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Abstract

This paper studies the forced vibrations of a flexible rotating blade under the excitation of shaft torsional
vibration. A reduced order nonlinear dynamic model is adopted, wherein the torsional vibration degree of
freedom is substituted by a simple harmonic motion with a frequency that is function of the system rotating
speed. The resulting system of second-order ordinary differential equation with harmonically varying
coefficients is solved using the method of harmonic balance. The forced response solution is compared to
the numerical integration results. Agreement is found with respect to stable and unstable regions of the
blade vibrations. The solution is useful for defining dangerous operating speed ranges and for quantifying
the relationship between shaft torsional and blade bending natural frequencies.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating blade vibration was recognized as one major cause of failure in turbomachinery that
put a growing demand on more thorough analysis at the design stage. One problem that deserves
more attention is the problem of blade vibration instability due to torsional vibration excitation.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Consequently, a study that produces a tool for stability analysis is urgently needed not only for
design purposes but also for diagnostic studies.
The importance of blade vibration was highlighted by Srinivasan [1] in his survey on the

vibration of bladed disk assemblies. He classified blade vibrations into two categories;
namely structure induced vibration and aero-elastic induced vibrations. More attention
of the survey was given to the structure induced vibration and their modeling. The effects of
rotor flexural dynamics on the rotating blade vibration were reported by a number of
investigators [2–4]. The problem, of blade vibration and its interaction with the main rotor
torsional vibration was studied by Okabe et al. [5]. They showed that it is necessary to model
both blade bending vibration and main rotor torsional vibration in turbomachinery.
They employed an equivalent reduced order model that coupled the blade tangentional
vibration and the shaft torsional vibrations. Their model adopted the modal synthesis
procedure, wherein the blade was modeled as a simple mass-spring subsystem and the shaft
torsional flexibility as another discrete subsystem. The two subsystems were coupled and the
natural frequencies were analyzed. The model-produced natural frequencies were compared
to the actual measurement and close agreement was reported. Huang and Ho [6] reported
results of a study on the coupled shaft torsional and blade bending vibrations of a rotating
shaft-disk-blade unit. The shaft torsional and blade bending deformations were modeled,
separately, using the assumed modes method (AMM). They used the weighted residual
method to discretize blade vibration and the receptance at the connection between the
disk and the blade to couple the shaft torsional and blade bending dynamics. Al-Bedoor [7],
based on the multi-body dynamics approach, developed a coupled model for shaft
torsional and blade bending vibrations in rotors. The model employed the finite element
method to discretize the blade deformations. The study identified nonlinear interaction
that the blade and the shaft introduce to each other. Due to the difficulty encountered
in quantifying the nature of nonlinear coupling when the finite element method is used,
a reduced-order dynamic model was reported by Al-Bedoor [8]. This model adopted the
AMM for approximating the blade deformations. The model was further analyzed
for blade vibration under the effect of shaft torsional vibration excitation by Al-Nassar
and Al-Bedoor [9]. The blade modal vibration model was extracted from the general
model [8], wherein, a Hill’s type equation was obtained by assuming small torsional vibrations.
The homogeneous part of the Hill’s equation was numerically integrated for a combination of
blade natural frequencies and torsional vibration excitation frequency. The analysis showed that
blade unstable vibration occurs for certain torsional vibration frequencies as related to blade
bending natural frequencies. The analysis of Ref. [9] was limited to numerical integration of the
homogeneous equation and stable and unstable regions were not explicitly identified. Recently,
Al-Bedoor and Al-Qaisia [10] employed the harmonic balance (HB) method solution for finding
the steady-state solution of the rotating blade excited by shaft torsional vibrations. A special case
was addressed which is the rotating speed torsional excitation, 1X, with small torsional vibration
amplitude. Moreover, the solution was obtained using integer numbers for the harmonic analysis
that produced discrepancy between the numerical integration solution and the predicted steady-
state solution.
This paper is devoted towards finding the steady-state solution of the rotating blade vibration

under shaft torsional excitation. The model of Ref. [8] is adopted with no imposed conditions
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neither on the strength of the torsional vibration nor on the torsional vibration excitation
frequency. The generalized method of HB is employed in finding the steady-state solutions in
which the assumed solution contains integers and fractal frequencies. The steady-state solution
coefficient matrix eigenvalues are found for stability purposes. Stable and unstable regions are
found as a function of operational and design parameters and presented in map format.
Numerical integration is used to check the predicted HB solutions.
2. The governing equation

