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Abstract

An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car
suspension system with time-varying loadings. The bound of the car-body loading is assumed to be
available. Then, the reference coordinate is placed at the static position under the nominal loading so that
the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes
asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to
be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into
two unknown time-varying functions. Since the variation bound of one of the unknown functions is not
available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem,
the function approximation technique is employed to represent the unknown function as a finite
combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for
updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the
position and velocity measurements of the unsprung mass are lumped into the unknown function, there is
no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results
are presented to show the performance of the proposed strategy.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, various control methods on active suspension systems have been developed
to improve ride comfort and handling quality under the constraints of realizable control force
and feasible motion trajectories of vehicle operations [2]. Since the suspension might exhibit
large variation in system states under severe driving conditions, system nonlinearities should
be considered to maintain the ride quality. On the other hand, because the loading conditions
may vary and the suspension parameters may change, all kinds of uncertainties should be
investigated.

To deal with the problem stated above, many researches [1–12] have been proposed. Yoshimura
et al. [1] used the concept of sliding mode control to construct a pneumatic suspension system and
the unknown road profile was estimated by using a minimum-order observer. The nonlinearities
of passive components and the tire lift-off phenomenon were considered in Kim et al. [3], and a
sliding mode controller was designed to give desired tracking performance of the motion
trajectories to a reference sky-hook damping system. Tuan et al. [4] proposed a nonlinear H1

controller based on the parameterized LMI approach for an integrated active suspension.
Karlsson et al. [5,6] designed a nonlinear H1 controller to minimize the L2 gain from the road
disturbance to a quadratic cost function. Sunwoo et al. [7] suggested a model reference adaptive
controller for suspension systems with acceleration feedback at the wheel hub. Nonlinear adaptive
controllers were designed by Alleyne and Hedrick [8] for the force tracking of electrohydraulic
actuators to a desired sky-hook damping dynamics. Along the same way as in Alleyne and
Hedrick [8], Chen and Huang [12] proposed a function approximation-based adaptive sliding
controller for a hydraulic actuator to give satisfactory force tracking performance regardless of
time-varying uncertainties in the actuator. Kim [9] developed a nonlinear indirect adaptive
controller for a reduced-order suspension system. Some other hybrid control strategies were
developed in [10,11] to deal with both the dynamics of the car-body part and the uncertainties in
the actuator.

In this paper, we would like to propose an adaptive sliding controller for a non-autonomous
quarter-car suspension system with bounded time-varying loadings. The system dynamic
equations are firstly derived with respect to the static positions under the car-body nominal
load with the assumption that the variation bound of the car-body load is available. Due to the
nominal load, the nonlinear spring properties become asymmetric. Since the load might be
large, there is significant discrepancy of the behaviors between the nonlinear spring and its
linearized model. Hence, the spring nonlinearities should be well compensated to maintain the
control performance for a wide range of vehicle operations. However, it is quite difficult to
obtain precise system parameters, since the practical system is inherently nonlinear and
uncertain. Therefore, in this paper, all parameters in system model are assumed to be
unavailable except that the variation bound of car-body load is known. With the assumptions,
the system is further represented as a second-order input-to-output dynamics with a stable
internal dynamics and the system uncertainties as well as the internal states are lumped into an
unknown time-varying function with an unknown bound. If the lumped uncertainty has been
properly compensated, there is no need to feedback these internal states in actual
implementation. Because the uncertainties are time variant, conventional adaptive schemes
are not applicable. On the other hand, since the variation bounds of the uncertainties are not
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given, most robust designs fail. Here, the function approximation approach [12–15] is
employed. The basic idea is to represent the system uncertainties using finite linear
combinations of basis functions with unknown constant weighting vectors. Output error
dynamics can thus be derived as a stable first-order filter driven by parameter error vectors.
Appropriate update laws for the weighting vectors can be selected based on the Lyapunov
stability theory. Asymptotic stability of the output error can be obtained if sufficient number
of basis functions is used. Effects of the approximation error on system performance
are also investigated in this paper. It is proved that, for bounded approximation errors, the
output error is ultimately bounded. If, in addition, the bounds of approximation errors are
known, asymptotic convergence of the output error still can be obtained with a modified
control law.

