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Abstract

Many analysis and design problems in engineering and science involve uncertainty to varying degrees.
This paper is concerned with the structural vibration problem involving uncertain material or geometric
parameters, specified as bounds on these parameters. This produces interval stiffness and mass matrices,
and the problem is transformed into a generalized interval eigenvalue problem in interval mathematics.
However tighter bounds on the eigenvalues may be obtained by using the formulation of the structural
dynamic problem. Often the stiffness and mass matrices can be formed as a non-negative decomposition in
the uncertain structural parameters. In this case the eigenvalue bounds may be obtained from the parameter
vertex solutions. Even more efficiently, using interval extension from interval mathematics, the generalized
interval eigenvalue problem may be divided into two generalized eigenvalue problems for real symmetric
matrix pairs. The parameter vertex solution algorithm is compared with Deif’s solution, the eigenvalue
inclusion principle and the interval perturbation method in numerical examples.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

All structures are subject to uncertainties of one form or another. The response of engineering
structures is affected by the uncertainties in the parameters and loading. The uncertainty may be
see front matter r 2004 Elsevier Ltd. All rights reserved.
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specified in a number of ways, such as probablistic [1], convex [2] or fuzzy [3] descriptions. This
paper concentrates on approximating the uncertain data using intervals, which may be classified
within the convex set descriptions. Suppose a is a structural parameter vector such that

apapā or a 2 ½a; ā� ¼ aI ; (1)

where a and ā denote the lower and upper bounds of the vector a, and aI represents the closed
interval that contains a, and is called the interval parameter. The influence of these errors or
uncertainties on the response of the structure, R(a), is of great interest. This is equivalent to
finding the lower and upper bounds, R and R̄; such that

RpRðaÞpR̄ for apapā: (2)

RI ¼ ½R; R̄� is referred to as the interval response, and is

RI ¼ ½R; R̄� ¼ fRðaÞ: a 2 aI ¼ ½a; ā�g: (3)

As an illustration of a system with an interval parameter, consider the single degree of freedom
spring–mass system shown in Fig. 1. The eigenvalue, which is the natural frequency squared, is

l ¼ o2 ¼
k

m
: (4)

Now let the spring stiffness k and the mass m be interval variables with intervals kI
¼ ½k; k̄� and

mI ¼ ½m; m̄�: The objective is to find the lower and upper bounds, l and l; of the eigenvalue l of
the spring–mass system. By natural interval extension [4],

lI
¼ ½l; l̄� ¼

½k; k̄�

½m; m̄�
¼

k

m̄
;

k̄

m

� �
: (5)

The eigenvalue bounds are then

l ¼
k

m̄
; l̄ ¼

k̄

m
: (6)

This corresponds to the usual engineering understanding, that the lowest eigenvalue is obtained
when the spring stiffness is at its lowest value, and the mass is at its highest value, and similar for
the upper bound on the eigenvalues. Notice that in Eq. (5) the interval variables kI and mI occur
only once, and hence, Eq. (5) yields the exact interval of the eigenvalue. An alternative
m

k

Fig. 1. The single degree of freedom spring–mass system.
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interpretation of the interval eigenvalue is to take the midpoint, lc
¼ ðl̄þ lÞ=2 as an

approximation to l, and half of the width, Dl ¼ ðl̄
 lÞ=2; as the uncertainty. Thus, the
computation of an interval eigenvalue containing an exact eigenvalue provides both an
approximation to the exact eigenvalue and error bounds on the approximate eigenvalue.
To find the range of the structural responses due to random structural parameters, the theory of

probabilitity may be used for cases capable of exact solution or otherwise Monte Carlo simulation
may be used. Such a calculation demands knowledge of the probability density functions of every
structural parameter, including their joint densities. Often there is insufficient probabilistic
information, and the set-theoretic approach independently pioneered by Schweppe [5] in control
theory and Drenick [6] in the response of structures to earthquakes. The convex modeling of
uncertainty was independently developed and applied by Ben-Haim and Elishakoff [2] in applied
mechanics. It should be stressed that the non-probabilistic, set-theoretic representation of
uncertainty (dubbed as unknown-but-bounded or uncertain-but-non-random model) in the
parametric space is motivated by the lack of detailed probabilistic information on the possible
distributions of the parameters. Non-probabilistic, set-theoretic modeling has been employed in a
wide range of engineering applications [2,7,8].
In this study, a new method for solving the generalized interval eigenvalue problem is presented.

