that of
finding the non-trivial solutions of the determinant in Eq. (22). This is a nonlinear algebraic
equation which can be solved by using the standard Newton—Raphson iterations or, for
simplification, by using the method shown in Fig. 4 to obtain the eigenvalues.

The Timoshenko shear coefficient k in the governing equations (Egs. (1) and (2)) is used to
simplify the non-uniform shear stress distribution at a cross-section to retain the one-dimensional
approach. There are virtually as many different definitions of k as there are published papers on
the Timoshenko beam. Here, Cowper’s definition of k, which is a function of a cross-section,

calculation for eigenvalues

05}
04}
03}
02}
01}

determinant
o

-0.1
-0.2
03}
04}

-05}

0 02 04 06 08 1 12 14 16 18 2
-——=> eigenvalues

Fig. 4. Simple calculation of eigenvalues.
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Poisson’s ratio v [6], and for the case of the square cross-section used in this article, k =
10(1 +v)/(12 + 11v) are used. The Timoshenko beam model, in which the shear deformation
effect has been considered, and, thus, its applications are much wider than those of the traditional
Euler—Bernoulli beam model. When a beam is short enough, then the shear deformation effects
cannot be ignored, in which case the results of the Euler—-Bernoulli beam model are no longer
valid.

In order to validate the method presented in this article, some numerical results are compared
with the experimental data. First is the case of a triangular closed-frame structure, as shown in
Fig. 5. The non-dimensional lengths and the frame angles are /; = 0.293, [, =0.293, 5 =
0.414, 0, =n/2, 0, ==n/4, 03 = /4, the total length L(= L; + L, + L) is 0.92m. The square
sectional dimensions and material properties are: section width, B = 12.7mm; section height,
H = 12.7mm; density, p = 7800 kg/m?3; Young’s modulus, E = 2.06 x 10'' N/m?; shear modulus
of elasticity, G = 79 x 10° N/mz; and Poisson’s ratio, v = 0.3. This triangular frame structure is
suspended by a rubber band, for which the setup of the test is shown in Fig. 6. An impact test is
used by an impact hammer (load cell, PCB 208C02), an accelerometer (PCB 352 C65) and a
dynamic signal analyzer (Stanford Research Systems, model SR785). The accelerator is located at
the midpoint of the side and the impact hammer hits the other side (refer to Fig. 6). From the

Fig. 6. Experimental modal testing of triangular frame structure.
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Fig. 7. Measured transfer function of triangular frame structure.

Table 1

Experimental comparisons

Measured natural frequencies (Hz) Calculated natural frequencies (Hz) Error (%)
Q= 414 414.28 0.07

Q= 576 587.69 2.03
Q=912 907.41 0.50

Q= 1160 1162.91 0.25

Experimental comparisons of a triangular closed-frame structure with /; = 0.293, [, =0.293, /5 = 0.414, 0, = /2,
0, = n/4, 03 = n/4, a total length of L(= L + L, + L3)=0.92m, a section height of H=1.27cm, a section width of
B=1.27cm, a density of p = 7800 kg/m3, a Young’s modulus of E = 2.06 x 10" N/mz, a shear modulus of elasticity of
G=179 x 10° N/mzand a Poisson’s ratio of v = 0.3, shown in Fig. 5.

experimental modal testing, a transfer function is measured as shown in Fig. 7, from which the
lowest four natural frequencies are obtained as Q| = 414, Q, = 576, Q23 =912, Q4 = 1160 Hz.
The comparisons of the calculated natural frequencies from this study and the measured results
are shown in Table 1. From Table 1, it can be observed that the errors are small and satisfactory.

For another case of a square closed-frame structure with [y =L =13 =10,=0.25,0, =6, =
03 = 04 = /2, a total length of L(= L, + L, + L3 + Ls) = 0.96 m, the sectional dimensions and
material properties are the same as in the aforementioned case. Table 2 shows the comparisons of
numerical and experimental results. From Table 2, again, it can be observed that the errors are
also small and acceptable.