This paper is organized as follows: Section 2 gives the problem formulation. Section 3 reviews
the function approximation technique. An adaptive sliding controller is designed in Section 4 with
rigorous proof of closed-loop stability. Section 5 presents results of computer simulations of the
proposed controller. Section 6 concludes this paper.
2. Problem formulation

A well-known quarter-car model of the suspension system is shown in Fig. 1. The sprung mass
msðtÞ represents the time-varying mass of the car-body part and the unsprung mass mu is the
assembly of the axle and wheel. The tire is modeled as a combination of a linear spring and
damper with coefficients kt and ct; respectively. The time-varying damper csðtÞ and nonlinear
spring ks comprise the passive components of the suspension system. The actuator force u is acting
between the sprung and unsprung masses, whose magnitude is bounded by some known values,
i.e., jujpumax for some umax40: The variable z is the uneven road input to the unsprung mass
dynamics.

Let xs and xu be the vertical displacements of the sprung and unsprung masses with respect to
the undeformed suspension positions, respectively. The dynamic equations of the suspension
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Fig. 1. Quarter car suspension model.
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system can be expressed as

msðtÞ €xs ¼ �k1sðxs � xuÞ � k2sðxs � xuÞ
3
� csðtÞð _xs � _xuÞ þ u � msðtÞg; (1a)

mu €xu ¼ k1sðxs � xuÞ þ k2sðxs � xuÞ
3
þ csðtÞð _xs � _xuÞ � ktðxu � zÞ � ctð _xu � _zÞ � u � mug; (1b)

where k1s and k2s are, respectively, linear and nonlinear stiffness coefficients of the spring ks: Since
the variation range of car-body loads is easy to be estimated in practical applications, it is
reasonable to assume that the bound of msðtÞ is known, and hence msðtÞ can be further represented
as msðtÞ ¼ msm þ DmsðtÞ where the positive constant msm is the nominal value and DmsðtÞ is the
additive uncertainty with a known bound. Define the reference position of the unsprung mass as
xur ¼ �ðmu þ msmÞg=kt which is exactly the static tire deflection due to the nominal load msmg:
Likewise, we may define the reference position of the sprung mass as xsr ¼ xur þ d0 where d0o0 is
the static spring deflection. Let the state variables be x1 ¼ xs � xsr; x2 ¼ _xs; x3 ¼ xu � xur and
x4 ¼ _xu; then dynamic equation (1) can be rewritten as

_x1 ¼ x2; (2a)

_x2 ¼
1

msðtÞ
½�k1sðx1 � x3Þ � k2sfðx1;x3Þ � csðtÞðx2 � x4Þ � DmsðtÞg þ u	; (2b)

_x3 ¼ x4; (2c)

_x4 ¼
1

mu

½k1sðx1 � x3Þ þ k2sfðx1; x3Þ þ csðtÞðx2 � x4Þ � u � ktðx3 � zÞ � ctðx4 � _zÞ	; (2d)

where fðx1; x3Þ ¼ ðx1 � x3 þ d0Þ
3
� d3

0 is the spring nonlinearity. To further investigate the effect
of the nonlinear spring, the spring force k1sðxs � xuÞ þ k2sðxs � xuÞ

3 considered in Eq. (1) is
depicted as the solid curve in Fig. 2. Due to the nominal load msmg; the reference position of the
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Fig. 2. Nonlinear spring properties.
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spring moves from the origin to the point ðd0;�msmgÞ: This might result in significant discrepancy
of the behaviors between the nonlinear spring and its linearized model (dash line), if the nominal
load is large. Hence, to have better control performance for a wide range of the car-body loading,
we have to consider the effect of spring nonlinearity. Furthermore, since the damper viscosity may
vary as the fluid characteristics change, the damping coefficient csðtÞ is considered to be time-
varying.