Parameter uncertainties may cause significant changes in the natural frequencies or eigenvalues of
structures, and in particular, they may cause the occurrence of mode localization which can be
used as a means of passive control of vibrations. The interval eigenvalue problem has emerged in
recent years as scientists and engineers have begun to realize its wide applicability. Rohn [9]
studied the standard interval eigenvalue problem of a symmetric interval matrix and derived
formulas for interval eigenvalues when the error matrix has rank one. Hallot and Bartlett [10]
discovered that the spectrum of the eigenvalues of an interval matrix family depends on the
spectrum of its extremes set. Hudak [11] investigated ways to relate this to the eigenvalues of a
constant matrix under certain conditions. Based on the invariance properties of the characteristic
vector entries, Deif [12] presented a method to compute interval eigenvalues for the standard
interval eigenvalue problem. Qiu et al. [13] extended Deif’s method to the generalized interval
eigenvalue problem. The lack of an efficient criterion to judge the invariance properties of the
signs of the components of the eigenvectors under the interval operations, before computing
interval eigenvalues, appears to restrict the applications of Deif’s approach. To overcome this
limitation of Deif’s method, Qiu et al. [14] developed a method to compute interval eigenvalues by
assuming positive semi-definiteness of the error in the interval matrix pair. For small errors in the
matrices, Qiu et al. [15] presented an interval perturbation method for the interval eigenvalue
problem.
By considering the characteristics of an engineering structure using the non-negative

decomposition of the mass and stiffness matrices, this paper proposes a highly efficient and
widely applicable method for the generalized interval problem.
2. The generalized interval eigenvalue problem

Eigenvalue problems are commonly encountered in structural stability and vibration analysis.
In the general case the eigenvalues and eigenvectors are complex. However, when external forces
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are conservative, and no damping is considered in the structural analysis, the eigenvalues are real
and are related to the vibration frequencies. Although this paper only considers the case of real
eigenvalues of an undamped structure, this covers a significant range of analyses of interest.
Indeed very few finite element models consider damping. The vibration analysis of an undamped
structure leads to the generalized eigenvalue problem of the form

Ku ¼ lMu; (7)

where K ¼ ðkijÞ 2 Rn�n is the stiffness matrix, M ¼ ðmijÞ 2 Rn�n is the mass matrix and u=(ui) is
the eigenvector or the mode shape. The notation K=(kij) indicates that kij is the (i; j)th element of
the matrix K. For vibration problems l is the eigenvalue, or the square of the natural frequency,
o. K is symmetric and positive semi-definite, and M is symmetric and positive definite. The
eigenvectors are often normalized with respect to the mass matrix such that

uTMu ¼ 1: (8)

The mass and stiffness matrices are functions of the structural parameters, such as physical
properties and geometric variables, and thus

K ¼ KðbÞ; M ¼ MðbÞ; (9)

where b ¼ ðb1; b2; . . . ; bmÞ
T is the structural parameter vector.

