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1. Introduction

A number of publications have been generated on the basis that new techniques are now
available to accurately solve nonlinear differential equations using perturbation techniques [1–3].
The basic problem can be portrayed as a linear ordinary differential equation (ODE) plus a
nonlinear term that is multiplied by a constant and added to the ODE. The assumption that is
usually made is that the constant term is only a perturbation of order Oð�Þ to the linear equation.
However, publications like the ones by He [1,2] claim that the solution that he has presented is an
accurate solution even for very large constant �: In these papers, He [1,2] obtains results on the
lengths of the periods based on � ! 1: This proposed technique is implemented and evaluated
for the same values done on the original paper [1]. It will be shown that the error of the function is
huge for large values of �: The same equation is treated with a basic Method of Multiple Scales
[4,5], and then the results show the performance of the two perturbation solutions are very similar,
at the point where they are valid. The reference will be an accurate numerical solution that can be
found with minimum error.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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2. Basic equation

The original problem is

€u þ u þ �u3 ¼ 0; uð0Þ ¼ A; _uð0Þ ¼ 0: (1)

This basic problem is changed by He [1] into another case by using

b2 þ �Z ¼ 1; (2)

to substitute Eq. (2) into Eq. (1) to obtain the equation

€u þ b2u þ �ðu3 þ ZuÞ ¼ 0; uð0Þ ¼ A; _uð0Þ ¼ 0: (3)
3. Higher order approximations

He [1] assumes that b2 and u can be written as

b2 ¼ o20 þ �o1 þ �2o2 þ � � � ; u ¼ u0 þ �u1 þ �2u2 þ � � � : (4,5)

Substituting these parameters into Eq. (3) and keeping terms to only order Oð�2Þ; this equation
can be separated into the following equations according to their order, implying �51:

€u0 þ o20u0 ¼ 0; (6)

€u1 þ o20u1 ¼ �o1u0 � u30 � Zu0; (7)

€u2 þ o20u2 ¼ �o1u1 � o2u0 � 3u20u1 � Zu1: (8)

The first equation can have a nice linear solution,

u0ðtÞ ¼ A cos o0t0: (9)

This can be substituted into the right-hand side (RHS) of Eq. (7) to provide

€u1 þ o20u1 ¼ �ð3
4

A3 þ o1A þ ZAÞ cos o0t � 1
4

A3 cos 3o0t: (10)

The first term on the RHS is going to provide what is called a secular term that needs to be set to
zero. The second term on the RHS is going to provide the real excitation to this equation.
Therefore, this implies: �ð34A3 þ o1A þ ZAÞ ¼ 0: Then

o1 ¼ �ðZþ 3
4

A2Þ; (11)

u1 ¼
A3

32
cos 3o0t: (12)

The last equation (8) then becomes

€u2 þ o20u2 ¼ � o2A þ
3A5

128o20

� �
cos o0t �

3A5

128o20
cos 3o0t �

3A5

128o20
cos 5o0t; (13)
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having additional initial conditions (given by He [1]):

u2ð0Þ ¼ �
A3

32o20
; _u2ð0Þ ¼ 0: (14)

To avoid the secular term in Eq. (13), it is required that

o2 ¼ �
3A4

128o20
: (15)

The general solution for Eq. (13) is

u2ðtÞ ¼ C1 cos o0t þ C2 sin o0t þ
A5

1024o40
ð3 cos 3o0t þ cos 5o0tÞ: (16)

Using the initial conditions

u2ð0Þ ¼ C1 þ
A5

1024o40
ð3þ 1Þ ¼ �

A3

32o20
and _u2ð0Þ ¼ C2 ¼ 0; (17)

renders

C1 ¼ �
1

256o40
ðA5 þ 8o20A

3Þ; (18)

Then, Eq. (16) becomes

u2ðtÞ ¼ �
1

256o40
ðA5 þ 8o20A

3Þ cos o0t þ
A5

1024o40
ð3 cos 3o0t þ cos 5o0tÞ: (19)

Eq. (4) becomes, using Eqs. (11) and (15),

b2 ¼ o20 þ � �
3A2

4
� Z

� �
� �2

3A4

128o20
: (20)

,
Now, using Eq. (2) it is possible to develop the following equation from Eq. (20):

o20 ¼ 1þ
3

4
�A2 þ

3�2A4

128o20
: (21)

From this the natural frequency can be found:

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1þ

3

4
�A2

� �
þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

3

2
�A2 þ

21�2A4

32

svuut
: (22)