Due to inherent nonlinearities and uncertainties in practical systems, precise parameters may
not be easy to be obtained for controller design. Hence, in this paper, all parameters in (2) are
assumed to be unavailable, except that the variation bound of msðtÞ is known. The objective is to
find a controller so that all signals in the system remain bounded and the car-body displacement
x1 converges to zero asymptotically. Besides, to simplify its implementation, only x1 and x2 are
measured, and hence there is no need to install sensors on the wheel and axle assembly. To this
end, we may define y ¼ x1 as the system output, and the relative degree from the input to the
output is apparently two. This input-to-output dynamics can be represented as

€y ¼ f ðx; tÞ þ gðtÞu; (3)

where x ¼ x1 x2 x3 x4

� �T
is the state vector and f ðx; tÞ and gðtÞ are, respectively, in the forms

f ðx; tÞ ¼
1

msðtÞ
½�k1sðx1 � x3Þ þ k2sfðx1; x3Þ � csðtÞðx2 � x4Þ � DmsðtÞg	; (4a)

gðtÞ ¼
1

msðtÞ
: (4b)

Since most quantities in f ðx; tÞ are unavailable, we have to regard f ðx; tÞ as an unknown time-
varying function whose variation bound is not known either. On the other hand, since an estimate
of the bound of msðtÞ is possible, the unknown function gðtÞ has known bounds, i.e.,
gminpgðtÞpgmax with some known gmin and gmax: Suppose gðtÞ is modeled as gðtÞ ¼ gmDg; where
gm is the nominal value and Dg is the multiplicative uncertainty satisfying

0obmin 

gmin

gm

pDgp
gmax

gm


 bmax: (5)

To deal with these uncertainties, traditional robust designs or adaptive strategies are not
applicable. In Section 4, the function approximation technique is employed to represent f ðx; tÞ as
a finite combination of basis functions, and an adaptive sliding controller is designed to have
desired performance. Besides, it should be noted that in addition to Eq. (3), there is a second-
order internal dynamics [16] to be considered. By setting y ¼ _y ¼ 0; the zero dynamics [16] with
zero road input z ¼ 0 can be derived as

_x3 ¼ x4; (6a)

_x4 ¼
1

mu

½�ktx3 � ctx4 � DmsðtÞg	: (6b)

Fortunately, Eq. (6) is just the dynamics of the unsprung mass whose input is the bounded
variation of the car-body load, and it is an ISS second-order system [17].
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3. Review of function approximation technique

In this section some basic notions of function approximation with orthonormal functions are
reviewed [18]. A set of real-valued functions fziðtÞg defined over some interval ½t1; t2	 is said to form
an orthogonal set on that interval ifZ t2

t1

ziðtÞzjðtÞdt
¼ 0; iaj;

a0; i ¼ j:

�
(7)

An orthogonal set fziðtÞgon ½t1; t2	 having the property
R t2

t1
z2

i ðtÞdt ¼ 1 for all i is called an
orthonormal set on ½t1; t2	: The set of real-valued functions fziðtÞg defined over some interval ½t1; t2	
is orthogonal with respect to the weight function pðtÞ on that interval ifZ t2

t1

pðtÞziðtÞzjðtÞdt
¼ 0; iaj;

a0; i ¼ j:

�
(8)

Any set of functions orthogonal with respect to a weight function pðtÞ can be converted into a set
of functions orthogonal to 1 simply by multiplying each member of the set by

ffiffiffiffiffiffiffiffi
pðtÞ

p
if pðtÞ40 on

that interval. For any set of orthonormal functions fziðtÞg on ½t1; t2	; an arbitrary function f ðtÞ can
be represented in terms of ziðtÞ by a series

f ðtÞ ¼ w1z1ðtÞ þ w2z2ðtÞ þ 
 
 
 þ wnznðtÞ þ 
 
 
 : (9)