Experiments have shown that the eigenvalues and eigenvectors vary because the physical
properties and geometric variables of the structure can neither be measured nor manufactured
exactly. Thus, the eigenvalues and eigenvectors are uncertain variables whose uncertain properties
are determined by the uncertain structural parameters of the stiffness and mass matrices. Thus,
consider the eigenvalue problem (7), where the structural parameter vector lies in an interval, as

bpbpb̄ or bipbipb̄i; i ¼ 1; 2; . . . ;m; (10)

where b ¼ ðbiÞ and b̄ ¼ ðb̄iÞ are the lower and upper bound vectors respectively of the structural
parameter vector b. In terms of interval matrix notation in interval analysis [4,16] the inequality
condition (10) may be written as

b 2 bI or bi 2 bI
i ; i ¼ 1; 2; . . . ;m; (11)

where

bI ¼ ðbI
i Þ; bI

i ¼ ½bi; b̄i�; i ¼ 1; 2; . . . ;m: (12)

bI is the interval structural parameter, and bI
i ; i ¼ 1; 2; . . . ;m; are the components of the interval

vector [14,17].
The bounds on the eigenvalue set and the eigenvector set, subject to the constraint conditions

(10) or (11), are

G ¼ fl: l 2 R; KðbÞu ¼ lMðbÞu; b 2 bIg: (13)

In general, the sets defined by Eq. (13) are very complicated; they are not interval vectors and
need not be convex. The objective, therefore, is to determine a closed interval for each eigenvalue,
lI

i ; such that

G � lI
¼ ½l; l̄� ¼ ðlI

i Þ; lI
i ¼ ½li; l̄i�; i ¼ 1; 2; . . . ; n; (14)
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where

li ¼ min
b2bI

liðKðbÞ;MðbÞÞ and li ¼ max
b2bI

liðKðbÞ;MðbÞÞ: (15)

The ith eigenvalue may be obtained from Eq. (7) or from

liðKðbÞ;MðbÞÞ ¼ min
Ui�Rn

max
u2Ui
ua0

uTKðbÞu

uTMðbÞu

� �
; (16)

where Ui � Rn is an arbitrary i-dimensional subspace [18–21]. This is an extended form of the
Rayleigh Quotient, where the size of the subspace of interest increases in dimension for the higher
eigenvalues. The discussion also far has concentrated on estimating the uncertainty in the
eigenvalues. The eigenvectors will also vary, and be contained within an interval vector. However,
eigenvectors are generally less sensitive to parameter changes than the eigenvalues, and will not be
considered further in this paper.
3. The non-negative decomposition of the matrix pair

Often, for the structural problems in engineering, the global mass and stiffness matrices may be
written as a linear function of the structural parameters b=(bi), so that

MðbÞ ¼ M0 þ
Xm

i¼1

biMi ¼ M0 þ b1M1 þ b2M2 þ 
 
 
 þ bmMm;

KðbÞ ¼ K0 þ
Xm

i¼1

biKi ¼ K0 þ b1K1 þ b2K2 þ 
 
 
 þ bmKm;

ð17Þ

whereMi and Ki are positive semi-definite and the parameters bi are positive. This decomposition
is called the non-negative decomposition of a matrix. Such decompositions arise naturally in a
practical engineering context. For example, in structural finite element analysis,Mi and Ki may be
taken as the element mass and stiffness matrices (or possibly substructure matrices) corresponding
to the structural parameter bi.
To further explain the non-negative decomposition of a matrix, consider a beam clamped at x=0

and free at x ¼ L1 þ L2; as shown in Fig. 2. Dividing the beam into two elements of lengths L1
L1 L2

E2, ρ2, A2, I2E1, ρ1, A1, I1

Fig. 2. The simple stepped beam.
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and L2; the element mass and stiffness matrices are

r1A1M1 ¼
r1A1L1

420

156 
22L1 0 0


22L1 4L21 0 0

0 0 0 0

0 0 0 0

2
666664

3
777775;

r2A2M2 ¼
r2A2L2

420

156 22L2 54 
13L2

22L2 4L22 13L2 
3L22

54 13L2 156 
22L2


13L2 
3L22 
22L2 4L22

2
666664

3
777775 ð18Þ

and

E1I1K3 ¼
E1I1

L31

12 
6L1 0 0


6L1 4L21 0 0

0 0 0 0

0 0 0 0

2
666664

3
777775;