And the period is

T ¼
2p
o0

¼
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
ð1þ 3

4
�A2Þ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

2
�A2 þ 21�2A4=32

qr : (23)
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Using Eq. (5), the perturbation solution can be expressed as

uðtÞ ¼ A cos o0t þ �
A3

32o20
cos 3o0t

þ �2 �
1

256o40
ðA5 þ 8o20A

3Þ cos o0t þ
A5

1024o40
ð3 cos 3o0t þ cos 5o0tÞ

� �
: ð24Þ

Expression (23) is identical to the one found by He [1]. The difference is only in the interpretation
and the understanding of the solution. The paper by He [1] used only the period T (23) of the
solution uðtÞ to evaluate and measure if the solution is accurate (see also Ref. [3]). Function (24)
itself is not evaluated so the performance is linked to just the time instead of the total function. In
this paper the solution itself will be compared with the numerical solution that is obtained for
three levels of � ¼ ½1; 10; 100
: Later a typical perturbation solution is going to be derived, to show
that they agree when � is at a valid limit. If values over �51 are used, then the basic principles for
the derivation of the solution itself are violated. Eqs. (6)–(8) will not be valid, so the whole
procedure does not have meaning.
4. Numerical solutions

The numerical solution is evaluated using the Runge–Kutta procedure specified in the Maple 8
language. The error is picked to be about 10�8: The equation is

€u þ u þ �u3 ¼ 0; (25)

with initial conditions (selected as A ¼ 1) of

uð0Þ ¼ 1; _uð0Þ ¼ 0: (26)

The three solutions were found (� ¼ 1; 10; 100) and plotted with the perturbation solution (24) to
compare the values. Fig. 1a shows the first approximation for � ¼ 1; as a solid curve (analytic-He),
and the numerical result obtained from the integration of Eq. (25) is the dashed curve.
The period of the analytical function can be evaluated using Eq. (23) to be T ¼ 4:7317061: In

the same way, from the numerical solution this value can be traced to be Tnum ¼ 4:76802: The
percentage error on the value of the period is 0.76%. The error on the magnitude at uðTÞ will be
about 0:19ð10�5Þ%: This means that even for this large � ¼ 1; uðtÞ is accurate.
Fig. 1b shows the two solutions when � ¼ 10: The period of the analytical function can be found

using Eq. (23) to be T ¼ 2:12200420 and using Eq. (24) to be uðTÞ ¼ 0:67920670: In the same way
from the numerical solution the maximum point can be traced to be unum ¼ 0:99999999371201 at
time Tnum ¼ 2:1918292: This implies errors in time of 3.186% and in the magnitude of 32.079%.
Therefore, the model shown in Fig. 1b is no longer valid! This extra large � ¼ 10 is violating the
assumptions made to derive the model.
Fig. 1c shows the two solutions when � ¼ 100 The period of the analytical function can be

found again from Eq. (23) to be T ¼ 0:70705690 and using Eq. (24) to be uðTÞ ¼ �2:91772739: In
the same way, from the numerical solution the maximum point can be traced to be unum ¼
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Fig. 1. Analytical solution from He (solid line) and numerical solution (dashed): (a) � ¼ 1: (b) � ¼ 10; (c) � ¼ 100:
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0:9999999977820 at time Tnum ¼ 0:7362890: These imply errors in time of 3.970%, and for the
magnitude, the difference is huge: 391.77%.
From the previous facts, it is easy to see that as � grows the validity of the perturbation solution

becomes poor. In particular, as � is closed to one, the solution breaks. It also shows that even
when the value for the period T is less than 5% error, as shown by He [1], the value for the
function itself uðTÞ is at a 392% error for the case � ¼ 100:
5. Perturbation using the method of multiple scales (MMS)

The original equation (1) is considered again. The following assumptions are made, t0 ¼ t; t1 ¼
�t; t2 ¼ �2t; and

d

dt
¼

q
qt0

þ �
q
qt1

þ �2
q
qt2

þ � � � ; (27)

d2

dt2
¼

q2

qt20
þ 2�

q2

qt0qt1
þ �2 2

q2

qt0qt2
þ

q2

qt21

� �
þ � � � ; (28)

where the assumption is made that the parameter �51: As presented by Nayfeh [4], the following
MMS is used. Making the above substitutions into Eq. (1) and neglecting terms, of order higher
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than Oð�2Þ; the following equations are found:

q2u0ðt0; t1; t2Þ
qt20

þ u0ðt0; t1; t2Þ ¼ 0; (29)

q2u1ðt0; t1; t2Þ
qt20

þ u1ðt0; t1; t2Þ ¼ �2
q2u0ðt0; t1; t2Þ

qt1qt0
� u0ðt0; t1; t2Þ

3; (30)

q2u2ðt0; t1; t2Þ
qt20

þ u2ðt0; t1; t2Þ ¼ � 2
q2u0ðt0; t1; t2Þ

qt2qt0
� 2

q2u1ðt0; t1; t2Þ
qt1qt0

� 2
q2u0ðt0; t1; t2Þ

qt21

� 3u0ðt0; t1; t2Þ
2u1ðt0; t1; t2Þ: ð31Þ

The solution of the set is the uniform approximation

uðtÞ ¼ u0ðt0; t1; t2Þ þ �u1ðt0; t1; t2Þ þ �2u2ðt0; t1; t2Þ þ � � � : (32)