This series is called a generalized Fourier series of f ðtÞ and its coefficients are Fourier coefficients of
f ðtÞ with respect to fziðtÞg: Multiplying znðtÞ; integrating over the interval ½t1; t2	 and using the
orthogonality property, the series becomesZ t2

t1

f ðtÞznðtÞdt ¼ wn

Z t2

t1

z2
nðtÞdt: (10)

Hence, the coefficient wn can be obtained from the quotient

wn ¼

R t2
t1

f ðtÞznðtÞdtR t2
t1

z2
nðtÞdt

: (11)

It should be noted that although the orthogonality property can be used to determine all
coefficients in (9), it is not sufficient to conclude convergence of the series. To guarantee
convergence of the approximating series, the orthogonal set should be complete. An orthogonal
set fziðtÞg on ½t1; t2	 is said to be complete if the relation

R t2
t1

hðtÞziðtÞdt ¼ 0 can hold for all values of
i only if hðtÞ have non-zero values in a measure zero set in ½t1; t2	: Here, hðtÞ is called a null function
on ½t1; t2	 satisfying

R t2
t1

h2
ðtÞdt ¼ 0: It is easy to prove that if fziðtÞg is a complete orthonormal set

on ½t1; t2	 and the expansion w1z1ðtÞ þ w2z2ðtÞ þ 
 
 
 þ wnznðtÞ þ 
 
 
 of f ðtÞ converges and can be
integrated term by term, then the sum of the series differs from f ðtÞ by at most a null function, and
the series converges in the sense of mean square as

lim
n!1

Z t2

t1

f ðtÞ �
Xn

i¼1

wiziðtÞ

					
					
2

dt ¼ 0; (12)
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where the positive integer n is the number of terms used in approximation. This implies that any
function f ðtÞ in the current Hilbert space can be approximated to arbitrarily prescribed accuracy
by finite linear combinations of the orthonormal basis fziðtÞg as

f ðtÞ ¼
Xn

i¼1

wiziðtÞ þ �; (13)

where � ¼
P1

i¼nþ1wiziðtÞ is the approximation error. Rewriting (13) into vector form, we have

f ðtÞ ¼ wTzþ �; (14)

where zðtÞ ¼ ½ z1ðtÞ z2ðtÞ 
 
 
 znðtÞ 	
T is the basis function vector and w ¼ ½w1 w2 
 
 
 wn 	

T

is the time-invariant coefficient vector. An excellent property of (14) is its linear parameterization
of the time-varying function f ðtÞ into the multiplication of zðtÞ and w with prescribed accuracy �: If
sufficient numbers of basis functions are used, then the approximation error can be further
neglected, i.e., � � 0: In Section 4, Eq. (14) is applied to represent the time-varying parameter in
the system dynamic equation, where the time-varying vector zðtÞ is known while w is an unknown
constant vector. With this approximation, the unknown time-varying function is replaced by a set
of unknown constants; therefore, a proper Lyapunov function can be selected to find update laws
for these unknown constants.
4. Controller design

In this section we would like to derive an adaptive sliding controller for the quarter-car
suspension system, and the closed-loop stability is proved using the Lyapunov direct method.

Define a sliding surface

s ¼ _y þ ly ¼ 0; (15)

where l40 is the convergent rate of y on the sliding surface. The dynamics of the error signal s is
calculated as

_s ¼ €y þ l _y: (16)

Substituting (3) into (16), we have

_s ¼ f ðx; tÞ þ gðtÞu þ l _y

¼ f ðx; tÞ þ gmðDg � 1Þu þ gmu þ l _y: ð17Þ

Let us design the control u as

u ¼
1

gm

½�f̂ � l _y � Z1s � Z2 sgnðsÞ	; (18)

where f̂ is the estimate of f ðx; tÞ: The constants Z140 and Z240 are parameters to be selected.
Then Eq. (17) can be rewritten as

