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Abstract

In the present paper the postbuckling and postbuckled vibrations of symmetrically laminated composite
plate subjected to a uniform temperature distribution through the thickness is presented. The structural
model is based on a higher-order shear deformation theory incorporating von Kármán nonlinear
strain–displacement relations and initial geometric imperfections. Adopting a multi-term Galerkin’s
approximation, the governing nonlinear partial differential equations are converted into a set of nonlinear
algebraic equations in the case of postbuckling analysis and nonlinear ordinary differential equations in the
case of free vibration analysis. The critical buckling temperatures are obtained from the solution of the
corresponding linear eigenvalue problems. Postbuckled equilibrium paths are traced by solving the
nonlinear algebraic equations, via the Newton–Raphson iterative procedure. The free vibration frequencies
of a thermally postbuckled plate are reported by solving the eigenvalue problem for different postbuckled
deflections.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of postbuckling of composite plates under thermal effect was investigated in the
past using Rayleigh–Ritz [1], Galerkin [2–4], perturbation [5] and finite element methods [6–8].
However, relatively less work has been done in the area of free vibration analysis of thermally
see front matter r 2004 Elsevier Ltd. All rights reserved.
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postbuckled-laminated composite plates. Bisplingoff and Pian [9] studied the small-amplitude
vibration of a buckled isotropic rectangular plate with an aspect ratio of 3, subjected to a in-plane
compression due to temperature loading. Yamaki [10] investigated the large-amplitude flexural
vibrations of elastic plates, using one-term approximation of Galerkin’s method. The influence of
large amplitudes on free flexural vibrations of elastic plates was studied by Chu and Herrmann
[11] using the perturbation method. Yang and Han [12] studied the buckled plate vibrations and
large-amplitude vibrations using high-order triangular elements. Hui and Leissa [13] reported the
effects of geometric imperfections on the vibration frequencies of simply supported flat plates
under in-plane uniaxial or biaxial compression. Authors have used a single-term Galerkin’s
method to solve the nonlinear von Kármán’s equation and numerical results are presented for
isotropic, homogeneous plate. Illanko [14] studied the vibration and postbuckling of mechanically
loaded rectangular plates using a multi-term Galerkin’s procedure. Lee and Lee [15] reported the
vibration behavior of thermally postbuckled anisotropic plates within the framework of finite
element method. The finite element model is based on a first-order shear deformable plate theory
considering von Kármán strain–displacement relation. Librescu et al. [16,17] studied the vibration
behavior of geometrically imperfect flat and curved panels subjected to thermal and mechanical
loads. The effects of tangential edge constraints on the vibrational behavior of single/multilayered
doubly curved shallow panels subjected to complex thermomechanical loading are presented by
Librescu and Lin [18]. In Refs. [16–18] the formulation is based on a higher-order shallow-shell
theory and the governing equations of the problem were solved using a one-term Galerkin
approximation. Ribeiro and Petyt [19] studied the nonlinear vibration of composite-laminated
plates by the hierarchical finite element and the harmonic balance methods. Free and steady-state
forced vibrations were analyzed considering three harmonics. Oh et al. [20] studied the
postbuckling and vibration characteristics of piezolaminated composite plates, using nonlinear
finite element equations based on the layerwise displacement theory. In a companion paper, Oh
and Lee [21] investigated thermal snapping and vibration characteristics of cylindrical composite
panels using the layerwise theory. Recently, Liew et al. [22] investigated the postbuckling of
piezoelectric FGM plates subject to thermo-electro-mechanical loading. Yang et al. [23] reported
the large-amplitude vibration analysis of FGM-laminated plates, subject to thermo-electro-
mechanical loading.
While reviewing the preceding developments, it is observed that the existing formulations do

not cover the free vibration analysis of thermally postbuckled imperfect composite plates
considering higher-order shear deformation theory. Hence, the present study is focused on
postbuckling and postbuckled vibration analysis of symmetrically laminated composite plates
subjected to uniform temperature distribution through the thickness, using a multi-term Galerkin
procedure. The multi-term approach is essential because of the fact that, the postbuckling
deflection is the combination of different modes. The formulation is based on a higher-order shear
deformation plate theory, incorporating von Kármán nonlinear strain-displacement relations.
The displacement field used in the present study corresponds to the higher-order shear
deformation theory proposed by Reddy [24]. Reddy has used principle of virtual displacements
to derive the equilibrium equations appropriate to the assumed displacement fields. However, in
the present approach, the equations of equilibrium are obtained using the principle of minimum
total potential energy. The boundary conditions at all edges are assumed to be simply supported
and immovable. Numerical results are presented for eight-layered symmetric crossply (0/90/90/0)s