When the eigenvalue (natural frequency) is obtained, the coefficients of the corresponding
eigenfunction (mode shape), wg,(x) and vg)(x), can be determined by back-substitution into
Egs. (21) and (19) first and then into Eqgs. (13) and (14). For the triangular closed-frame structure
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Table 2

Experimental comparisons

Measured natural frequencies (Hz) Calculated natural frequencies (Hz) Error (%)
Q= 304 297.03 2.30

Q,= 516 513.38 0.50

Q3= 1192 1153.42 3.34

Experimental comparisons of a square closed-frame structure with [} =L, =13 =10, =025,0, =0, =0; =0, =7/2,a
total length of L(= L; + L, + L3 + L4)=0.96m, a section height of H = 1.27cm, a section width of B=1.27cm, a
density of p = 7800 kg/m3, a Young’s modulus of E =2.06x 10" N/m2, a shear modulus of elasticity of
G =79 x 10’ N/m*and a Poisson’s ratio of v = 0.3.
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Fig. 8. Lowest four mode shapes of triangular frame structure.
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shown in Fig. 5, by the solution procedure proposed in this article, the lowest four mode shapes
are calculated as shown in Fig. 8a—d.

5. Conclusions

A hybrid analytical/numerical solution method has been developed that permits an efficient
evaluation of eigensolutions for planar closed-frame structures. This method is based on modeling
each sub-frame beam by the Timoshenko beam theory and considering the compatibility
requirements across each frame angle. By using the analytical transfer matrix method, the
characteristic equation of this system can be obtained. Eigensolutions can then be determined
numerically by solving this characteristic equation. The method presented in this article is also
validated by the data from the experimental modal testing. Unlike all the other methods, in which
the dimensions of the matrix increase with the complexity of the structure, there are only six
undetermined coefficients in the method proposed herein. The main feature of this method is that
of decreasing the dimensions of the matrix involved in the finite element method and certain other
analytical methods.
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Appendix A. Transfer matrix derivation

The compatibility conditions across the ith angle (i=1,2,...,K) are represented in Egs.

(18a)—(18f).
From Egq: (18a):

W) (X7) = —w(x;) €08 0; + vip(x; ) sin 0;
— Ajr1 4+ Ciyy = — (4;cosh A1l; + B;sinh A1l; + C;cos Axl; + D; + sin Ay/;) cos 0;
+ (E;sinyl; + F;cosyl;)sin0;, i=12,.. K. (A1)

From Eq. (18D):
V(X)) = —wp(x7) sin0; — v (x;) cos 0,
— Fi 1 = —(A;cosh A1/; + B;sinh A;1; + C;cos J,l; + D; sin A/;) sin 0;
— (E;sinyl; 4+ F;cosyl;)cos 8;, i=12,..,K. (A.2)
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From Eq. (18c¢):
Wi (X;) = Wi (),
— Bir141 4+ Diy14y = A;A; sinh A1l + Bjq cosh A1l
— Cilpsin bl; + DiJocosAal;, i=1,2,.. K. (A.3)

From Eq. (18d):
<PE,'+1)(X?) = (X)),
— Air1q141 + Cip1gy40 = Aiqy A1 cosh A1l; + Big 21 sinh 4;/;
+ Ciqy/2 +cos ol + Digydasin daly,  i=1,2,.., K. (A4)

From Eq. (18e):

/ ;o _ E , .
Wir 1y (5 = @y (X = =D, (X7 — @i (x;)] cos 0; + Ev(i)(xi )sin 0;,
— Biy141 + Dig1A2 — (Biy19; — Div14y)
= —[(4;4; sinh Al; 4+ Bilycosh A1l; — Cilysin Axl; + D;J, cos izl,‘)
— (A4;q, sinh A11; + B;q, cosh A11; + C;q, sin 431; — D;q, cos Azl;)] cos 0;

E
+ E(Eiy cosyl; — Fyysinyl;)sin 0;, i=12,..K. (A.S)
From Egq. (18f):
/ —+ kG / — — : 9 / — 0
U(;+1)(x,' )= — f[w(i)(x,' ) — @giy(x;)lsin 0; — U(,')(x,' )cos 0;,

kG
- E1y= — f[(A,-)blsinh Ali + BiAdicosh Ay l; — CiAzsin Ayl + Didycos Aal;)