E2I2K4 ¼
E2I2

L32

12 6L2 
12 6L2

6L2 4L22 
6L2 2L22


12 
6L2 12 
6L2

6L2 2L22 
6L2 4L22

2
666664

3
777775: ð19Þ

The global mass and stiffness matrices are obtained by summing the element contributions, and
are clearly of the form given in Eq. (17), with b ¼ ðr1A1; r2A2;E1I1;E2I2Þ

T; M3=M4=0,
K1=K2=0, and the definitions ofM1,M2, K3, K4 are obvious from Eqs. (18) and (19). Notice that
M1, M2, K3, K4 are all positive semi-definite.
Clearly, from Eq. (17), the elements mij and kij of the mass and stiffness matrices,M and K, are

functions of the structural parameters, b, and by natural extension [4],

MI ¼ ½M; M̄� ¼ M0 þ
Xm

i¼1

bI
i Mi ¼ M0 þ bI

1M1 þ bI
2M2 þ 
 
 
 þ bI

mMm;

KI ¼ ½K; K̄� ¼ K0 þ
Xm

i¼1

bI
i Ki ¼ K0 þ bI

1K1 þ bI
2K2 þ 
 
 
 þ bI

mKm; ð20Þ

where bI
i ¼ ½bi; b̄i�; i ¼ 1; 2; . . . ;m; are the uncertain-but-non-random parameters. These matrices

may be defined element-wise. However it is clear, for example, that neither K nor K̄ will
necessarily be positive semi-definite. The structure of the mass and stiffness matrices given in Eq.
(17) has been lost, and this is one reason for the conservative estimation of eigenvalue bounds.
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4. The parameter vertex solution theorem

Before introducing the theorem that is the subject of this section, some notation is required.
Suppose that the parameter interval vector is given by bI. Then the set of boundary vectors
(sometimes called the extreme point vectors or the vertex vectors) of the parameter interval vector
b

I is

b̂ ¼ fb: b 2 bI ; b ¼ ðbiÞ; and b̂i ¼ b̄i or b̂i ¼ bi; i ¼ 1; 2; . . . ;mg: (21)

Hence the set of boundary vectors are the extreme vectors of the parameter interval vector bI

and contains 2m elements, where m is the length of the vector b. In the case of a parameter vector
of length 2, the parameter interval vector is represented by a rectangle in parameter space, and the
set of boundary vectors are the corners of the rectangle.

Parameter Solution Vertex Theorem. Suppose that a non-negative decomposition of the mass and
stiffnesses matrices exists, given by Eq. (17) and where the structural parameter vector b varys inside
an interval parameter vector, b 2 bI : Then the ith eigenvalue, li, is contained in an interval, li 2

lI
i ¼ ½li; l̄i�; where the lower and upper bounds of the eigenvalues are,

li ¼ minfliðMðbÞ;KðbÞÞ: b 2 b̂g; l̄i ¼ maxfliðMðbÞ;KðbÞÞ: b 2 b̂g: (22)

Proof. The extremum values of li, denoted liext, are

liext ¼ extremum
b2bI

flig ¼ extremum
b2bI

min
Ui�Rn

max
u2Ui
ua0

uTKðbÞu

uTMðbÞu

� �

¼ min
Ui�Rn

max
u2Ui
ua0

extremum
b2bI

uTKðbÞu

uTMðbÞu

� �
; i ¼ 1; 2; . . . ; n: ð23Þ

To compute the extreme value of the quotient in Eq. (23) requires the condition that the mass
and stiffness matrices have non-negative decompositions and that the elements of the parameter
vector b are positive. The non-negative decomposition is of the form given in Eq. (17) where
ki ¼ uTKiuX0 and mi ¼ uTMiuX0: Thus,

f ðbÞ ¼
uTKðbÞu

uTMðbÞu
¼

k0 þ
Pm
i¼1

kibi

m0 þ
Pm
i¼1

mibi

: (24)