ARTICLE IN PRESS

J. Girish, L.S. Ramachandra / Journal of Sound and Vibration 282 (2005) 1137–1153 1139
graphite epoxy laminates including initial geometric imperfections. Adopting Galerkin procedure,
the governing nonlinear partial differential equations are converted into a set of nonlinear algebraic
equations in the case of postbuckling analysis and nonlinear ordinary differential equations in the
case of free vibration analysis. The nonlinear algebraic equations are solved using the
Newton–Raphson iterative procedure. The free vibration frequencies of a thermally postbuckled
plate are obtained by solving the eigenvalue problem for different postbuckled deflections.
2. Formulation

Consider a plate of constant thickness h composed of a finite number of orthotropic layers. The
coordinate system is such that the middle plane of the plate coincides with the x–y plane, and the z-

axis is normal to the middle plane. The higher-order shear deformation theory used in the present
study is based on the following displacement field given by Reddy [24] and are expressed as

u ¼ u0 � zw0
;x þ f ðzÞf1; v ¼ v0 � zw0

;y þ f ðzÞf2; w ¼ w0, (1)

where

f1 ¼ j1 þ w0
;x; f2 ¼ j2 þ w0

;y; f ðzÞ ¼ z 1�
4

3

z

h

� �2� �
.

Here u, v, w are displacement components, respectively, along x, y, z directions; u0, v0, w0 are the
displacements of a generic point in the mid-plane; and j1 and j2 are the rotations of the cross-
sections perpendicular to the x- and y-axis, respectively. The governing equations of the problem
under investigation are the equations of motion of the plate, the constitutive law and the
strain–displacement equations. By neglecting in-plane inertia terms, the equations of equilibrium
can be obtained using the principle of minimum total potential energy as

Nx;x þ Nxy;y ¼ 0,

Nxy;x þ Ny;y ¼ 0,

Mx;xx þ 2Mxy;xy þ My;yy þ Nxw;xx þ 2Nxyw;xy þ Nyw;yy ¼ rw0
;tt,

Qx;x þ Qxy;y � Vxz ¼ 0,

Qyx;x þ Qy;y � Vyz ¼ 0, ð2Þ

where ( ),x denotes partial differentiation with respect to x. Nx, Ny, Nxy, Qx, Qy, Qxy, Vxz, Vyz and
Mx, My, Mxy are the stress and moment resultants, which are given by
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CAð1; z; f ðzÞÞdz; (3)

ðVxz;VyzÞ ¼

Zh=2
�h=2

ðtxz; tyzÞf
0
ðzÞdz

where f 0
ðzÞ ¼ ðd=dzÞf ðzÞ:
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The stresses are related to strains as

fsg ¼ ½Q
ðf�g � fagTÞ (4)

where

fsgT ¼ fsx sy txy tyz txzg,

f�gT ¼ f�x �y gxy gyz gxzg,

fagT ¼ faxx ayy axyg,

where ½Q
 are the transformed in-plane reduced stiffnesses. fsgTare the Cartesian components of
stress tensor at any point, f�gT are the corresponding strain tensor and fagT are linear thermal
expansion coefficients. The strain components at a distance ‘z’ away from the mid-plane are
related to mid-surface strains of a perfect flat plate as follows:

�x ¼ �0x � zw0
;xx þ f ðzÞf1;x,

�y ¼ �0y � zw0
;yy þ f ðzÞf2;y,

gxy ¼ �0xy � 2zw0
;xy þ f ðzÞf1;y þ f ðzÞf2;x,

gxz ¼ u;z þ w;x ¼ f 0
ðzÞf1,

gyz ¼ v;z þ w;y ¼ f 0
ðzÞf2, ð5Þ

�0x; �
0
y and g0xy are reference surface strains and are defined as

�0x ¼ u0;x þ
1
2
ðw0

;xÞ
2,

�0y ¼ v0;y þ
1
2
ðw0

;yÞ
2,

g0xy ¼ u0;y þ v0;x þ w0
;xw0

;y. ð6Þ

The geometric imperfection of a plate is assumed as

wn ¼ w0 sin
mpx

a
sin

npy

b
, (7)

where m, n are half-wave numbers. Moreover, a, b are the plate dimensions along x and y
directions respectively. The coefficient w0 represents the value of initial imperfection at the plate
center. The strains due to initial imperfection at the mid surface can be written as [25]