_s ¼ �Z1s � Z2 sgnðsÞ þ ðf � f̂ Þ þ gmðDg � 1Þu: (19)
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Here, we would like to use the function approximation technique defined in (14) to represent f and
f̂ as

f ¼ wT
f zf þ �f ; (20a)

f̂ ¼ ŵ
T
f zf ; (20b)

where wf ; ŵf 2 <n are weighting vectors, zf 2 <n is the vector of basis functions and �f is the
approximation error. Hence (19) becomes

_s ¼ �Z1s � Z2 sgnðsÞ þ ~wT
f zf þ gmðDg � 1Þu þ �f ; (21)

where ~wf ¼ wf � ŵf : It is observed that the error dynamics is driven by parameter errors. To find
update laws for ŵf and to prove stability of the closed-loop system, a Lyapunov function
candidate is designed as

V ¼ 1
2

s2 þ 1
2
~wT

f Qf ~wf ; (22)

where Qf 2 <n�n is positive definite and symmetric. Taking the time derivative of V along the
trajectory of (21), we have

_V ¼ �Z1s2 � Z2jsj þ ~wT
f ðzf s �Qf

_̂wf Þ þ gmðDg � 1Þsu þ �f s: (23)

If we select

_̂wf ¼ Q�1
f zf s; (24)

Z2 ¼ gmðbmax þ 1Þumax; (25)

then (23) becomes

_Vpð�Z1jsj þ j�f jÞjsj: (26)

Therefore, if a proper Z140 and a suitable set of basis functions are chosen, then _Vp0 whenever
s 2 fsjjsj4j�f j=Z1g: This implies that the output error s is uniformly bounded.

Remark 1. If a sufficient number of basis functions are used so that �f � 0; then (26) implies
s 2 L1 \ L2; and ~wf 2 L1: In addition, Eq. (21) implies _s 2 L1: Hence, the asymptotic
convergence of output error s can be concluded using the Barbalat’s lemma [19].

Remark 2. If �f cannot be ignored but its variation bound can be estimated [12–14], i.e. there
exists a positive constant d40 such that �f

		 		pd; then the controller parameter Z2 can be
modified as

Z2 ¼ gmðbmax þ 1Þumax þ d

With the selection of update laws in (24), _V can be derived to be

_Vp� Z1s2 þ j�f jjsj � djsjp0

Therefore, we may further conclude asymptotic convergence of s according to the Barbalat’s
lemma.
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In this paper, we only investigate the case when sufficient numbers of basis functions are used,
and hence no approximation error is considered. Under this condition, the output error is proved
to have asymptotically convergent performance. This further implies that the sprung mass
displacement converges as desired. It is observed from (18) and (24) that to realize the controller
we do not need to feedback the position or velocity of the unsprung mass and this much simplifies
the hardware structure in implementations.
5. Simulations

To verify the effectiveness of the proposed method, computer simulations are performed with
the following plant parameters: msðtÞ ¼ 290 þ 60 sin t ðkgÞ; mu ¼ 59 ðkgÞ; k1s ¼ 14500 ðN=mÞ;
k2s ¼ 160000 ðN=m3

Þ; kt ¼ 190000 ðN=mÞ; csðtÞ ¼ 900 þ 200e�0:1t ðN=m=sÞ; ct ¼ 170 ðN=m=sÞ; and
umax ¼ 3000 ðNÞ: Assuming that msm ¼ 290ðkgÞ and the bound of DmsðtÞ is 70 ðkgÞ; the parameters
gm; bmax and bmin in (5) are calculated as gm ¼ 0:00356; bmax ¼ 1:278 and bmin ¼ 0:781;
respectively. The static deflections of the suspension and tire can be computed as d0 ¼ �0:155 ðmÞ

and xur ¼ �0:018 ðmÞ; respectively, due to the car-body nominal load msmg ¼ 2845 ðNÞ: The
controller parameters are Z1 ¼ 1 and l ¼ 1; and the value of Z2 is calculated from Eq. (25) to be
20.274. To avoid chattering in the control action, the sgn (s) function in (18) is replaced by the
saturation function satðs=fÞ with the boundary layer thickness f ¼ 0:05: The first nine terms of
the Fourier series [18] are employed as the basis functions. The matrix Qf 2 <9�9 is chosen as a
diagonal matrix and all of its diagonal elements are 0.002. The initial weighting matrix is set to be
ŵf ¼ ½ 0:01 0:01 
 