This quotient does not have any local maximum or minimum where all the bi are positive. This
may be proved by differentiating equation (24) to show that the turning points of f occur when
½jlT 
 ljT�b ¼ 
ðm0j 
 k0lÞ; where j ¼ ðkiÞ and l ¼ ðmiÞ: Premultiplying by aT, where a is
orthogonal to l, but where aTja0; gives lTb ¼ 
m0: Since all the m coefficients are positive, at
least one element of b must be negative.



ARTICLE IN PRESS

Z. Qiu et al. / Journal of Sound and Vibration 282 (2005) 297–312304
Thus,

extremum
b2bI

uTKðbÞu

uTMðbÞu

� �
¼ extremum

b2b̂

uTKðbÞu

uTMðbÞu

� �
; (25)

that is the extremum occur on the vertices of the parameter space. Hence, the extremum values of
li all occur at these parameter vertices. &
5. The eigenvalue inclusion principle [22]

To obtain the sharp bounds on the natural frequency of structures, full use will be made of the
structure of the mass and stiffness matrices given in Eq. (17). Define the following matrices:

K ¼
Xm

i¼1

biKi; K ¼
Xm

i¼1

b̄iKi; M ¼
Xm

i¼1

biMi; M ¼
Xm

i¼1

b̄iMi: (26)

Obviously, K;K;M andM are real stiffness matrices and mass matrices. Furthermore, it is clear
since the Ki matrices are positive semi-definite, and for any vector u 2 Rn; that

uTKupuTKðbÞupuTKu; b 2 bI : (27)

Similarly for the mass matrix,

uTMupuTMðbÞupuTMu; b 2 bI : (28)

Thus,

lI
i ¼ ½li; l̄i� ¼ min

Ui�Rn
max
u2Ui
ua0

Pm
i¼1

bI
i ðu

TKiuÞ

Pm
i¼1

bI
i ðu

TMiuÞ

8>><
>>:

9>>=
>>; ¼ min

Ui�Rn
max
u2Ui
ua0

Pm
i¼1

½bi; b̄i�ðu
TKiuÞ

Pm
i¼1

½bi; b̄i�ðuTMiuÞ

8>><
>>:

9>>=
>>;: (29)

Using Eqs. (27) and (28), and the properties of interval division,

lI
i ¼ ½li; l̄i� ¼ min

Ui�Rn
max
u2Ui
ua0

½uTKu; uTKu�

½uTMu; uTMu�

( )

¼ min
Ui�Rn

max
u2Ui
ua0

uTKu

uTMu
;
uTKu

uTMu

" #( )
: ð30Þ

Hence

lI
i ¼ ½li; l̄i� ¼ min

Ui�Rn
max
u2Ui
ua0

uTKu

uTMu

( )
; min

Ui�Rn
max
u2Ui
ua0

uTKu

uTMu

( )" #
(31)

and this leads to the following theorem.

Theorem—Eigenvalue Inclusion Principle. Suppose that a non-negative decomposition of the mass
and stiffnesses matrices exists, given by Eq. (17), and where the structural parameter vector b varys



ARTICLE IN PRESS

Z. Qiu et al. / Journal of Sound and Vibration 282 (2005) 297–312 305
inside an interval parameter vector, b 2 bI : Then the ith eigenvalue, li, is contained in an interval,

li 2 lI
i ¼ ½li; li�; where li is an eigenvalue of ðM;KÞ and li is an eigenvalue of ðM;KÞ; where these

matrices are defined in Eq. (26).