��x ¼ 1
2
ðw�

;xÞ
2; ��y ¼ 1

2
ðw�

;yÞ
2; g�xy ¼ w�

;xw�
;y; g�xz ¼ w�

;x; g�yz ¼ w�
;y. (8)

Thus, the net strain components of the imperfect plate are

�x ¼ �0x þ w0
;xw�

;x � zw0
;xx þ f ðzÞf1;x,

�y ¼ �0y þ w0
;yw�

;y � zw0
;yy þ f ðzÞf2;y,

gxy ¼ g0xy þ w0
;xw�

;y þ w�
;xw0

;y � 2zw0
;xy þ f ðzÞf1;y þ f ðzÞf2;x,

gxz ¼ u;z þ w;x ¼ f 0
ðzÞf1,

gyz ¼ v;z þ w;y ¼ f 0
ðzÞf2. ð9Þ
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By expressing the stress resultants in terms of displacements in Eq. (2), the governing equations of
motion in unknown displacements are obtained and are given in Appendix A.
3. Solution procedure

Consider a rectangular plate of length a, width b and thickness h. Simply supported immovable
edge boundary conditions are considered on all four sides of the plate and are stated as

u0 ¼ v0 ¼ w0 ¼ 0 at x ¼ 0; a and y ¼ 0; b. (10)

The Galerkin procedure is adopted to solve the governing partial differential equations
(A.1)–(A.5), wherein the displacement fields are represented as

u0 ¼
Xm

i¼1

Xn

j¼1

Uij sin
2ipx

a


 �
sin

jpy

b


 �
; f1 ¼

Xm

i¼1

Xn

j¼1

aij sin
2ipx

a


 �
sin

jpy

b


 �
,

v0 ¼
Xm

i¼1

Xn

j¼1

Vij sin
ipx

a


 �
sin

2jpy

b


 �
; f2 ¼

Xm

i¼1

Xn

j¼1

bij sin
ipx

a


 �
sin

2jpy

b


 �
,

w0 ¼
Xm

i¼1

Xn

j¼1

W ij sin
ipx

a


 �
sin

jpy

b


 �
. ð11Þ

Neglecting inertia term in equations (A.1)–(A.5) and applying Galerkin procedure, one obtains
a system of nonlinear algebraic equations in constant coefficients Uij, Vij, Wij, aij and bij: For one-
term (m=n=1) Galerkin approximation, the five nonlinear-coupled algebraic equations are

R1U11 þ R2V11 þ R3W
2
11 ¼ 0;

R4U11 þ R5V11 þ R6W
2
11 ¼ 0;

R7U11W 11 þ R8V11W 11 þ R9W 11 þ R10W
3
11 þ R11lTcrW 11 þ R12a11 þ R13b11 ¼ 0;

R14W 11 þ R15a11 þ R16b11 ¼ 0;

R17W 11 þ R18a11 þ R19b11 ¼ 0;

(12)

where l is the load factor and Tcr is the critical buckling temperature of the plate.
Using the Newton–Raphson method, the system of nonlinear algebraic equations can be solved

and the postbuckled deflections obtained. The constants of integration R1 to R19 are given in
Appendix B. The nonlinear algebraic equations based on a multi-term Galerkin procedure are not
presented for the sake of brevity.

3.1. Small-amplitude vibration about a static equilibrium state

For the free vibration analysis of plates about a prebuckling and postbuckling equilibrium
states, the unknown modal amplitudes are assumed to be the sum of time-independent and time-
dependent solution, which may be written as

fwg ¼ fwsg þ fwtg, (13)
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where {ws} is the thermal postbuckling deflection and wt is the small vibration amplitude about a
static equilibrium state. In the case of small-amplitude vibration {wt}

2
5{ws}. Substituting the

displacement field (Eq. (11)) into the governing partial differential equations (A.1)–(A.5) and
adopting the Galerkin’s technique, we can obtain a set of nonlinear ordinary differential
equations. For the free vibration analysis at frequency ‘o’, the following one-harmonic
approximation is assumed to solve the ordinary differential equations:

W ijðtÞ ¼ ~W ij sin ot. (14)

Using the above function the nonlinear ordinary differential equations are converted into a set
of nonlinear algebraic equations. In the analysis, the in-plane inertia terms are neglected and
consequently the in-plane displacements become a function of sin2ot. Now condensing the
equations of motion, the standard eigenvalue problem is obtained [15,16–18]. For the linear
vibration analysis about a static equilibrium state, the nonlinear algebraic equations can be
arranged into the following eigenvalue equation:

fð½K 
 � lTcr½KDT 
 þ ½N
Þ � o2½M
gfwtg ¼ 0, (15)

where ½K
 and ½KDT 
 are linear elastic stiffness and linear stiffness due to thermal load; [N] is the
nonlinear stiffness due to large deformation; [M] is the mass matrix. In Eq. (15), the nonlinear
stiffness matrix [N] is a function of only time-independent amplitude. By substituting the
converged postbuckling deflection values obtained from the postbuckling analysis, the vibration
analysis is performed by solving eigenvalue equation (15).
3.2. Large-amplitude vibration about a static equilibrium state

For the large-amplitude vibration analysis, the in-plane inertia terms may still be neglected. It
may be pointed out that, for the large-amplitude vibration about a postbuckled equilibrium state,
the one-term harmonic (Eq. (14)) assumption is an approximation. Using the one-term harmonic
function (Eq. (14)), the nonlinear ordinary differential equations can be converted into a set of
nonlinear algebraic equations. The equations can be arranged into the following eigenvalue
equation:

fð½K 
 � lTcr½KDT 
 þ ½KN 
Þ � o2½M
gfwg ¼ 0, (16)

where [KN] is a nonlinear stiffness matrix, which is a function of sum of time-dependent and time-
independent (postbuckled deflections) amplitudes. Hence, the nonlinear eigenvalue problem given
by Eq. (16) is solved by iterative procedure (for more details see Ref. [26]).
4. Numerical results and discussion

Numerical results are presented for eight-layered symmetric crossply (0/90/90/0)s graphite
epoxy laminate subjected to a uniform temperature distribution through the thickness. The
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graphite epoxy material properties are taken as [27]:

E1 ¼ 155GPa; E2 ¼ 8:07GPa; m12 ¼ 0:22,

G12 ¼ 4:55GPa; G23 ¼ 3:25GPa; r ¼ 1586Kg=m3,

a1 ¼ �0:07� 10�6=
C; a2 ¼ 30:1� 10�6=
C;

To validate the present formulation, the critical buckling temperature obtained from the
present analysis for the symmetric crossply (0/90/90/0)s, graphite epoxy laminate has been
compared with that of Shi et al. [27]. The critical buckling temperature Tcr of the plate ða=b ¼

1:25Þ subjected to a uniform temperature distribution through the thickness in the reference is
6.8 1C and that in the present analysis is 6.8 1C. Next, thermal postbuckling equilibrium path is
obtained using one-term Galerkin’s approach and is compared with Shi et al. [27] in Fig. 1. It is
observed from the figure that the results compare well.
Fig. 2 shows the response of nondimensionalized critical temperature (T*) versus side-to-

thickness ratio (a/h) of a square crossply (0/90/90/0)s laminate, obtained from the classical plate
theory (CPT) and the higher-order shear deformation (HSDT) theory. It can be seen that, if the
plate a/h isX50, both the theories predicts the same results. However, if side-to-thickness ratio of
plate a/h iso50, the classical plate theory overpredicts the buckling load. Hence, it is necessary to
consider the shear deformation theory, when a/h is less than 50.
Nonlinear equilibrium paths of a thin ða=h ¼ 250Þ eight-layered symmetric crossply, simply

supported, square ða=b ¼ 1Þ and rectangular ða=b ¼ 3Þ plates are shown in Figs. 3 and 4
respectively. At lower temperature the 1-mode (m=n=1) Galerkin approximation predicts
accurate postbuckling deflection of the plate. However, at higher temperatures more modes are
required to predict the postbuckled shape of the plate. At a postbuckled temperature T=10Tcr,
for a rectangular plate with aspect ratio of 3, the difference between the 1-term (m=n=1) and 4-
term (m=n=1,3) solutions is 52.8%, whereas the difference between 3-term (mn=11,13,31) and
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Fig. 1. Postbuckled deflection path for a rectangular laminated plate (a/b=1.25, (0/90/90/0)s).
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4-term solutions is less than 1%. Thus, three terms are sufficient to obtain accurate results for the
problems considered in this paper.
Tables 1 and 2 show the contribution of each mode of the assumed displacement function