The dynamic model of a blade-disk-shaft system reported by Al-Bedoor [8] and shown in Fig. 1
is used in this study. The equation of blade modal vibration can be written in the form

mqy
€yþ mqc

€cþ mqq €q þ Cqy
_yþ Cqq _q þ kqqq ¼ Fq; (1)
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Fig. 1. Schematic of the rotor-disk-blade system and coordinates system.
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Table 1

Blade parameters

Length, L 0.4m

Mass/length, r 1.35 kg/m

Flexural rigidity, EI 75Nm2

Disk radius, rD 0.05m

Table 2

Modal parameters

ks1 ks2 a b ki

1.57088 2.38667 0.568826 0.78992 12.3624

8.6471 12.9565 0.0907 0.43396 485.52

24.95 35.71 0.032416 0.2544 3806.55

51.45 72.11 0.01654 0.1818 14617.2

ωs

0.0 0.5 1.0 1.5 2.0

A
m

pl
it

ud
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Unstable solution

Fig. 2. SSFR of the blade first mode. � ¼ 1; g ¼ 1; z ¼ 0:1: ———SSFR; K unstable points on SSFR.
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Fig. 3. Time history and phase plane of the first mode. � ¼ 1; g ¼ 1; z ¼ 0:1: (a) os ¼ 0:71 and (b) os ¼ 0:96:
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where y is the rigid body rotation, c is the torsional deformation angle and q is the blade bending
modal deformation. The coefficients of Eq. (1) obtained from the model are

a ¼

Z L

0

rxfðxÞdx;

b ¼

Z L

0

rfðxÞdx;

ks1 ¼

Z L

0

rðL � xÞf02
ðxÞdx;
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Fig. 4. Effect of damping on SSFR of the first mode. K unstable points on SSFR.
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ks2 ¼

Z L

0

rðL � xÞ2f02
ðxÞdx;

ki ¼

Z L

0

f002
ðxÞdx;

mqy ¼ ð1þ c2Þh;

mqc ¼ h þ cq;

mqq ¼ 1þ c2;

Cqy ¼ 2c _ch;

Cqq ¼ 2c _c;
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Fig. 5. Stability chart of the first mode blade bending vibrations: g ¼ 1; z ¼ 0:1; shaded areas are unstable.
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kqq ¼
EI

rL4
ki þ ð_yþ _cÞ2½ks � 1	 þ _c

2
� c2 _y

2
;

h ¼ a þ RDb;

ks ¼ RDks1 þ
1
2

ks2; (2)

where r is the blade mass per unit length, fðxÞ is the shape function of a cantilever beam, EI is the
flexural rigidity, L is the blade length and RD is the disk radius.
For the system that is rotating at constant speed, _y ¼ o; the term that contains the second

derivative of the rigid body rotation €y in Eq. (1) can be dropped. Moreover, the torsional
vibration can be assumed to occur at single frequency that is usually related to the shaft running
speed o as follows:

c ¼ � sin got; (3)

where � is constant that controls the magnitude of torsional vibration and g is the ratio of
torsional vibration frequency to the running speed o:
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Fig. 6. Stability chart of the first mode blade bending vibrations. g ¼ 2; z ¼ 0:1; shaded areas are unstable.
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Now substituting for c and its derivatives into Eq. (1), and defining a new constant C ¼ ks � 1;
the rotating blade modal vibrations can be expressed as

ð1þ �2 sin2 gotÞ €q þ ð2oBzþ 2�2go sin got cos gotÞ _q

þ fo2
B þ Co2ð1þ 2�g cos gotÞ � �2o2ðg2 þ 1Þsin2 got þ �2g2o2ðC þ 1Þcos2 gotgq

¼ ho2�gðg sin got � 2� sin got cos gotÞ; ð4Þ

where o2
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEI=rL4Þki

q
is the blade bending natural frequency, o is the running speed and g is

the torsional vibration excitation frequency factor.
3. Analysis

The blade steady-state frequency response (SSFR) due to the shaft torsional vibration
excitations is presented using the method of HB. After introducing a new dimensionless time scale
related to the blade bending natural frequency, t ¼ oBt and defining the frequency ratio
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os ¼ o=oB; Eq. (4) can be re-written as follows:

1þ
�2

2
ð1� cos 2gostÞ

� �
q00 þ ð2zþ �2gos sin 2gostÞq0

þ 1þ
o2

s

2
fð2C � �2 þ C�2g2Þ

�
þ 4C�g cos gostg þ

o2
s

2
�2ð1þ 2g2 þ Cg2Þ cos 2ost

�
q

¼ ho2
s �gðg sin gost� � sin 2gostÞ ð5Þ

where prime denote derivative with respect to t: Eq. (5) contains two types of excitations:
parametric and external with frequencies os and 2os: According to Floquet theorem, a system
that is parametrically driven at frequency O exhibits resonance whenever O ffi 2

ffiffiffiffiffi
l0

p
=i; where i is

an integer and l0 is the oscillator natural frequency. In this case, the two driving frequencies are
O1 ¼ os and O2 ¼ 2os: Therefore the two combined frequencies produce a parametric resonance
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Fig. 7. Time history and phase plane of the first mode. z ¼ 0:1: (a) � ¼ 1; g ¼ 1; os ¼ 1:2; (b) � ¼ 1; g ¼ 1; os ¼ 1:22: (c)
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whenever os � 2
ffiffiffiffiffi
l0

p
;

ffiffiffiffiffi
l0

p
; 12

ffiffiffiffiffi
l0

p
; where l0 is the normalized natural frequency, which is chosen as

1 in this study.
According to the method of HB, an approximate solution to Eq. (5) can be assumed as a

truncated Fourier series, with its contents dictated by the excitation frequencies as follows:

qðtÞ ¼
XN

n¼0
An=2 cosðngost=2Þ þ Bn=2 sinðngost=2Þ; (6)

where An=2 and Bn=2 are the amplitudes of the assumed harmonics, that are going to be evaluated
based on the method of HB.
As a characteristic of the method of HB, when used for solving parametrically excited system,

the most dominant harmonics are not known in advance and the solution first need to be assumed
with the broadest possible harmonics. The coefficients are usually evaluated and the ones with
almost zero amplitude are ignored. For the present analysis, the dominant harmonics are found,
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after a number of trials, as in the following assumed solution:

qðtÞ ¼ A0 þ A1=2 cosðgost=2Þ þ B1=2 sinðgost=2Þ

þ A1 cos gostþ B1 sin gostþ A2 cos 2gostþ B2 sin 2gost: ð7Þ

Substituting Eq. (7) and its derivatives into Eq. (5), and equating the coefficients of similar
harmonics a set of algebraic equations are obtained as can be represented in the following matrix
form:

Mx ¼ y; (8)

where the vector xT ¼ fA0;A1=2;B1=2;A1;B1;A2;B2g; yT ¼ f0; 0; 0; 0; h�ðgosÞ
2; 0;�hgð�osÞ

2
g and the

non-zero entries of the (7� 7) coefficient matrix M are as follows:

M11 ¼ 1þ
o2

s

2
ð2C � �2 þ C�2g2Þ;
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M14 ¼ C�go2
s ;

M16 ¼
�2

4
o2

s ð1þ g2ð2þ CÞ;

M22 ¼ 1þ
o2

s

8
f4Cð2þ 2�gþ �2g2Þ � ð4�2 þ 2g2 þ �2g2Þg;

M23 ¼ gzos;

M32 ¼ �M23;

M33 ¼ 1þ
o2

s

8
f4Cð2� 2�gþ �2g2Þ � ð4�2 þ 2g2 þ �2g2Þg;
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Fig. 8. SSFR of the blade second mode. � ¼ 1; g ¼ 1; z ¼ 0:05: ———SSFR; K unstable vibrations.
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M41 ¼ 2C�go2
s ;

M44 ¼ 1þ
o2

s

4
f4C � 4g2 þ �2ð3Cg2 � g2 � 1Þg;

M45 ¼ 2M23;

M46 ¼ M14;

M54 ¼ �M45;

M55 ¼ 1þ
o2

s

4
f4C � 4g2 þ �2ðCg2 � 3g2 � 3Þg;

M57 ¼ M14;

M61 ¼
�2o2

s

4
f1þ g2ð2þ CÞg;

M64 ¼ M14;
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M66 ¼ 1þ
o2

s

2
fCð2þ �2g2Þ � �2 � g2ð8þ 4�2Þg;

M67 ¼ 4M23;

M75 ¼ M14;

M76 ¼ �M67;

M77 ¼ 1þ
o2

s

2
fCð2� �2g2Þ � �2 � g2ð8þ 4�2Þg: (9)