— (A4;q,sinh A11; + B;q,cosh 41/; + Ciq,sin Ayl; — D;g,cos A21;)]sin 0;
— (Eyycosyl; — Fyysinyl;)cos 0;, i=1,2,..,K. (A.6)

Solving for Egs. (A.1)-(A.6) leads to the following recursion formulae for the constants
Ait1, Bit1, Civ1, Dig1, Eipr and Fiyg

At A (4 )
t th ti3 tu hs tig]?
Bi+1 11 12 13 14 15 16 Bi Bz
Ci : Ci ) ) Ci
D’“ = D’ =1, D’ . i=1,2,..,K
i+1 : i i
Bt || tes leg Ei E;
Fi+l \ F,‘ \ Fi
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Here, T(6’.)X6 is a transfer matrix composed of the elements:

A A A C
= el (6]1 L'+ cos; >cosh Al = — ﬂqz 2 (ql '+ cos 9i> sinh A/;,
G141 — g2t \qa/a @A — g2t \qala
b i )
ti3 = ﬁ(l + cos 0;)cos A/}, tis = L(l + cosf;)sin A;1;,
G171 — G2l G141 — qrl2
A . . A .
s =——— 9212 sin y/;sin 0;, tie = D2 cosy/;sin 0;,
G141 — qrl2 G141 — qrl2
t /2 4 + A1 + Ajcos0; cos0; |sinh 44/
= /L. — i
21 4+ 0\ —q> 1 1 q, s
Ao )
ST E——— + A1 + Aicos0; — g cos0; |cos A1,
91)2 + g2/ ( R 1 h ) v
A
ty=——7-—7"—(1 0; A Ml ot —q( 0; A Al
3 Yy + (]2/11 (1 4+ cos 0;)(g, + Z2)sin Ayl; %= R qzm( + cos 0:)(q, + 42)c0s Aol
)2 E 12
hy = ——-"— cosyl; sin 6;, t _— siny/; sin 0,
25 qlfuz Y g kGV Y i 26 = 102 + 4o kGV Y i
A / .
1 = L(l + cosf;)cosh 4,1, t3p = $(1 + cos 0;)sin A/;,
G272 — 411 G272 — 4141
A A A A .
133 = h (q2 2 + cos 0,~> cos Aal;, t3 = Qit1 <q2 2 + cos 9,-) sin Aa/;,
G222 — q141 \g, /1 G222 — q141 \g /1
A A )
15 = Lsmyl sin 0, e = —Aqlilcos yl; sin 0,
Grl2 — q1 41 grA2 — q1 21
A
tyy =————( +cos 0; A)sinh A¢l;, ¢ _71—1-(:059 — J1)cosh A1,
41 q1/12+t12/11( g, — A1) 1 0 (]1/12+(]2/L1( g — 1) 1
Al 22 )
ty=———"——\—q, — o — A 0; — 0; Aol;
43 17+ 4o (/11 91 2 2COS U; — ¢, COS 1) S Azl
= a e A — Arcos 0 cos 0; ) cos Ao/
- qliz + q2il ;Ll ql 2 2 1 q2 1 W24,
P E 1
tys = all —ycos y/;sin 0, tig = — al —psin yl;sin 0;,

ts1 = /E—C;(ql — Apsinh Ay/;sin0;,  ts = ’E—?(ql — A1)cosh A1l;sin 0;,
ts3 = ’E—f(lz + qy)sin Apl;sin6;,  tsqa = ’1‘5—?(/12 + q,)cos Ayl sin 0,
tss = —cosyl;cos;,  tsg = sinyl;cos0;,
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te1 = —cosh A/;sin 0;,  tgp = —sinh A;/;sin 0,
te3 = —COS Apl;sin 0;,  teq = —sin Ayl;sin 0;,
tes = —sinyl;cos0;,  teg = —cos yl;cosb;.
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