(Eq. (11)), to the central deflections of plates for the aspect ratios (a/b) of 1 and 3, respectively, at
various temperatures. It may be seen that the participation of the first mode (w11) postbuckled
deflection decreases as the temperature increases, whereas the contributions of other three modes
(w13, w31, w33) increase. Hence, at high temperatures a 1-term approach will not give accurate
postbuckling deflection and multi-terms need to be used in the displacement function of
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Table 1

Modal participation values (%) a/b=1

T/Tcr w11 w13 w31 w33

4 96.37 2.08 1.38 0.16

8 89.77 5.44 3.53 1.26

12 82.76 8.26 5.97 3.00

16 79.14 9.45 7.57 3.83

20 77.43 9.95 8.46 4.17

Table 2

Modal participation values (%) a/b=3

T/Tcr w11 w13 w31 w33

2 79.79 0.006 20.20 0.007

4 74.32 0.03 25.58 0.072

8 72.00 0.13 27.55 0.288

12 70.84 0.39 28.03 0.73

16 69.40 1.19 27.57 1.84

20 68.60 2.00 26.16 3.24
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Galerkin’s approximation. This is more so when the plate is rectangular. Fig. 5(a) shows the
postbuckled deflection contour of a rectangular plate (a/b=3) at a temperature T=3.0Tcr for the
one-term Galerkin approximation. The results of the four-term Galerkin approximation are
shown in Fig. 5(b). The four-term deflection contour is quite different from that of the one-term
contour. The one-term deflection contour shape remains the same through out the postbuckling
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range as it has only one term in the formulation. Hence, a multi-term solution is essential in order
to obtain the true postbuckled deflected shape of the plate. The participation of each term/mode
in the total deflection is calculated as [27]

Participation of ith mode in the total deflection ¼ jwij

,XN

j¼1

jwjj, (17)

where wi is the deflection due to ith mode and N is the number of modes considered in the
displacement function (Eq. (11)).
Fig. 6 shows the thermal postbuckling equilibrium paths for three different aspect ratios of a

plate a/b=1, 2 and 3. The curves are shown for perfect plate (w0=0) and also with an initial
geometric imperfection of 0.1 times the thickness (h) of the plate. The length of the plate a is kept
constant and a/h=250. That is, the higher the value of a/b becomes, the lower the width of the
plate b becomes. The temperatures have been normalized by T�

cr; the buckling temperature of a
square laminate. As the aspect ratio of the plate increases, the slope of the curves increases,
thereby indicating higher postbuckling strength. Due to the presence of the initial imperfections,
bifurcation buckling does not take place. The plate starts deflecting as soon as the temperature is
increased.
The effect of transverse shear–deformation on the response of nondimensionalized fundamental

frequency (o*) versus temperature load (T*), for various plate side-to-thickness (a/h=10, 25, 50,
250) ratios of a square laminate is shown in Fig. 7. It can be seen that, as the plate side-to-
thickness ratio increases, the fundamental frequency decreases in the prebuckling and
postbuckling region, whereas the critical temperature increases.
Figs. 8–10 show response of the vibration frequency o/o0 versus temperature ratio T=T�

cr; for
the aspect ratios of the plate 1, 2 and 3 respectively. In the figures, modes 1, 2 and 3 correspond to
different half-waves along x̄ and y- directions viz; m=n=1 (mode 1); m=1, n=3 (mode 2); m=3,
n=1 (mode 3). The frequencies have been normalized by the lowest linear natural frequency o0 of
the plate. Zero frequency (mode 1) corresponds to critical buckling temperature. The frequency of
the pre- and postbuckled plates in all the three modes increases with the increase in temperature,
due to the increase in nonlinear stiffness. From these curves it may be observed that the presence
of a small imperfection of the plate has pronounced effect on the vibration frequencies.
The response of large-amplitude variation versus frequency has been shown in Fig. 11. The