The coefficients A0;A1=2;B1=2;A1;B1;A2;B2 in the assumed solution (7) can be calculated by
solving Eq. (8) for a given mode of blade vibration.
Now, according to Floquet Theorem, the stability of the obtained solution can be examined

through evaluation the determinant of the coefficient matrix M: Wherein, the sustained
oscillations are obtained for zero determinants, stable vibration occurs when the determinant is
positive and unstable ‘‘growing’’ vibrations take place when the determinant is negative [11].
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4. Results and discussion

The blade data given in Table 1 that was previously simulated in Ref. [9] is considered. The
associated modal parameters obtained by integrating the expressions given in Eqs. (2) are
calculated and presented in Table 2. The SSFR of the blade first bending mode, for damping ratio
z ¼ 0:1; torsional vibration amplitude � ¼ 1 and torsional vibration frequency ratio g ¼ 1 is
shown in Fig. 2. This steady-state response shows three peaks occurring at os ¼ 0:41; 0.71 and
0.965 with the largest amplitude at os ¼ 0:71: The results of evaluation the coefficient matrix
determinant are included also in Fig. 2 by solid points to show unstable vibrations in the
dimensionless frequency regions 0:715posp0:960 and osX1:225: To check the blade stable and
unstable vibration regions, Eq. (5) is integrated numerically at several points selected from Fig. 2.
Typical blade first mode vibrations in the predicted stable ðos ¼ 0:71Þ and unstable ðos ¼ 0:96Þ
are shown in Figs. 3a and b, respectively. The results of numerical integration in the form of blade
first mode vibration amplitude and its associated phase plane plot are shown in Fig. 3. Excellent
agreement between the numerical integration and HB solution can be observed.
Directed by the observation of different amplitudes at the resonance points, in Fig. 2 the effect

of damping is further investigated by solving for different damping ratios z; and the steady-state
solution is given in Fig. 4. Wherein, the damping played a prominent role at first resonance
os ¼ 0:41 and relatively negligible effect can be observed at the second resonance ðos ¼ 0:71Þ: At
the third very narrow resonance, os ¼ 0:965; damping played an inverse role, i.e. amplitude
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increases with increasing the damping ratio z; with no third resonance for z ¼ 0 case. The
explanation of this unexpected behavior is not straight forward, but it can be referred to the
harmonic interactions in Eq. (5) coefficients. In addition the effect of variation of damping ratios z
on the unstable vibrations was also studied and the results of examining the determinant of the
coefficient matrix have shown that the unstable region ð0:715posp0:960Þ is the same for all
values of z and one unstable point at os ¼ 0:41 is found only for z ¼ 0:
To investigate the effect of torsional vibration strength on the blade first mode vibration, the

HB solution is obtained over a wide range of � and os and the determinant of coefficient matrix is
found. The regions of stable and unstable vibrations are shown in Fig. 5. Wherein narrow shaded
region represents unstable vibration for a combination of � and os: Moreover, the higher
amplitudes of torsional vibrations � produce unstable vibrations for wide range of torsional
vibration excitation frequencies. The effect of torsional vibration frequency to rotating speed ratio
g on the first mode vibration stability is investigated and shown in Fig. 6, Shaded regions show
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unstable vibrations. Stable and unstable regions shown in Figs. 5 and 6 are verified for some
selected points by numerical integrations as shown in Fig. 7. Similar treatment for the blade
second vibration mode is shown in Fig. 8, for z ¼ 0:05; � ¼ 1 and g ¼ 1: The frequency response
shows two peaks at os ¼ 0:69 and 0.805 with unstable vibrations between the two peaks. In Fig. 9,
some numerical simulations are shown for some values of os selected from the unstable region
between the peaks in Fig. 8. Results for the variation of � and its effect on the stability of the
second mode vibration are shown in Fig. 10. Two narrow shaded unstable areas in the �� os

plane are shown. Finally, results of numerical integration obtained for the second mode are
presented in Fig. 11.
5. Conclusions

The steady-state response of the rotating blade vibration under the main shaft torsional
vibration excitation is studied using the method of harmonic balance (HB). The equation of
motion is obtained from a previous study by assuming torsional vibration to occur with
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controlled amplitude at a frequency related to the main rotor speed. The obtained HB solution
identified stable and unstable blade vibration regions as function of the torsional vibration
excitation frequency and torsional vibration amplitude. Stability maps are constructed for the first
and second blade bending modes and the blades vibration stability is further verified using
numerical integration. The torsional vibration amplitude was shown to play a vital role in the
blade vibration stability in addition to the, role of, excitation frequency.
The produced stability maps can be used for design and diagnostic purposes. Controlled

experiment to verify these findings is highly recommended.
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