The solution to Eq. (29) was found to be

u0ðt0; t1; t2Þ ¼ Aðt1; t2Þ cosðt0 þ bðt1; t2ÞÞ: (33)

Substituting Eq. (33) into Eq. (30) gives

q2u1ðt0; t1; t2Þ
qt20

þ u1ðt0; t1; t2Þ

¼ 2
qAðt1; t2Þ

qt1
sinðt0 þ bðt1; t2ÞÞ

�
3

4
Aðt1; t2Þ

3 cosðt0 þ bðt1; t2ÞÞ þ 2Aðt1; t2Þ cosðt0 þ bðt1; t2ÞÞ
qbðt1; t2Þ

qt1

�
1

4
Aðt1; t2Þ

3 cosð3t0 þ 3bðt1; t2ÞÞ: ð34Þ

The following terms need to be eliminated for causing secular terms:

�
3

4
Aðt1; t2Þ

3
þ 2Aðt1; t2Þ

qbðt1; t2Þ
qt1

¼ 0; (35)

2
qAðt1; t2Þ

qt1
¼ 0: (36)

From Eq. (36), it follows that Aðt1; t2Þ ¼ Aðt2Þ; substituting this into Eq. (35) and integrating

bðt1; t2Þ ¼ 3
8

Aðt2Þ
2t1 þ bðt2Þ; (37)

Eq. (34) is left as

q2u1ðt0; t1; t2Þ
qt20

þ u1ðt0; t1; t2Þ ¼ �
1

4
Aðt2Þ

3 cosð3t0 þ
9

8
Aðt2Þ

2t1 þ 3bðt2ÞÞ: (38)

The solution of Eq. (38) is

u1ðt0; t1; t2Þ ¼ 1
32

Aðt2Þ
3 cosð3t0 þ

9
8

Aðt2Þ
2t1 þ 3bðt2ÞÞ: (39)
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Fig. 2. Analytical solution from MMS curve (solid line) and numerical solution (dashed): � ¼ 1:
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Substituting Eqs. (33) and (39) into Eq. (31) and expanding gives

q2u2ðt0; t1; t2Þ
qt20

þ u2ðt0; t1; t2Þ ¼
21

128
A5 cos 3t0 þ

9

8
A2t1 �

45

256
A4t2 þ 3b0

� �

�
3

128
A5 cos 5t0 þ

15

8
A2t1 �

75

256
A4t2 þ 5b0

� �
: ð40Þ

This is after setting the secular terms equal to zero and integrating them into

Aðt2Þ ¼ A and bðt2Þ ¼ �
15

256
A4t2 þ b0: (41)

At this point it is possible to set solution (32), finding the solution for Eq. (40), and going back to
the original variables:

uðtÞ ¼ A cos t þ �
3

8
A2t � �2

15

256
A4t � b0

� �

þ �
1

32
A3 cos 3t þ �

9

8
A2t � �2

45

256
A4t þ 3b0

� �� �

� �2
21

1024
A5 cos 3t þ �

9

8
A2t � �2

45

256
A4t þ 3b0

� �� �

þ �2
1

1024
A5 cos 5t þ �

15

8
A2t � �2

75

256
A4t þ 5b0

� �� �
: ð42Þ

This is the perturbation solution that was found. In order to apply it to the problem, only the
initial conditions set on Eq. (1) needs to be satisfied by Eq. (42) and its derivative, and the level of
� needs to be defined. In order to get a numerical solution, again the two equations need to be
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solved. This set of equations is solved by Maple 8. The value of � is taken to be beyond the point
of validity at � ¼ 1:Maples gives the following answers, A ¼ 0:9882491 and b0 ¼ 0: The difference
in the amplitude turns out to be 0:2ð10Þ�5: The period turns out to be 0.57% from the numerical
integration. In essence, the same values were obtained with He’s perturbation technique and with
the MMS for � ¼ 1; as is shown in Figs. 2 and 1a.
6. Conclusions

A perturbation technique valid for large parameters, � or �41; was presented by He [1,2]. It is
not an appropriate procedure and it leads to a wrong conclusion. The numerical integration
shows differences in the errors in magnitude at the different � tested (� ¼ 1; 10; and 100). It was
shown that for �41; the values predicted by the functions were not appropriate since the
assumptions are that the first solution is linear and the nonlinear equation has at a higher level of
the perturbation term �: The answers obtained using the MMS perturbation procedure were the
same as the ones provided by He [1] for low values of �51: He presented similar developments in
other publications [2], using mostly the period to show the performance of the function and not
using the function itself to see if it is accurate or not. The derivation of the procedure is also very
important because the terms have been ordered according to the assumed parameter �: A large
number of terms were neglected because of the assumption that �51: If this is not the case, the
whole procedure needs to be rewritten from the start with the proper assumptions.
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