The bounds predicted by the parameter vertex solution are tighter than those predicted by the
eigenvalue inclusion principle. To prove this, from Eqs. (27) and (28), for the lower eigenvalue
bound,

uTKu

uTMu
p

uTKðbÞu

uTMðbÞu
for any b 2 bI : (32)

Hence the lower bound for the eigenvalue inclusion principle must be lower than that obtained
by the parameter vertex solution. A similar situation occurs for the upper bound, showing that
that bounds obtained by the parameter vertex solution are tighter. Suppose that the parameter set
is disjoint, so that the mass and stiffness are functions of different parameters, and are not a
function of the same parameter. In this case the bounds obtained by the eigenvalue inclusion
principle occurs at a parameter vector that is at one of the vertices. In this case, the bounds
estimated by the eigenvalue inclusion principle and the parameter vertex solution theorem will be
identical.
6. Numerical examples

Three examples will be used to demonstrate the procedures outlined on this paper. The first is a
discrete mass, spring system, and has the advantage of being easy to implement. The second is a
stepped beam, where the cross-sectional area and second moment of area are assumed to vary
independently. In this case the stiffness and mass parameters are disjoint and hence the eigenvalue
inclusion principle gives the same bounds as the parameter vertex solution. The last example is a
truss structure where the parameters are the cross-sectional area of the bar elements. These
parameters affect both the mass and the stiffness simultaneously, and thus the eigenvalue
inclusion principle and the parameter vertex solution produce different bounds. This will usually
be the case in practice when tolerances are given on geometric parameters.
6.1. A spring–mass system

Consider first the five degrees of freedom spring–mass system considered in Refs. [13–15] and
shown in Fig. 3. The interval stiffness parameters are

kI
1 ¼ ½2000; 2020�N=m; kI

2 ¼ ½1800; 1850�N=m; kI
3 ¼ ½1600; 1630�N=m;

kI
4 ¼ ½1400; 1420�N=m; kI

5 ¼ ½1200; 1210�N=m

and the interval mass parameters are

mI
1 ¼ ½29; 31�kg; mI

2 ¼ ½26; 28�kg; mI
3 ¼ ½26; 28�kg;

mI
4 ¼ ½24; 26�kg; mI

5 ¼ 17; 19½ �kg:
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k1 k2 k3

m2 m3 m4 m5

k4 k5

Fig. 3. The spring–mass system with uncertain parameters.
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The non-negative decomposition of the global mass and stiffness matrices are

M ¼
X5
i¼1

miMi; mi 2 mI
i ; i ¼ 1; 2; 3; 4; 5;

K ¼
X5
i¼1

kiKi; ki 2 kI
i ; i ¼ 1; 2; 3; 4; 5;

where Mi and Ki may be easily derived.
The global stiffness matrix corresponding to the stiffness parameter upper bound vector k ¼

ð2020; 1850; 1630; 1420; 1210ÞT is

K ¼

3870 
1850


1850 3480 
1630


1630 3050 
1420


1420 2630 
1210


1210 1210

2
6666664

3
7777775

and the global stiffness matrix corresponding to the stiffness parameter lower bound vector
k ¼ ð2000; 1800; 1600; 1400; 1200ÞT is

K ¼

3800 
1800


1800 3400 
1600


1600 3000 
1400


1400 2600 
1200


1200 1200

2
6666664

3
7777775
:

Similarly, m ¼ ð31; 28; 28; 26; 19ÞT; M ¼ diagð31; 28; 28; 26; 19Þ; m ¼ ð29; 26; 26; 24; 17ÞT and
M ¼ diagð29; 26; 26; 24; 17Þ:
Table 1 summarizes the interval eigenvalues of the spring–mass system obtained by the

eigenvalue inclusion principle, and Table 2 lists the interval eigenvalues calculated by the extended
Deif’s method [13–15]. The proposed eigenvalue inclusion principle yields tighter bounds, namely
the lower bounds within the eigenvalue inclusion principle are larger than or equal to those
predicted by Deif’s method. Likewise, the upper bounds furnished by the eigenvalue inclusion
principle are smaller than or equal to those yielded by Deif’s approach. This feature clearly
demonstrates that the eigenvalue inclusion principle has advantages over Deif’s method. Table 3
gives the interval eigenvalues calculated by the interval perturbation method of Qiu et al. [14]. The
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Table 1