amplitude is normalized with the thickness of the plate, whereas the frequency has been
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normalized with the natural frequency o0 of the plate. The results were shown for T/Tcr=0, 1,
and 2, respectively. In the figure, the curve for temperature load T/Tcr=0 corresponds to a large-
amplitude free vibration analysis, without a temperature load. Similarly, the curve for T/Tcr=1,
corresponds to bifurcation buckling of a plate, the determinant of the sum of the elastic linear
stiffness matrix and stiffness matrix due to thermal load vanishes. As a result, the amplitude-
frequency curve appears to be linear. The curve T/Tcr=2, represents a large-amplitude free
vibration, about a postbuckled equilibrium state.
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5. Concluding remarks

A formulation based on higher-order shear deformation plate theory, including von Kármán
strain–displacement relation and initial geometric imperfection is presented for solving thermal
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postbuckling and postbuckled vibrations of symmetric crossply laminated composite plates.
Multi-term Galerkin method is implemented to obtain the true postbuckled shape of the plate and
higher mode vibration frequencies. The effect of aspect ratio on the critical buckling temperature
and postbuckling response is significant. From the present study, it is observed that the multimode
Galerkin method gives better results than the single mode solution. This is more so in the case of
rectangular plate. The influence of initial geometric imperfection on the postbuckling path has
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been studied. It is seen from the present study that, as the side-to-thickness ratio of plate increases,
the fundamental frequency decreases in the pre- and postbuckling region, whereas the critical
temperature increases. Free vibration characteristics of a pre- and postbuckled plate, with and
without initial geometric imperfections were investigated, for the different aspect ratios of the
plate. It is observed that the initial geometric imperfection has significant influence on the
frequencies.
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Appendix A

A11u
0
;xx þ A66u

0
;yy þ ðA12 þ A66Þv

0
;xy þ fA11ðw

0
;xx þ w�

;xxÞ

þA66ðw
0
;yy þ w�

;yyÞgw
0
;x þ ðA11w

0
;xx þ A66w
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þðA12 þ A66Þðw
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;xy þ w0
;yw�

;xy þ w�
;yw0

;xyÞ ¼ 0;

(A.1)

ðA12 þ A66Þu
0
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;xx þ w�
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;yy þ w�

;yyÞgw
0
;y þ ðA66w

0
;xx þ A22w

0
;yyÞw

�
;y

þðA12 þ A66Þðw
0
;xw0

;xy þ w0
;xw�

;xy þ w�
;xw0

;xyÞ ¼ 0;

(A.2)

� fC11w
0
;xxxx þ 2ðC12 þ 2C66Þw

0
;xxyy þ C22w

0
;yyyyg þ E11f1;xxx

þ ðE12 þ 2E66Þðf1;xyy þ f2;xxyÞ þ E22f2;yyy

þ ½A11fu
0
;x þ

1
2ðw

0
;xÞ

2
þ w0

;xw�
;xg þ A12fv

0
;y þ

1
2ðw

0
;yÞ

2
þ w0

;yw�
;yg � NT

x 
ðw
0 þ w�Þ;xx

þ 2fA66ðu
0
;y þ v0;x þ w0

;xw0
;y þ w0

;xw�
;y þ w�

;xw0
;yÞ � NT

xygðw
0 þ w�Þ;xy

þ ½A12fu
0
;x þ

1
2
ðw0

;xÞ
2
þ w0

;xw�
;xg þ A22fv

0
;y þ

1
2
ðw0

;yÞ
2
þ w0

;yw�
;yg � NT

y 
ðw
0 þ w�Þ;yy ¼ rw0

;tt, ðA:3Þ

�E11w
0
;xxx � ðE12 þ 2E66Þw

0
;xyy þ F11f1;xx þ F66f1;yy þ ðF12 þ F66Þf2;xy � H55f1 ¼ 0, (A.4)

�E22w
0
;yyy � ðE12 þ 2E66Þw

0
;xxy þ F66f2;xx þ F22f2;yy þ ðF12 þ F66Þf1;xy � H44f2 ¼ 0, (A.5)

where ðAij ;CijÞ ¼
R h=2
�h=2 Qijð1; z

2Þdz; ðEij;FijÞ ¼
R h=2
�h=2 Qijðz; f ðzÞÞf ðzÞdz for i, j=1, 2, 6.
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Appendix B
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