 
 0:01 	T; and the system is initially with xð0Þ ¼ ½ 0 0 0 0 	T: We would
like the sprung mass to stay at its reference position xsr even with the road disturbance. The
uneven terrain is composed of a positive bump followed by a negative bump. Sinusoidal
disturbances are also superimposed on the road profile to simulate the rough road surface.
Therefore, the terrain disturbance input has the form:

zrðtÞ ¼

�0:0592ðt � 3:5Þ3 þ 0:1332ðt � 3:5Þ2 þ dðtÞ for t 2 ½3:5; 5Þ;

0:0592ðt � 6:5Þ3 þ 0:1332ðt � 6:5Þ2 þ dðtÞ for t 2 ½5; 6:5Þ;

0:0592ðt � 8:5Þ3 � 0:1332ðt � 8:5Þ2 þ dðtÞ for t 2 ½8:5; 10Þ;

�0:0592ðt � 11:5Þ3 � 0:1332ðt � 11:5Þ2 þ dðtÞ for t 2 ½10; 11:5Þ;

dðtÞ else:

8>>>>>><
>>>>>>:

(27)

where dðtÞ ¼ 0:002 sin 2pt þ 0:002 sin 7:5pt is the sinusoidal disturbance.
Case 1: In this case, the sprung mass is assumed to be constant with ms ¼ 290 ðkgÞ: Simulation

results are shown in Figs. 3–9. In Fig. 3, it can be seen that the sprung mass regulation is
dramatically improved with the proposed controller compared with the passive counterpart. Fig.
4 is the PSD plot of the car-body acceleration, which shows significant improvement of the car-
body vibration in the entire spectrum. Fig. 5 is the suspension deflection. Fig. 6 is the curve of the
tire deflection where the negative deflection means that the tire keep contacting with the ground. It
can be observed that the tire with the proposed method is able to keep on the ground well at all
times and hence the road holding ability will not be deteriorated. Fig. 7 presents the function
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approximation performance for the unknown time-varying function f ðx; tÞ and Fig. 8 gives the
time history of the control force.

Case 2: The sprung mass is considered as a fast time-varying function msðtÞ ¼ 290 þ

60 sin t ðkgÞ and simulation results are shown in Figs. 9–14 with satisfactory performance. In Fig.
9, it is observed that due to the asymmetric property of the nonlinear spring and time-varying
loading, the passive system exhibits a larger variation in sprung mass displacement than the road
profile. On the contrary, both the displacement and acceleration of the sprung mass with the
proposed controller shown, respectively, in Figs. 9 and 10 are effectively regulated under severe
loading conditions regardless of the system uncertainties. Reasonable control efforts can also be
seen in Fig. 14 to show the feasibility of the proposed method.
6. Conclusions

This paper proposes an adaptive sliding controller for a non-autonomous quarter-car
suspension system. The system model is firstly represented with respect to the static positions
under the nominal car-body load. In order to cope with the system nonlinearities and
uncertainties, the function approximation technique is applied. Then the control rule and the
update laws are designed to guarantee the closed-loop stability. Although the system contains
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time-varying uncertainties, the proposed controller gives significant performance improvement
compared with the pure passive design from the viewpoint of ride comfort. Besides, the controller
can be realized with only position and velocity feedback of the car body, and this implies great
simplification in hardware implementation. Reasonable control activity shows its feasibility of
realization using available hydraulic components.
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