Interval eigenvalues obtained by the proposed method

li li li 
 li

l1 5.85810 6.50204 0.64394

l2 42.02932 46.30879 4.27947

l3 98.85636 108.68899 9.83263

l4 158.05142 173.77763 15.72621

l5 209.51477 230.08447 20.56970

Table 2

Interval eigenvalues obtained by Deif’s method [13]

li li li 
 li

l1 4.61658 7.83029 3.21371

l2 40.64282 47.82004 7.17722

l3 98.18002 109.39931 11.21929

l4 157.84330 174.00287 16.15957

l5 209.51477 230.08447 20.56970

Table 3

Interval eigenvalues obtained by the perturbation method [14]

li li li 
 li

l1 4.616580 7.830290 3.213710

l2 40.753560 47.702460 6.948900

l3 98.572270 108.985760 10.413490

l4 158.863200 172.894650 14.031450

l5 211.504350 227.948750 16.444400
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results show that the width of the first three interval eigenvalues of the spring–mass system by the
eigenvalue inclusion principle are smaller than those obtained by the interval perturbation
method. However, the width of the intervals corresponding to eigenvalues 4 and 5 obtained by the
eigenvalue inclusion principle are larger than those predicted by the interval perturbation method.
However, it should be emphasized that the bounds obtained by the perturbation approach are
only approximate, and that Table 1 gives the exact bounds for this problem.

6.2. A stepped beam

This example considers the stepped beam shown in Fig. 4, where the mass densities and lengths
of the three elements are

ri ¼ 7800kg=m3; Li ¼ 0:4m; i ¼ 1; 2; 3:
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E3, A3, I3 E2, A2, I2E1, A1, I1

L LL

Fig. 4. A three element stepped beam.

Table 4

Interval eigenvalues for the three element beam: Case 1

Deif’s solution theorem The parameter vertex solution theorem

li li li li

l1 3.103502E+05 4.196759E+05 3.645921E+05 3.655699E+05

l2 7.203591E+06 7.467286E+06 7.327840E+06 7.343228E+06

l3 4.804870E+07 4.838791E+07 4.817373E+07 4.826370E+07

l4 2.574804E+08 2.586341E+08 2.577919E+08 2.583228E+08

l5 8.906338E+08 8.932953E+08 8.910574E+08 8.928784E+08

l6 2.736988E+09 2.742580E+09 2.738051E+09 2.741501E+09
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Two cases for the stepped beam with uncertain-but-bounded structural parameters will be
discussed to compare the parameter vertex solution theorem with Deif’s solution theorem.

Case 1: In this case, the cross-sectional areas and the moments of inertia of the elements are
deterministic parameters given by

A1 ¼ 1:44� 10
2 m2; A2 ¼ 1:0� 10
2 m2; A3 ¼ 0:64� 10
2 m2;

I1 ¼ 0:2� 10
4 m2; I2 ¼ 0:1� 10
4 m2; I3 ¼ 0:05� 10
4 m2:

Young’s moduli of the elements are uncertain-but-bounded parameters and their interval values
are

EI
1 ¼ ½199:7; 200:3�GN=m2; EI

2 ¼ ½199:8; 200:2�GN=m2; EI
3 ¼ ½199:9; 200:1�GN=m2:

Table 4 shows the upper and lower bounds of the eigenvalues calculated by Deif’s solution
theorem and the proposed parameter vertex solution theorem, and shows that the bounds
predicted by the parameter vertex solution are much tighter. The model has six degrees of freedom
and all six eigenvalues are shown, although, of course, only the lower eigenvalues of a finite
element analysis have any physical meaning.

Case 2: In this case, the determinstic parameters are the Young’s moduli of elements and their
mean values

Ei ¼ 200GN=m2; i ¼ 1; 2; 3:
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Table 5

Interval eigenvalues for the three element beam: Case 2

Deif’s solution theorem The parameter vertex solution theorem

li li li li

l1 5.067125E+04 6.638112E+05 3.612794E+05 3.689557E+05

l2 6.636282E+06 8.060068E+06 7.257447E+06 7.415161E+06

l3 4.598797E+07 5.071412E+07 4.770923E+07 4.873816E+07

l4 2.470625E+08 2.710061E+08 2.553292E+08 2.608389E+08

l5 8.289696E+08 9.699690E+08 8.824674E+08 9.016557E+08

l6 2.249725E+09 3.613547E+09 2.711208E+09 2.768894E+09
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The cross-sectional area and moments of inertia of the elements are taken as uncertain-but-
bounded parameters and their interval values are

AI
1 ¼ ½1:426� 10
2; 1:454� 10
2�m2; AI

2 ¼ ½0:99� 10
2; 1:01� 10
2�m2;

AI
3 ¼ ½0:634� 10
2; 0:646� 10
2�m2; II

1 ¼ ½0:1998� 10
4; 0:2002� 10
4�m4;

II
2 ¼ ½0:0999� 10
4; 0:1001� 10
4�m4; II

3 ¼ ½0:04995� 10
4; 0:05005� 10
4�m4:

Table 5 shows the upper and lower bounds of the eigenvalues, which are calculated by Deif’s
solution theorem and the proposed parameter vertex solution theorem, and shows that the
bounds predicted by the parameter vertex solution are much tighter.
6.3. An eight bar truss

The eight bar, pin jointed, truss structure, shown in Fig. 5, will be used to compare the
parameter vertex solution theorem and the eigenvalue inclusion principle. The cross-sectional
areas of members 1, 2, 3, 4 and 6 are considered to be uncertain-bounded variables, and are
taken as AI

i ¼ Ac 
 bAc; Ac þ bAc½ �; i ¼ 1; 2; 3; 4; 6; where Ac ¼ 2:0� 10
4 m2: b is the un-
certainty factor that will be varied to check the eigenvalue bounds with increasing uncertainty.
The cross-sectional areas of members 5, 7 and 8 are deterministic and are taken as A5 ¼ A7 ¼

A8 ¼ 1:0� 10
4 m2: The Young’s modulus of the material is E ¼ 200GN=m2: Fig. 6 shows
the comparison of the eigenvalue bounds of the first four eigenvalues obtained using the
eigenvalue inclusion principle (solid line) and the parameter vertex solution theorem (dashed
line) as b varies. The parameter vertex solution theorem yields tighter bounds than those
obtained by the eigenvalue inclusion principle. However the computational cost of the parameter
vertex solution theorem is high as the solution of 256 eigenproblems is required, as opposed to
two eigensolutions for the eigenvalue inclusion principle. Note that because the cross-sectional
area of the bars affects both the mass and stiffness matrices, the bounds obtained from the
two methods are different. As expected, the eigenvalue bounds increase monotonically with
increasing b:
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Fig. 5. The eight bar truss example.
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Fig. 6. The bounds on the first four eigenvalues of the eight bar truss (solid line: eigenvalue inclusion principle, dashed

line: parameter vertex solution theorem).
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7. Conclusion

In this paper the properties of the mass and stiffness matrices in structural engineering, for
typical structural parameters have been used to efficiently calculate the bounds on the structure’s
eigenvalues. The structure in the matrices is defined using the non-negative decomposition of a
matrix, and the parameter vertex solution and the eigenvalue inclusion principle are used to
determine the lower and upper bounds on the eigenvalues due to uncertain-but-bounded
parameters. The effectiveness of the methods was demonstrated by comparison with Deif’s
solution and the interval perturbation method, using numerical examples. Furthermore, the
proposed approaches require minimal computational effort.
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